

Abstract—In the present era Chaos theory has tremendous

potential in Computer Science Domain. The true potential of

Chaos theory can be realized with the assistance of high

performance computing aids such as GPU that have become

available in present times. The main purpose is to develop a

high performance experimental laboratory in academic

institutions, for analysis of chaotic systems. In this paper we

present the parallel implementation of One Dimensional

Logistic Map on NVIDIA GeForce 9400 GT Graphical

Processing Unit (GPU) which is a CUDA enabled GPU as a first

step towards this direction. We report that the GPU version of

Logistic Map executes 495.08 times faster than the CPU only

version.

Index Terms—Chaos theory, CUDA, GPU, logistic map.

I. INTRODUCTION

The field of chaos has fascinated researchers from all over

the world since its inception in the 1900s. Traditionally, in

any English dictionary the word chaos is defined as complete

disorder or anarchy. On the contrary, from a research

perspective Chaos has been explored as a discipline which

enables us to study the apparently random behavior of

nonlinear dynamic systems. By the word apparently we stress

the fact that datasets appearing random or chaotic can be

generated from a deterministic mathematical equation. The

key features of a chaotic system include:

 bounded

 nonlinearity

 mixing

 sensitive dependence on initial conditions (SDIC)

The milestones achieved in this field include electronic

circuit by Leon O. Chua, the study of atmospheric convection

by Edward N. Lorenz and chemical kinetics by Otto Rössler

to name a few. Chaos theory finds applications in various

scientific disciplines including computer science, population

dynamics, aviation, politics, philosophy, robotics, finance,

biology, and psychology.

In the present scenario Chaos theory is playing an even

more prominent role for developing computer science based

applications. Some of the works in this domain include

preemptive queuing models with delay [1] and encryption

techniques using Baptista Methodology [2].

In this paper, we have taken the first step towards setting

up of an experimental laboratory in academic institutions,

Manuscript received July 13, 2012; revised August 15, 2012.

 Saurabh Maniktala and Anisha Goel are with Maharaja Surajmal Institute

of Technology, GGSIPU, New Delhi, India. (e-mail:

sam.maniktala@gmail.com; anishagoel14@gmail.com).

A. B. Patki and R. C. Meharde are with Department of Information

Technology, MCIT New Delhi, India (e-mail: abpatki@gmail.com;

rmeharde@mit.gov.in).

including AICTE approved engineering colleges, for analysis

of chaotic systems. The systems can be divided into two

broad categories of continuous and discrete time. We have

presented a parallel implementation of one dimensional

logistic map of discrete time system on the Graphical

Processing Unit (GPU). The GPU was chosen for the

implementation as it has an enormous parallel computational

capability that makes analysis faster and efficient. We have

achieved a speedup of 495.08 times over the sequential

implementation—which we have also presented in this paper

for comparison purposes.

We have carried out the experiment using the CUDA

enabled NVIDIA GeForce 9400 GT and CUDA Toolkit

version 3.0. Other details are mentioned in Table I.

Section II presents a brief introduction to one dimensional

logistic map with its sequential C based implementation,

section III elaborates the concepts of GPU and CUDA,

section IV presents the pseudo-parallel implementation of

one dimensional logistic map, section V includes the

performance measurement of the parallel implementation and

section VI presents conclusion and future work.

II. ONE DIMENSIONAL LOGISTIC MAP AND ITS SEQUENTIAL

IMPLEMENTATION

The logistic equation as applied to Chaos models the

growth curve of some natural phenomena. As an example,

the curve could depict the variation in size of a population of

a particular area over time. The size of the population is

measured in discrete steps by using (1).

xt+1 = kxt(1-xt) (1)

TABLE I: DETAILS OF PLATFORM USED TO PERFORM EXPERIMENT

PLATFORM DETAILS

CPU Intel Pentium Dual Core

OS Windows XP

GPU NVIDIA GeForce 9400 GT

Compute Capability 1.1

Graphics Bus PCI-Express

CUDA Driver and Runtime

Version

3.0

Clock rate of GPU 1.4GHz

Global Memory 1 GB

The variable xt denotes the current size of population, xt+1

represents future size of population and k is a constant known

as the control parameter. The equation (1) is of a feedback

nature as the size of population at some time interval is used

to generate the size of population at the next time interval.

