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Abstract—Facilitation of data dissemination in Vehicular Ad 

Hoc Networks (VANETs) demands for a robust scheduler in 

this regard. High mobility of vehicles exhibits less connectivity 

problem establishing the idea ofRoad Side Units (RSUs) as a 

buffer point in VANETs. In this paper,firstly we formulate a 

RSU-based dynamic VANETs environment by specifying the 

constraints and secondly apply different on-demand scheduling 

algorithms in this environment. We have executed a series of 

simulations and analyzedthe performance of different 

on-demand scheduling algorithms against different 

performance metrics having high workload and tight time 

constraints. Finally, we suggest which on-demand scheduling 

algorithmis most adaptablein this highly mobile and sparsely 

connected network environment based on our experimental 

result.  

 
Index Terms—On-demand scheduling algorithms, road side 

units (RSUs), vehicular ad hoc networks (VANETs) etc. 

 

I. INTRODUCTION 

Researchers have given meticulous attention to a lot of 

applications (road safety, internet access, entertainment etc.) 

in Vehicular Ad Hoc Networks (VANETs) [1]-[3]. Efficient 

data dissemination mechanism is a key challenge to provide 

successful VANETs applications. In VANETs, usually 

vehicles move pretty fast leading to short vehicle to vehicle 

connectivity time; moreover in the case of VANET roll out 

phase (when vehicles density is low, night time/off-peak 

hour, highways etc.), there is very little chance to get the 

required information from other vehicles. Hence, installing 

RSU at the important places in a planned way [4] and get 

responses from it is an important consideration in this 

environment. 

RSU is a stationary substance unit having wireless access 

point (Dedicated Short Range Communication (DSRC) [1]), 

memory storage and computational capabilities. As RSU 

transmission range is short and vehicles are always on the 

move, request and response time is brief as well. To achieve 

better performance in this circumstance, an RSU needs to 

provide services to the vehicles so that it can balance among 

minimum deadline miss rate, high throughput and minimum 

response time.  
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Unlike unicasting, broadcasting is an efficient approach in 

here as many vehicles’ requests can be served by this.  

Broadcasting can be done in two ways: 1) Periodic 

broadcasting and 2) On-demand broadcasting. Periodic 

broadcasting is not scalable for handling large database [5], 

[6]. Moreover, client access patterns are not same all the time. 

So, on-demand broadcasting is more suitable than periodic 

broadcasting in VANETs.  Our major contributions in this 

work are: 

 We formulate a RSUs based VANETs environment and 
constraints. 

 We apply different on-demand scheduling algorithms, 
compare and analyze the experimental results and 
finally, based on these results we recommend which 
algorithm is the best suited in this environment. 

The rest of the paper organized as follows. Section 2 

describes related work; section 3 shows our VANETs system 

model, section 4 describes used on-demand scheduling 

algorithms, section 5 and 6 exhibits simulation model and 

experimental results respectively. We finish by a discussion 

and stating our future work. 

 

II. RELATED WORK 

Many efforts have been carried out to find an efficient data 

dissemination procedure. Due to the high mobility of vehicles 

which is a unique characteristic of VANETs, many 

researchers try to adopt different techniques for finding a 

stable data dissemination procedure.  Chen et al. [7] propose 

messages relayed technique where data is stored at the 

moving vehicles until favorable data delivering opportunities 

come. MDDV [8] also uses the intermediate nodes to buffer 

the data and carry it until any of the forwarding approaches 

(opportunistic, trajectory based and geographical forwarding) 

is encountered by the environment. VADD [9] uses the store 

and forward procedure and to reduce the data delivery delay 

it considers predictable traffic pattern and road layout. In 

DP-IB [10] technique data are periodically broadcasted to 

vehicles; vehicles buffer that data and rebroadcast it at the 

intersections. T. Nadeemet al. [11] propose periodic 

broadcast approach to disseminate both generated and 

relayed data. Lochertet al. [4] recommend few wired 

connected RSUs to provide better data dissemination than 

many standalone RSUs. Zhang et al. [1] propose a Two-step 

scheduling to balance the upload and download services.  

