
International Journal of Modeling and Optimization, Vol. 1, No. 1, April 2011

7

Abstract—When dealing with the complexity of IT systems

during their development as well as maintenance processes,
modeling plays a very important role. The complexity and
diversity of these applications emerges the need of flexibility
and combining operations with existing models to create other
new, more complex models. As more complex models are used,
the importance of transformations between models grows.
Model transformations allow the definition and implementation
of operations on models and also provide a chain that can
enable the automated development of a system from its
corresponding models. In this context, approaches to model
transformation techniques promise to bring productivity and
efficiency to the whole process. This paper outlines practices
from current model transformation approaches. We explain
our focused research in the Web domain and introduce a novel
two-way meta-model definition methodology that is best fitted
to support transformation and other related operations. We
introduce the approach of using hybrid transformation with
ATLAS Transformation Language (ATL) to support
automation of model driven development illustrating it with a
use-case example. To achieve automation development we
outline a formal approach to testing model transformation with
automated test data generation.

Index Terms—ATL, Meta-model, Model Driven
Development, Model Transformation, Web Engineering.

I. INTRODUCTION
A model is a simplified representation of an aspect of the

world for a specific purpose. Nowadays, in many complex
systems, a lot of aspects need to be considered from
architectural to dynamic behaviors, functionalities and user
interfaces. The design process can be described as the
weaving of all these aspects into a detailed design model.
Model-driven methods aim at automating this weaving
process. Model-driven engineering (MDE) is a software
development methodology, which focuses on creating
models, or abstractions of something that describes the
elements of a system. It is meant to increase productivity by
maximizing compatibility between systems, simplifying the
process of design and promoting communication between
individuals and teams working on the system [3]. Models are
good for several purposes as they generalize operations
applied into them. A “wisely” built model can be better
reused than a piece of code that is suited for a particular
program. A model can be refined and reused much easier
than having to do refactoring from scratch. Moreover the
level of abstraction is an important factor affecting the scale

Manuscript received March 21, 2011.
Department of Computer Science and Engineering, Faculty of Electrical

Engineering , Czech Technical University in Prague, Czech Republic

of applicability of these techniques. In such terms we speak
about of models of a model, meta-models. The scale by
which this logic is applied directly affects using of
transformation methods and their optimization.

Model Driven Architecture (MDA) aims to separate
application structure PIM (Platform Independent Model)
from its functionality, PSM (Platform specific Model). The
mapping between these models is realized by model
transformation. The problem of model transformation based
on Meta-Object Facility (MOF) can, then, be stated in the
following way: “Given a source model ‘m1’ described by a
meta-model ‘MM1’ we define an automatic process making it
possible to obtain a model ‘m2’ conforming to a meta-model
‘MM2’; ‘MM1’ and ‘MM2’ being MOF compliant” [2].
Model transformations require specialized support in order to
realize their full potential. Nowadays, there are still open
issues in their foundations, semantics, structuring
mechanisms that demand further research and study. Model
transformations also require methodological support to
integrate into existing software development practices.

In the first part of this paper we outline the classification of
current model transformation approaches and give several
reviews on the application of these methods. Further we
introduce a methodology of applying a two-way
meta-modeling approach in web engineering, which is the
area of software engineering that we focus on and how it can
make use of model transformation in principle. We then
introduce the approach of using ATL to develop model
transformation. Finally we present the approach to testing of
model transformations and discuss important issues that need
to be solved to achieve a good and applicable technique for
testing model transformations.

II. CLASSIFICATION OF CURRENT MODEL TRANSFORMATION
APPROACHES

To help making a decision of choosing the appropriate
model transformation approach that is best suited for the
requirements of a project, we need to have a comprehensive
overview of transformation classification. This classification
not only helps people in the domain of interest but also helps
vendors and tool builders in identifying the advantages and
weaknesses of their tools compared to others, researchers can
also identify the limitation of a technology and improve
current methodologies and formalisms. Based on the study of
current model transformation technologies, the following
sections depict the classification and overview on the
previous work and methods in model transformation.