The control parameter scales the size of population. In order

to limit the size within realistic bounds, a factor of (1-xt) is

multiplied. Since there is only one variable, (1) is more aptly

Dawn of GPU Era-Potentials of Chaos Theory

Saurabh Maniktala, Anisha Goel, A. B. Patki, and R. C. Meharde

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

584

mailto:rmeharde@mit.gov.in

referred to as one dimensional logistic equation. Equation

(1), for simplicity, is normalized such that the size of

population can only range from 0 to 1.

The one dimensional logistic map is obtained from the one

dimensional logistic equation by plotting the values of xt+1 as

y coordinates against values of xt as x coordinates on a graph.

Since the map is using two dimensions, namely x and y, to

plot the points representing the same variable, the size of

population, it is also called pseudo two dimensional.

The initial size of the population is denoted by x0. As

chaotic systems are sensitive to initial conditions x0 plays an

important role to enter into Chaos. Moreover, the control

parameter k has to be tuned to the appropriate value for the

onset of Chaos. The value of k governs the steepness and the

height of the curve which is a parabola. As the values

generated from the equation are normalized, the allowable

range of k is (0,4).

The system shows varied behavior for different ranges of k

as:

 For k<1, the system eventually converges to a zero

size population, so in this case the attractor is zero.

 For 1<k<3, the attractor increases from point zero to

0.667. For 0<k<3 the population value sooner or later

saturates irrespective of initial value.

 For 3≤ k < 3.57, period doubling starts. At k=3.4, the

attractor splits into two point attractor. For greater

values of k in this range the attractor keeps on

doubling to produce 4, 8, 16… point attractors. In this

range the final values keep on oscillating.

 For 3.57≤ k < 4, the system enters in chaotic region. In

this case the attractor can be erratic with infinite

number of points or stable.

We now present the sequential C based implementation of

logistic map. We have developed a C function named

logisitcmap() having the arguments x0 as the initial value of

population, k as the control parameter, y as the output array

containing population sizes for consecutive iterations and N

as the number of iterations. The function returns the output

array y. Below we present the source code of logisticmap().

float* logisticmap(float x0, float k, float

y[], int N)

{

 float temp=x0;

 for(int i=0;i<N;i++)

 {

 temp = k * temp * (1-temp);

 y[i] = temp;

 }

 return(y);}

Table II shows the output array for N=10 iterations, k=3.7

and two initial values of x0 as 0.01 and 0.011. The value of

k=3.7 drives the system into chaos and apparently random

successive output values are generated. Notice that the output

values arising out of the two initial values of x0 differing by

decimal in the third place diverge as the index of iteration

increases. This behavior of chaotic systems as referred to as

Sensitive Dependence on Initial Conditions.

III. GPU AND CUDA

The Graphical Processing Unit (GPU) was traditionally

designed to offload intensive graphical computations,

including scaling, rotating, and rendering, from the Central

Processing Unit (CPU). It essentially functions as a

coprocessor to the CPU which directs work to it. Hence, the

GPU is also known as the Device whereas the CPU is known

as the Host.

The traditional GPU architecture consisted of pipelined

stages of combination of programmable vertex shader and

pixel fragment processors which are used for generating

graphics on the screen. Subsequently, the vertex shader and

pixel fragment processors were combined into a unified GPU

architecture for efficient working.

The advances in the technology of GPU encouraged

researchers to step into the direction of General Purpose GPU

(GPGPU) programming. The GPGPU concept focuses on

using the computational capability of GPU for non-graphical

applications. The current GPUs have developed into a

programmable parallel processor offering high performance

parallel computing capabilities far exceeding that of current

multi-core CPUs. The design goal of GPU is to optimize

execution of massive number of threads in parallel and hence

a larger chip area is dedicated for floating point operations.