In this paper, we use on-demand broadcast which is also 

called pulled based strategy to provide opportunities to the 

vehicles making their demand and then serve them from RSU 

database using on-demand scheduling algorithms. To 
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implement these algorithms in VANETs, the main challenge 

from the traditional database on-demand scheduling is to 

maintain the strict time constraint for vehicles high mobility. 

Because, after a vehicle lefts the RSU transmission range, 

broadcast becomes meaningless. Considering this issue, we 

apply those on-demand algorithms in here aiming to find a 

stable one in this highly sparse and frequently disconnected 

environment with experimental results and analysis. 

 

III. SYSTEM MODEL 

A. System Architecture 
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Fig. 1.The system architecture. 

 Our system model is similar to Fig. 1. We assume RSU 

server already has updated data item. When a vehicle is in the 

transmission range of a RSU, it can generate requests for 

updated data item through the uplink channel.  Requests will 

be queued in the waiting queue for being serviced. The 

scheduler will decide the most appropriate data item for 

broadcast according to the vehicles’ requests in the waiting 

queue. Scheduler broadcasting decision fully depends on the 

used underlying scheduling algorithm. Many vehicles can 

generate requests for same data item and a vehicle can send 

requests and get responses until it passes the transmission 

range of a RSU. 

B. Notations and Assumptions 

When a vehicle sends a request to a RSU, it sends the 

following information with that request. 

Request Ri = {VID, RID, DID, RDeadline}, where VID and RID 

are vehicle and request identifier respectively. DID is the data 

item identifier that is requested by the request Ri and 

RDeadlineis the deadline assigned by the vehicle, when this time 

will be expired that request will be dropped. 

Suppose at time t, we have n requests in the waiting queue, 

then 

Definition 1. The un-ordered request set, R = {Ri(Di), 

Rj(Dj), …….. , Rn(Dn)}, which means the request Rirequests i 

data item, request  Rj, j data item and so on.   

 Definition 2.The set of deadline of n requests is,  

Deadline = 𝐷𝑒𝑎𝑑𝑅1
, 𝐷𝑒𝑎𝑑𝑅2

, ……… , 𝐷𝑒𝑎𝑑𝑅𝑛
. 

If any n requests ask for the same data item D, only request 

R which has minimum deadline value will be considered for 

making broadcast decision, i.e.  
𝑅 = {𝑅𝑖 |∀𝑖 ≠ 𝑗, 𝑅𝑖 ∈ 𝑅 & 𝐷𝑖 =  𝐷𝑗 &min⁡(𝐷𝑒𝑎𝑑𝑅𝑖

 , … , 𝐷𝑒𝑎𝑑𝑅𝑗
)}. 

 Definition 3.The set of popularity of data item in the 

database is, Popularity = {𝑃𝑜𝑝𝑢𝐷1
, 𝑃𝑜𝑝𝑢𝐷1

,……., 𝑃𝑜𝑝𝑢𝐷𝑁
}, 

where 𝑁 ≤ |𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒| and 𝑃𝑜𝑝𝑢𝐷1
is the current popularity 

of data item D1. When a new request asks for data item D1: 

𝑃𝑜𝑝𝑢𝐷1
=  𝑃𝑜𝑝𝑢𝐷1

+ 1 and when data item D1 is broadcast: 

𝑃𝑜𝑝𝐷1
= 0. 

 Definition 4.If the communication range of a RSU is D and 

average speed of a vehicle is S, then the maximum deadline 

of a request is: 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑀𝑎𝑥 =  
2𝐷

𝑆
 −  𝑇. 

where, T is the request generation time. As there is a certain 

possibility a vehicle may stop within the transmission range 

of a RSU for any reason, the general assigned deadline of a 

request is: 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = min 𝑟𝑎𝑛𝑑𝑜𝑚 𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥  ∗ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑀𝑎𝑥  .

where, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 =  
𝐷𝑎𝑡𝑎  𝑖𝑡𝑒𝑚  𝑠𝑖𝑧𝑒

𝐶ℎ𝑎𝑛𝑛𝑒𝑙  𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡 ℎ
 and ω is a random number. 