Model Transformation in Web Engineering and Automated
Model Driven Development

Nguyen Viet Cuong, Xhevi Qafmolla,

International Journal of Modeling and Optimization, Vol. 1, No. 1, April 2011

8

A. Graph transformation
Generally, (meta-) models are represented in UML

formalism. As a result, the models can be viewed as graphs. It
is therefore natural to consider the use of graph grammars to
express model transformation [5]. Graph transformation
approaches are very well built theoretically. Graph
transformations are usually based on matching and
replacement strategy. They are based on syntactic graph rules
that consist of finding a Left Hand Side graph and replacing it
by a Right Hand Side graph. This approach has the power of
a clear operational idea, which enhances rule specification.
The complexity of this approach stems from its
non-determinism in scheduling and application strategy,
which requires careful consideration of termination of the
transformation process and the sequence of rule application
[2]. Early work involving graph transformation and
models largely centered on their use in defining the semantics
of different modeling diagram types, such as the continuing
work of Gogolla M., Ziemann P., Kuske S. [5]. More recent
work by Kuster J.M., Heckel R., Engels G. [6] has defined a
more general model transformation approach using graph
transformation as the underlying mechanism, allowing them
to draw upon some of the properties of graph transformations
in a model transformation context. Heckel R., Kuster J.M.,
Taentzer G., [7] have continued this work, reasoning about
confluence with typed attributed graphs. [8] Braun P. and
Marschall F. [8] have proposed model transformation
approaches which are essentially based upon simplified
views of graph transformations, as is Agrawal A., Karsai G.,
Shi F.’s more mature GReAT system [9]. Although graph
transformations have several interesting properties when
applying to model transformations, it is still not used widely
in practical situation due to the complexity and lack of
structuring mechanisms. Solutions based on the graph
transformation paradigm therefore have relatively little
real-world usage [10].

B. API approach
This type of transformation is based firstly on Meta Object

Facility specification. MOF is used in many modeling tools
to create model repositories. After that Application
Programming Interfaces (API) are generated for each
supported meta-model. These interfaces are used to describe
the model transformation process by means of programs
written in an imperative language: Java, C++, etc. This
approach provides the user with a set of interfaces used to
describe the transformation process as a series of instructions
that allow the generation of a target model from a
corresponding source model. The use of APIs to describe a
transformation process is a powerful solution because
programming languages generally have good performance at
runtime. Basically, the user must perform the entire
procedure: he is in charge of the organization and description
of all stages, explicitly in terms of imperative statements [2].

C. XSLT approach
Along with XML technology, XML Metadata Interchange

(XMI) enables the exchange of meta-models as a standard.
There is a need for bridging between XML processing and
other form of data and a language for that purpose is in

demand. XSL stands for EXtensible Stylesheet Language and
XSLT stands for XSL Transformations. As models are
described in XML format, it appears that EXtensible
Stylesheet Language Transformation (XSLT) is a convenient
solution for model transformation. XSLT is an appropriate
standard for XML document transformation, but suffers from
limitations in realizing model transformation. Moreover,
XSLT data types are limited; this restricts the scope of
information that must be computed during the transformation
process. In a DTD, the syntax and the semantics of an XML
documents are fixed, and transformation rules therefore have
to deal with both [2]. The main weakness of XSLT lies in
the fact that it was adequate for the simple transformations
but has serious shortcomings for more advanced
transformations. Recently, a formal proof was constructed
that XSLT is Turing complete. However it took several years
before that was proven and in practical usages the limits in
XSLT make it harder to conveniently apply this approach. A
final issue, which makes expressing model transformations in
XSLT less than ideal, is that XML documents are represented
as a tree structure; models are, in the general case, naturally
describable as graphs. Although graphs can be represented by
trees with link references between nodes, the difference in
representation can lead to an unnatural representation of
many types of model transformations [10].

D. Declarative approach
In declarative approach, the relationship between concepts

in the source and the target meta-model is defined by patterns.
The transformation is defined by a set of rules. A rule lays
forth a pattern of source model concepts, which is then
transformed into a set of elements in the target model. The
sequence of the various stages of the transformation process
is controlled by the user, thanks to operators that allow the
carrying out of explicit transformation rules invocation. The
implementation is realized by an inference engine [2].
However, one of the disadvantages of this approach is the
significant amount of work burden the developer with
specifying all the constraints supporting the transformation.