However, as GPU works as a coprocessor for host CPU, it

will not outperform on other jobs that CPU is designed.

The greatest challenge that was faced was to use these

numerous cores in an optimized fashion. In order to

overcome such difficulties, NVIDIA Corporation developed

a software environment named CUDA (Compute Unified

Device Architecture) that extends the C language syntax [3],

[4].CUDA enables programmers to develop programs that

can scale across the cores of a GPU while using the familiar

syntax of C language. CUDA package includes a Runtime

API and a Driver API. The CUDA runtime API extends C

language syntax with function commands dedicated for GPU

and is referred to as CUDA C. The Driver API, on the other

hand, is a low level procedural API but is totally different

from the graphical APIs such as Open GL and DirectX. The

OpenGL and DirectX APIs are traditionally used for GPU

programming for graphical applications. But the situation

gets complicated when a programmer wants to deploy GPU

to develop a parallel program for non graphical applications

and had to put unnecessary effort of studying the graphic

libraries is required. Thus CUDA C fulfills the programmer’s

needs. We explain the concepts of GPU in the context of

CUDA programming.

Fig. 1. shows the architecture of an NVIDIA GeForce 8

TABLE II: OUTPUT VALUES FOR TWO INITIAL VALUES IN CHAOS STATE

Index X0=0.01 X0=0.011

1 0.036630 0.040252

2 0.130567 0.142939

3 0.420020 0.453276

4 0.901332 0.916923

5 0.329051 0.281850

6 0.816873 0.748919

7 0.553488 0.695746

8 0.914415 0.783228

9 0.289564 0.628192

10 0.761152 0.864197

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

585

series GPU. The basic unit shown is a Texture/Processor

Cluster (TPC) which incorporates a Streaming

Multiprocessor Controller (SMC), a texture memory unit,

and 2 Streaming Multiprocessor (SM) blocks [5]. The

Multiprocessor handles continuous flow of data streams and

is thus named as a Streaming Multiprocessor. The SMC is

responsible for work distribution amongst the two SMs. Each

SM is responsible for executing hardware threads that

perform computations. The texture memory unit inside the

TPC is generally used for storing pixel values. Each SM

houses 8 Streaming Processors (SP), 2 Special Function

Units (SFUs), a Cache Unit and a 16 KB shared memory unit.

The actual floating point computations take place in the SP

which is essentially a single core handling a single hardware

thread. A hardware thread is the smallest unit of computation.

The SP utilizes cache memory for faster lookup of data, while

the inter-SP communication in a SM takes place via the

shared memory. The GPU actually consists of an array of

TPCs. In addition to the above, the GPU also includes global

memory unit and constant cache unit on the same chip. The

number of TPCs and the size of global and constant cache

memory depend on the GPU series.

The concurrent execution of the threads on the SPs of a

SM forms the basis of parallel computation. Since a fixed

number of threads can run concurrently on a SM, groups of

32 threads are made from the bank of threads and are

scheduled to run in an ordered manner. From a hardware

view point, these groups of 32 threads are known as Warps.

At a particular instance of time only one warp can be active.

From the CUDA programming view point, the program is

broken into sequential and parallel modules. For parallel

modules, threads are organized into two level of hierarchies

namely blocks and grids [6], [7]. The first hierarchy, block is

a software programming concept wherein threads are

organized in a 3 dimensional layout (as x, y, and z

dimensional representation).

Fig. 1. Basic GPU architecture

The second hierarchy grid is also a software concept

wherein the first hierarchy blocks are further organized in a

two dimensional layout. The threads in a block execute

cooperatively in parallel on the SM, whereas the blocks of

given grid execute independent of each other across the GPU.

On the contrary, the grids execute sequentially on a GPU.