 

C. Performance Metrics 

We use the following performance metrics to evaluate the 

performance of different on-demand scheduling algorithms 

in our model. 

1. Deadline Miss Rate: It measures the percentage of 

requests missed the deadline to the total number of requests 

received by the RSU. If the deadline miss rate is low, means 

scheduling algorithm is better. 

2. Throughput: Throughput is the number of requests 

successfully served by a RSU in unit time. Hence, if a 

scheduler broadcasts the most popular data item, many 

requests will be served concurrently and throughput 

increased. High throughput means better system 

performance. 

3. Average Response Time: The average amount of time 

required to get the response from a RSU after submission of a 

request. Low average response time initiates system is 

improvement. 

 

IV. ON- DEMAND SCHEDULING ALGORITHMS 

We adopt the following on-demand scheduling algorithms 

in our system and then compare and analysis their 

performances across above defined performance metrics. 

1) First Come First Served (FCFS) [12]:This is a base 

line scheduling algorithm. It serves the requests 

according to their arrival order. We just use this to 

take into consideration the performance of other 

different on-demand algorithms; how far they vary 

from the base line scheduler.  

2) Most Request First (MRF) [13]: This algorithm works 

according to the popularity of the data item. It 

broadcasts the data item from the database which has 

the maximum popularity. 

3) Earliest Deadline First (EDF)[14]: EDF works 

according to the deadline of the requests. The data 
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item which is requested by the 

most-urgent-deadline-request in the requests waiting 

queue, will be served first.  

4) Number of pending requests Multiply Waiting time 

(R×W) [15]: R×W works based on the two factors. R 

means popularity of the data item and W means 

waiting time. So, before each broadcast decision 

making, this algorithm calculates every requests R×W 

value, i.e. the multiplication of popularity of the 

requested data item and waiting time of the request. 

The request having maximum R×W value will be 

broadcasted first. 

5) Longest Wait First (LWF) [16]: LWF measures the 

sum of the waiting time of all the outstanding requests 

for a data item. A data item with maximum LWF 

value will be chosen for broadcasting. LWF 

incorporates directly requests deadline and indirectly 

popularity of the data item. 

6) Shortest Service Time First (SSTF): Yu et al. [17] 

study the performance of SSTF algorithm in 

heterogeneous environment. SSTF picks out the data 

item from the requested data item according to their 

service time. The data item which needs minimum 

service time to serve will be broadcasted first, where 

service time is the time necessitated to broadcast a 

data item when the system is idle. SSTF directly 

depends on the data item size. 

7) Deadline Size Inverse Number of pending requests 

(DSIN): DSIN algorithm is used in [1] where they call 

it as D*S/N. DSIN combines deadline of the request, 

size and popularity of the requested data item. Before 

making broadcasting decision scheduler determines 

the DSIN value of the all the requests in the waiting 

queue and serves the request which has minimum 

DSIN value. 

 

V. SIMULATION MODEL 

Our simulation model is precisely like the system 

architecture shown in Fig. 1. We use CSIM19 [18] for 

simulation experience and the explicitly used parameters are 

shown in Table 1, other parameters are CSIM default.  A 

vehicle can continuously generate requests after getting into 

the transmission range of a RSU till moving out irrespective 

of its previous requests successful or not. At a time a vehicle 

can send single item request and the vehicle request 

generation interval is exponentially distributed defined by 

IGT (Table 1). If IGT value is low, request generation 

interval period is short bringing to heavy load to RSU. 

Vehicles data item access pattern is distributed by Zipf [19] 

distribution. Here, the access probability of jthdata item is: 

𝑝 𝑗 =  

1

𝑗𝜃

 
1

𝑛𝜃
𝑁
𝑛=1



where 0≤θ≤1, 0 means uniform and 1 means strict Zipf 

distribution. For data item size, we use 3 different types 

distributions (INC, DEC and RAND) [5], [20] but for space 

limitation, in this paper we will only discuss about INC size 

distribution. So, for integrated Zipf and INC size distribution, 

vehicles’ requested popular data item will be small sized and 

unpopular data item will be big sized. INC size distribution 

is: 

𝐷𝑆𝑖𝑧𝑒𝑖 = 𝐷𝑆𝑀𝑖𝑛 +  
 𝑖 − 1 × (𝐷𝑆𝑀𝑎𝑥 − 𝐷𝑆𝑀𝑖𝑛 + 1)

|𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒|


where i = 1, 2, 3, ……….., |Database|  

 

TABLE I.  SIMULATION PARAMETERS. 