E. Imperative approach
As similar to imperative programming, imperative

approach works in the paradigm that describes the
transformation in terms of statements that change the
program states. Imperative approach defines a sequence of
commands to perform. An example of this approach is
Transformation Rule Language (TRL). This language is in
essence a standard rule-based imperative language
specialized for UML-esque model transformations. This
comes in several forms:
1) Some of the information recorded in the new first class

elements is used for additional purposes such as to create
tracing information.

2) Extra syntax is provided for accessing the stereotype of a
UML model element.

Rules consist of a raw signature (works as the declaration
of the types of the source and target model elements) and an
imperative body. In TRL, the syntax and semantics of actions
are similar to that of the Object Constraint Language (OCL).
Moreover, there are additional control structures and side

International Journal of Modeling and Optimization, Vol. 1, No. 1, April 2011

9

effects that add up to the syntax of TRL that makes it
adequate for building model transformations. The benefit of
such an approach is its relative familiarity to users, and the
knowledge that largely imperative solutions traditionally lead
to efficient implementations [10]. However language such as
TRL on the other hand is only capable of expressing
unidirectional stateless transformations, due to the imperative
nature of rule actions.

F. Hybrid approach
In a declarative approach, a transformation is defined by a

set of relations between the concepts of the source and target
models, as described in their meta-models. The
implementation is realized by an inference engine, which
allows the application of the transformation to generate the
target model. In an imperative approach, a transformation is
described by a set of algorithms as functions or procedures
that explicitly describe the sequence of transformation
applications. Hybrid approaches combine the declarative and
imperative approaches. The declarative approach is generally
used in the definition and selection of the transformations
which can be applied, while the imperative approach is well
adapted to describing the transformation strategy by a control
flow of execution rules, and hence to executing the
transformation [2]. In hybrid languages, transformation rules
mix the syntax and the semantics of the concepts they handle.
ATLAS Transformation Language (ATL) as an example
implements imperative bodies inside declarative shell to
specify transformation. Hybrid approaches potentially have
the advantages since they combine both values of declarative
and imperative ones. The next section illustrates how ATL
can be used to construct transformations.

III. A TWO-WAY META-MODELING APPROACH IN WEB
ENGINEERING

On the practical side of the problem we already think of
areas, where model transformation techniques can have a
great impact. While the usage of World Wide Web has
rapidly grown in the last decade, new technological scenarios
throughout many waves of innovation and new revolutionary
concepts have emerged. Especially with new trends in the
Web 2.0 [11], thoughts of the community now aiming at a
Web 3.0, social media strongly shifting the meaning of Web
technologies and WebOS [12] becoming a strong candidate
for modern devices, it is important to focus in this area and to
keep up with practices that are probably far ahead in classical
software but may bring new challenges for the Web
engineering domain.

Methodologies and tools already implemented in the Web
domain usually adopt common concepts and backgrounds
[13]. In their perspective, the model to be defined is a view
from the MDA terminology. These views belong usually to
the conceptual, navigation or presentation models,
sometimes named differently by methodology-specific
notions. But logically, most of the limitations that arise apply
to all of them affecting their presentation and attraction in
practice. These limitations are based on platform and
architectural specifications of such methods. The mentioned
techniques are tightly tied to the technologies bounded with
the given platform. Moreover, all methodologies from the

Web family deal with a particular set of common entities
related to that kind of the Web application. This means, that
they are specialized and strong for a certain set of aspects, but
simultaneously weak for other, more generic purposes.
Another issue worth mentioning is that most of these
proposals, address the integration and interoperability issue
somewhere during the implementation phase, therefore
making it again specific to execution constraints and not
properly aligned to the model level. Through all these
limitations, transformation techniques and the modeling
paradigm are quite imperfect and sometimes restricted. In
practice, using domain specific concepts is preferred,
therefore leading to segmentation and fragmentation which is
common in the area of Web engineering today.