The independent execution of blocks forms the basis of

coarse-grained parallelism and cooperative parallel execution

of threads in block implements fine-grained parallelism.

 Each grid is formed while executing a kernel call. The

CUDA kernel is the program module to be executed on the

GPU and is typically invoked from host CPU. Multiple

copies of the same program module are created and are

assigned to each thread at the time of kernel call. We have to

specify the dimensions of the grid and the block in the

execution configuration at the time of the kernel call. The

programmer is free to experiment with the dimension sizes of

blocks and grids. The total number of threads in a grid and

block is calculated by using (2).

T = grid_dimension x block_dimension (2)

where T is the total number of threads, grid_dimension

denotes the total number of blocks in a grid and

block_dimension denotes the total number of threads in a

block. For example if grid is to have 6 blocks

(grid_dimension=(3,2) organized as 3 blocks in x direction

and 2 blocks in y direction) and further each block has to

have 48 threads (block_dimension=(6,4,2) organized as 6

threads in x direction, 4 in y direction and 2 in z direction)

totaling 48*6= 288 threads in all, then the kernel call will be

given as:

dim3 grid_dimension (3,2)

dim3 block_dimension(6,4,2)

Another alternative allotment for same problem could be:

dim3 grid_dimension (1,1)

dim3 block_dimension(288,1,1)

kernel_function_name<<<grid_dimension,

block_dimension>>> (list_of_arguments);

Fig. 2. Kernel execution memory allocation

TABLE III: OUTPUT VALUES FOR TWO INITIAL VALUES IN CHAOS STATE IN

PARALLEL IMPLEMENTATION

Index X0=0.01 X0=0.011

1 0.036630 0.040252

2 0.130567 0.142939

3 0.420020 0.453276

4 0.901332 0.916923

5 0.329051 0.281850

6 0.816873 0.748919

7 0.553488 0.695746

8 0.914414 0.783228

9 0.289565 0.628192

10 0.761153 0.864197

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

586

TABLE IV: GPU AND CPU EXECUTION TIME

No. of

iterations
CPU(MSEC) GPU(MSEC)

128 50.000 0.115

256 60.000 0.126

384 70.000 0.148

512 90.000 0.168

640 110.000 0.199

The performance issues resulting out of the above two

alternative representations for 288 threads are beyond the

scope of this paper. Fig. 2. illustrates the first alternative

showing the arrangement of threads in blocks and blocks in

grid. It also depicts the memory visible to each level of

hierarchy. The local memory is only visible by its

corresponding thread. Also, the threads in a block can

communicate using shared memory. Lastly all the blocks in

the grid can see the global memory.

IV. PARALLEL IMPLEMENTATION OF LOGISTIC MAP

In this section we present the parallel GPU based

implementation of the one dimensional logistic map.

We have developed a kernel logisticmap() having the

following arguments x0 as the initial value of population, k as

the control parameter, and y as the output array containing

population sizes for consecutive iterations. Below we present

the code snippet of logisticmap():

__global__ void logisticmap(float *y,

float x0, float k)

{

 __shared__ float temp;

 temp = x0;

 int i;

int idx = blockIdx.x*blockDim.x +

threadIdx.x;

 for(i=0;i<=idx;i++)

 {

 temp = k*temp*(1-temp);

 }

 y[idx] = temp;

}

The execution configuration of the kernel call for a total of

N iterations is given below:
dim3 block_dimension(2);

Fig. 3. GPU versus CPU Execution Time

dim3 grid_dimension (N/2);

The call to the kernel logisticmap() is given as:
logisticmap<<<grid_dimension,block_dimen

sion>>>(y,x0,k);

Table III shows the output array generated by the kernel

logisticmap() for N=10, k=3.7 and initial values of x0 as 0.01

and 0.011 for comparison with Table II. There is a difference

in the sixth decimal place in last the 3 values for x0=0.01 from

the corresponding values in the sequential implementation

due to round off scheme employed by the Device instead of

truncation employed by Host. This difference can be

overcome using a Device of compute capability 2.0.