Parameter Default Range Description 

IGT 0.3 0.1-1.0 Request generation interval 

NVehicle 100 25-200 Number of vehicles 

THETA(𝜃) 0.7 0.0-1.0 Zipf distribution parameter 

DBSize 500 -- Number of data items in the database  

ChannelBW 100KB/sec -- Broadcasting bandwidth 

Commun 

Range[21] 

350 m -- RSU communication range 

𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥  
 

5, 10 -- Range of min. and max. randomnumber   

DSMin, 

DSMax 

15, 512 KB -- Min. and max. size of data item 

 

VI. EXPERIMENTAL RESULTS 

 To mimic the real time traffic, we let the vehicles to enter 

and go forth the RSU transmission range; after doing so we 

let these vehicles persistently to pass in identical fashion until 

we get the stable traced data for the same parameter settings. 

Then, we take mean of 100 iterations for each graph plotting 

data. In the following portion we discuss our experimental 

outcomes. 

A. Impact of Workload 

 Fig. 2 shows the effect of varying workload in all of our 

seven on-demand algorithms in terms of deadline miss rate 

(Fig. 2(A)), throughput (Fig. 2(B)) and average response time 

(Fig. 2(C)) by increasing number of vehicles in the RSU 

transmission range. 

For Deadline Miss Rate:By building up workload, 

deadline miss rate increases for all the algorithms. When 

number of vehicles increases, number of requests generation 

also rises, as a consequence RSU gets many requests in the 

waiting queue. Then while RSU servicing a request many 

requests may miss their deadlines during that time period, 

hence overall deadline miss rate increased. From Fig 2 (A), 

EDF and FCFS suffer worst when number of vehicles 

increased. This is because EDF only takes the deadline of the 

requests into account neglecting the size of the data item; 

therefore while it serves a big sized data item with an urgent 

deadline request, it takes long time to serve, during that time 

many other urgent requests miss their deadlines. FCFS does 

not consider either deadline or data item size so it also suffers 

worst. As we use INC size distribution here, small sized data 

are most popular; hence considering size of the data item is an 

important metric to lessen deadline miss rate. SSTF care 

about data item size, thus it has moderate deadline miss rate. 

R×W and MRF both use popularity and their modest 

performance almost alike.  Although LWF does not consider 

data item size, its indirect popularity measure helps to 

improve the deadline miss rate by broadcasting small sized 

data. However, DSIN which considers deadline, size and 

popularity outperforms all the other algorithms.  

Its association of data item size and deadline metrics help 
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to achieve better deadline miss rate in INC size distribution. 

For Throughput: All algorithms’ but FCSF and EDF’s 

throughput significantly rises with increasing workload (Fig. 

2(B)). We do this experiment by setting Zipf distribution 

parameter at default 0.7. Consequently, with increasing 

number of requests generation, many requests ask for the 

same data item and by disseminating that popular data item 

throughput increases dynamically. 

 
(A) Deadline Miss Rate 

 

 
(B) Throughput 

 
(C) Average Response Time 

 
Fig. 2. Impact of workload by varying number of vehicles. 

 

However, FCSF and EDF do not consider the popularity, 

so they have not much noteworthy improvement in 

throughput for increasing workload. By disseminating 

smallest sized data, SSTF, and popular data for long waited 

requests, LWF achieve better throughput. But DSIN achieves 

best throughput among all for disseminating smallest size 

popular data itemwith growing workload.   