Our proposal to avoid these problems consists in
considering building a meta-model that allows definition by
refinement of its concepts from different, distinct gatherings
and bases of knowledge. This is the main purpose of using
meta-modeling in the first place. The meta-model itself is an
abstract concept “behind the scene” as it is an artifact that
needs to be translated into graphically or other work-ready
entities. The important thing is that the required flexibility
needs to be addressed at the high level before becoming too
specific. As a result of practical and hands-on oriented
manner of dealing with Web modeling in practice, we
suggest a philosophy of spanning the software design phase
through a two-way meta-model definition by refinement path,
firstly bottom-up to gather level-specific fragments at
different levels and then the classical top-down model
creation and transformation. This idea is novel in the sense
that it implies building partial and distinct meta-model
fragments that are to be put together later in a whole,
complete meta-model. This approach avoids getting stuck
with the platform-specific issues, because instead of dealing
with them at a high level, and therefore already becoming
platform-dependent, a repository of concept blocks is used
and components of the final meta-model are chosen from it.
Platform-dependent knowledge is only embodied during the
top-down phase.

Transformation and code generation play a crucial role in
this process. Firstly, following this approach, several options
appear that enable building of the adequate meta-model. For
example, relevant concepts are put together into one single
generic meta-model, which is to be weaved later into a final
model. Another possibility is building of multiple diverse
versions of the meta-model representing the same system, in
order to provide artifacts for various operations, such as
union, comparison and transformation. Other options can
also be thought of, once solid background is laid and standard
technologies are used for its realization.

On this front we have analyzed and reviewed several
works that present comparisons of different UML-based
MDA tools, including ready-to-use code generators, for
Model-Driven Development (MDD) of Web services [14].
The aim of such efforts is to use UML, in its most standard
form for Web services modeling - transform the UML
models into WSDL files and generate Java code from the
Web Services Description Language (WSDL). We tend to
use open source or free of charge tools as much as possible.
These tools together would have to provide the ability to

International Journal of Modeling and Optimization, Vol. 1, No. 1, April 2011

10

model Web services for WSDL, to generate WSDL and
XML Schema Document (XSD) files from the model, to
generate Java code from the WSDL.

IV. USING ATL FOR MODEL TRANSFORMATION

A. Hybrid approach tranformation using ATL
In this section we demonstrate the hybrid approach by

using ATL. For working with ATL as a transformation
language, ATL Integrated Environment was used. This
environment provides a number of standard development
tools that aims to ease development of ATL transformations.
An ATL transformation is composed of rules that define how
source model elements are matched and navigated to create
and initialize the elements of the target models. To
understand the concepts, the architecture of model
transformation could be depicted in the following figure:

Figure 1. Architecture of model transformation

To start building ATL transformation, we use a simple
use-case of meta-model transformation from a source meta-
model M1 to target meta-model M2. The graphical
presentation of M1 and M2 are depicted in fig. 2.

Figure 2. Meta-models M1 and M2

Our goal is to construct the transformation from an
instance I1 of meta-model M1 to instance I2 of meta-model
M2 given that I1 conforms to meta-model M1 and I2 must
conform to meta-model M2. Before defining the
transformation itself, we need to define the source and the
target meta-model M1 and M2. We use KM3 or Kernel Meta
Meta Model, a neutral language that is convenient to describe
meta-models and to define Domain Specific Languages for
this purpose. KM3 is available under the Eclipse platform
and could be easily used with ATL. The next step is to build
the transformation using ATL, the transformation is defined
as a module:

module M1toM2;

create OUT: M2 from IN: M1;

Inside the module, we describe the transformation process.
Conceptually, the transformation process could be simplified
as follows:
1) For each instance of class Composite in the IN model,

create an instance in the OUT model.
2) For each instance of class Attribute we create an instance

of Column in the OUT model.
3) Name of column in the OUT model is defined as the

attribute name.
The transformation is built as the set of rules and helpers.

A helper is an auxiliary function that computes a result
needed in a rule. A rule for transforming the name attribute
from the source model to the target model for our
transformation is defined in ATL as:

rule Attribute2Column {

from s : M1!Attribute

to t : M2!Column (

name <- s.name

)

}

Similar process is applied to create all the rules needed for
the transformation. Once the ATL transformation is created,
the result of its execution will create the OUT model. ATL
combines both declarative approach and imperative approach
such that the declarative part is generally used in the
definition and selection of the transformations which can be
applied, while the imperative approach is well adapted to
describing the transformation strategy by a control flow of
execution rules, and hence to executing the transformation.