For Average Response Time: Except MRF and R×W 

algorithms, there is no major change for average response 

time with increasing workload. With workload ascending 

high, MRF and R×W get more popular small sized data item 

for broadcasting at θ value 0.7 and INC size distribution, 

hence MRF and R×W average response time decreases with 

increasing workload. All other algorithms’ average response 

time value remain almost same except  FCFS and EDF, their 

value slightly rise from the initial stage with high workload 

because they do not get the advantage either from popularity 

or small size of data item. Although with upgraded workload, 

waiting queue increases; DSIN, SSTF and LWF get the 

advantage for disseminating more popular small sized data 

item among the many waiting requests. Indeed they can 

retain their average response time value stable. However, 

DSIN can maintain the stable lowest average response time in 

high workload condition.  

 

 

(A) Deadline Miss Rate 

 

(B) Throughput  

 
(C) Average Response Time. 

Fig. 3. Impact of data access pattern(𝜃). 
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B. Impact of Data Access Pattern 

Fig. 3 shows the impact of Zipf distribution parameter θ 

varying from 0.0 to 1.0. Almost all the algorithms’ 

performance improve in terms of deadline miss rate, 

throughput and average response time with increasing θ 

value, which is similar finding from the data base community 

for on-demand algorithms in the hard real-time environment 

[12], [14]. Below we discuss the significance of deadline 

miss rate, throughput and average response time for varying θ 

value. 

 For Deadline Miss Rate (Fig. 3(A)): When θ is 0, vehicle 

data access pattern is purely random distribution, so all the 

algorithms have high deadline miss rate. But with increasing 

θ value, vehicle requests more popular data item, again in 

INC distribution the popular data items are small sized, so 

eventually  by incrementing θ value, vehicles request popular 

small sized data item. Then by a single broadcast many 

requests been served with short time (small sized data takes 

short time to broadcast), hence performance increased 

dramatically. MRF and R×W shows modest performance 

improvement with increasing θ value for their popularity 

metric. However, here also DSIN algorithm performs better 

than all others for its combination (especially popularity and 

deadline metrics influence here much) request selection 

criteria. 

 For Throughput (Fig. 3(B)): As increasing θ value many 

requests ask for the same popular data item, by servicing such 

hot data items scheduler throughput increases appreciably. 

All the algorithms have much better rate when θ value 

exceeds 0.6. By broadcasting deadline urgent and popular 

date item DSIN algorithm outperforms all other on-demand 

algorithms in terms of throughput. 

 For Average Response Time (Fig. 3(C)):EDF and FCFS 

have no radical improvement for decreasing average 

response time with increasing θ, because they do not consider 

data item size or popularity which effect a lot for decreasing 

average response time specially in INC size distribution. As 

MRF and R×W counts the popularity for requests selection, 

by broadcasting popular data item (which are small sized too) 

they can reduce the average response time with increasing θ 

value. But DSIN achieves the best average response time 

value by broadcasting popular small sized data item. 

 

VII. DISCUSSION AND FUTURE WORKS 

RSU based VANETs data dissemination has been 

researched by a number of researchers [1], [4], [21]. In this 

paper, we formulate the VANETs model which has three 

unique characteristics:(1) high vehicles mobility, (2) frequent 

disconnection of vehicles to RSU, and (3) strict time 

constraint for data dissemination. To find an efficient 

scheduler in this environment, we apply seven different 

existing on-demand scheduling algorithms to find a most 

adaptable one. We analyze their performances by varying 

workload and vehicles request access pattern in increment 

size data distribution. Our major outcomes of this analysis 

are: (1) Only deadline considering algorithm EDF, is not 

sustainable like FCFS algorithm in this environment but 

combination of request waiting  time and popularity based 

algorithm LWF has modest performance. Popularity based 

algorithm MRF and R×W and service time related algorithm 

SSTF’s performance lying between EDF and LWF. (2) 

Deadline, popularity and data item size based algorithm 

DSIN outperforms all the on-demand scheduling algorithms 

in the VANETs environment in terms of minimizing deadline 

miss rate and average response time and maximizing 

throughput both in high workload condition and varying 

vehicles requests access pattern. We do believe that our 

findings will boost us as well as other VANETs scheduling 

researchers to do more in this area.  

In the future work, we want to apply DSIN scheduling 

algorithm in the multiple RSUs and incorporating upload 

requests from vehicles to RSUs with download requests from 

RSU to vehicles. 
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