B. Testing of model transformation
As an important factor for automation in the development

cycle, development of model transformations should be
conducted according to standard software engineering
principles. Hence, transformations need to be validated by
some testing methods or else developed within the software
development lifecycle.

However, currently in the domain, there is still lack of
adequate techniques to support model transformation testing:
testing techniques for code do not immediately carry across
to the model transformation context, due to the complexity of
the data under consideration [13]. To build test cases for
model transformation, we need to have model instances that
conform to a given meta-model. These models have to satisfy
the precondition of the transformation’s specification and
additional constraints employed to target particular aspects of
the implementation’s capability.

The proposed approach aims to build a process that
automatically generates a set of test models that satisfy the
constraints. There are several strategies that can be used to
build these models. Depending on each case, we should
choose the values for the properties in a particular range;
decide when objects go together in one model or when a new
model should be generated. There might not be one strategy
that is the best in every case. The approach in general can be
described in the following way:
1) Decompose the source meta-model into more simple

International Journal of Modeling and Optimization, Vol. 1, No. 1, April 2011

11

classes.
2) Create model parts base on simple classes decomposed

in the previous step.
3) Generate complete test model from parts and

meta-model specification.
One drawback of completely automatic generation of test

model is the complication for testers in reading and
comprehending the model. To reduce the difficulty when
interpret the obtained models by a human tester, more
interactive phase should be introduced. This helps the tester
to better understand the input model and provide more
precise data that is closer to the test requirements. To obtain a
good and practical model transformation testing technique,
we need to have a clear and well-defined specification that
can verify the quality of testing data. An effective algorithm
to build test models from the input meta-model also plays an
important part in enhancing the quality of test.

C. Constraints in model definition and transformation
There are certain constraints to the ideas that we present

and must be strictly followed. The rationale behind this is that
this approach must not be ‘just another approach’ in Web
modeling and transformation paradigms. Analyzing the
reasons and based on previous works [13] the following
conclusions are drawn:
1) Meta-model specification sets must be based on standard

OMG's technologies and on extensions that conserve
those standards, or that are also defined by those
standards.

2) These specifications must enable a certain level of
formal analysis of some kind, with respect to syntax,
semantics, validation and other similar concepts.

3) The intention that can be captured by these sets of
specifications does not need to be precise, but it must be
processable. This means that both, the final meta-model
and its fragments can be as complementary as they need
to be, but they must conform to the rules of the OMG's
technologies under which they are defined.

4) The processing operations with the meta-model and its
artifacts cannot be binary value functions, in the sense
that they must not be limited to in-scope technologies
and platforms to work, but they can allow other manual,
semi-, or fully-automated post-processing.

5) All the phases of processing and post-processing must be
modular. They should provide interfaces of control and
internal operations of the artifacts they work with.

These constraints are the basic foundation of success for
this approach. Further development of this work will be
based strongly on these rules and follow them strictly, in
order to maintain a clear line of progress towards the wanted
target and meet all the initial requirements.

V. FUTURE WORKS
Currently we are applying these methodologies in several

case studies aiming at validation and evaluation of several
parameters of these methodologies. Our future work will
address model transformations using hybrid approach and
applying it for building web applications. The results will be
published in upcoming academic events. In terms of research

we are building a framework underlying the fields of Web
modeling, transformation and model driven development.
Concepts are also shared with other areas such as Business
Process Modeling within our faculty.

VI. CONCLUSIONS
In this paper, we discussed techniques of various types of

transformation from the modeling paradigm. We outlined the
overview of current model transformation approaches and
outlined some common weaknesses and advantages. In
imperative model transformation approach, such as TRL,
new elements in the target model are explicitly created this
weakens the ability to propagate changes. From the authors'
perfective, declarative solutions assure no duplicates are
created in such a situation. This method works well for both
initial transformations and for subsequent updates. Hybrid
approaches combine the declarative and imperative
approaches promise to bring a lot of advantages. To
demonstrate this, we introduced the usage of ATL as a
hybrid transformation approach to implement model
transformation. We focus application of our research in the
area of Web engineering where we feel that there is a great
opportunity for improvement. A methodology introducing a
two-way meta-model definition by refinement and applying
transformation and other related operations was described
together with some practical insights in this area. Key
concepts are analyzed in order to provide constraints to these
methodologies. The reason is to be conforming to the OMG
guidelines and best practices in the area, therefore aiming for
support in both academic and business domains. For
supporting automated model driven development, we also
discussed an approach to testing of model transformation and
identified important challenges to make model
transformations dependable. From practical viewpoint,
presenting more interactive phase to automatic generation of
test model could bring more benefits and increase
effectiveness by making model more readable and easily
adaptable in the future. It is far too early to decisively
conclude which of many different approaches, if any, is the
most promising. Therefore one of the main challenges for the
community is simply to continue exploring different
approaches to model transformations. The authors' future
work and research will focus on building model
transformation with hybrid and declarative approach. This
will also include the research on approaches to testing and
validation of model transformation.

ACKNOWLEDGMENT
This work has been supported by the Department of

Computer Science and Engineering, Faculty of Electrical
Engineering and by the grant project of Czech Technical
University in Prague number SGS10/201/OHK3/2T/13.

REFERENCES
[1] Camillo F., Alberto M., Mario O., Iman P., “A constructive approach to

Testing Model Transformation,” Proc. Third International Conference
on Model Transformation (ICMT2010), Springer, Jul. 2010, pp. 77-91,
ISBN 978-3-642-13687-0.

International Journal of Modeling and Optimization, Vol. 1, No. 1, April 2011

12

[2] Dehayni M., Barbar K., Awada A., Smaili M., “Some Model
Transformation Approaches: a Qualitative Critical Review”, Journal
of Applied Sciences Research,Vol.5 No.11, Nov 2009, , pp.
1957-1965.

[3] Wikipedia, “Model Driven Engineering,”
http://en.wikipedia.org/wiki/Model_Driven_Engineering, (accessed
14.12.2009).

[4] Fleury, F., Steel, J., Baudry, B. “Validation in model-driven
engineering: Testing model transformations,” Proc. MoDeVa 2004
(Model Design and ValidationWorkshop associated to ISSRE 2004),
Nov 2004.

[5] Gogolla M., Ziemann P., Kuske S., “Towards an integrated graph based
semantics for UML,” Proc. Int. Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2002), Electronic Notes in
Theoretical Computer Science, vol 72, 2003.

[6] Kuster J.M., Heckel R., Engels G. “Defining and validating
transformations of UML models”, Proc. IEEE Symposium on Visual
Languages and Formal Methods, Oct 2003.

[7] Heckel R., Kuster J.M., Taentzer G., “Confluence of typed attributed
graph transformation systems”, Proc. First International Conference on
Graph Transformation (ICGT 02). Springer-Verlag, Oct 2003, pp
161-176.

[8] Braun P., Marschall F., “Transforming object oriented models with
BOTL,” International Workshop on Graph Transformation and Visual
Modeling Techniques 72(3). 2002.

[9] Agrawal A., Karsai G., Shi F., “Graph transformations on
domain-specific models,” , Technical report, Institute for Software
Integrated Systems, Vanderbilt University, Nov 2003.

[10] Laurence Tratt, “Model transformations and tool integration”, Journal
of Software and Systems Modelling, vol. 4(2, May 2005,), pp.
112-122.

[11] Zhang Y., Daniel F. et.al., “Engineering issues for the Web 2.0”, Web
information systems engineering, 2008.

[12] Wikipedia, “webOS”, http://en.wikipedia.org/wiki/WebOS (accessed
15.1.2011).

[13] Qafmolla X., Nguyen V., “Model driven practices in Web
Engineering”, Proceedings of “Objekty 2009”, vol. 1, pp. 185-195,
2009

[14] Qafmolla X., Nguyen V., “Automation of Web Services Development
Using Model Driven Techniques”, Proceedings of the 2nd International
Conference on Computer and Automation Engineering”, Singapore,
2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