V. PERFORMANCE MEASUREMENT

Now we present the comparison between the execution

times of logisticmap() on GPU and CPU on the basis of the

number of iterations performed. The execution times on GPU

(parallel implementation) and CPU (sequential

implementation) have been measured in milliseconds with

precision of three decimal places and are enlisted in Table IV.

Fig. 3. depicts a graph generated using Table IV. The

graph has been interpolated for the ease of understanding. As

we observe from the figure the GPU execution time remains

nearly constant over the entire range of iterations performed.

On the contrary, the CPU execution time increases

proportionally with the number of iterations performed. The

most remarkable result that we have achieved is that on an

average GPU computed the result 495.08 times faster than

the CPU.

VI. CONCLUSION AND FUTURE WORK

The objective of this paper is to present a high

performance parallel GPU based implementation of One

Dimensional Logistic Map using the NVIDIA CUDA

environment first step towards setting up of an experimental

laboratory in academic institutions, including AICTE

approved engineering colleges, for analysis of chaotic

systems by developing one of the most fundamental tools for

study. We have reported an enormous speedup of 495.08

times than the CPU only version. Towards this direction we

have already explored potentials of Chaotic cryptography

(Baptista’s Methodology). Authors feel that this will be

useful in offering an academic course with laboratory

hands-on in high performance applications of Chaos.

ACKNOWLEDGMENT

We thank engineering college authorities to encourage

student interns in participating in challenging projects at DIT.

Authors also thank the DIT student interns for their efforts in

pursuing the research and development work in High

Performance Computing discipline.

REFERENCES

[1] P. Ranjan, S. Kumara, A. Surana, V. Manikonda, M. Greaves, and W.

Peng, ―Decision Making in Logistics: A Chaos Theory Based

Analysis,‖ in Proc. AAAI Workshop on Decision Making, March 2002,

Stanford, California.

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

587

[2] Q. V. Lawande, B. R. Ivan, and S. D. Dhodapkar, ―Chaos Based

Cryptography: A New Approach To Secure Communications.‖

[3] CUDA Technology, NVIDIA. (2010). [Online]. Available:

http://www.nvidia.com/object/CUDA.

[4] L. Nyland, M. Harris, and J. Prins, ―Fast N-Body Simulation with

CUDA, GPU Gems 3,‖ In: Nguyen, H.; ed., Addison-Wesley, 2007, pp.

677-695.

[5] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, ―NVIDIA

TESLA: A Unified Graphics and Computing Architecture,‖ In: Micro,

IEEE, 2008, 28, Issue: 2, Identifier: 10.1109/MM.2008.31, pp. 39–55.

[6] CUDA Programming Guide 3.0, NVIDIA. (2010). [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/

NVIDIA_CUDA_ProgrammingGuide.pdf.

[7] A. Goel and S. Maniktala, ―High Performance Computing- GPU

CUDA Methodology,‖ Summer Internship Report No.

DIT/DIR(RCM)/01/July 2010.

Mr. Saurabh Maniktala completed his Bachelor’s in

Electronics & Communication Engineering from

Maharaja Surajmal Institute of Technology, Guru

Gobind Singh Indraprastha University, New Delhi in

2011. He was selected for summer research internship,

2010 at Department of Information Technology, Govt.

of India, Delhi under the aegis of Mr. A. B. Patki and

Mr. R. C. Meharde. He has been involved in

developing parallelized prototypes of algorithms including Data Encryption

Standard, Max-Min operations for Type-I fuzzy sets, image processing filters

and One-Dimensional Logistic Map in Chaos Theory for the CUDA

platform. He is also co-author of the paper – A comparative study of various

variants of SPARQL in Semantic Web.

 He has developed an introductory course for initiating CUDA/GPU

activities at the Bachelor level in engineering colleges. His current research

interests include Computer Architecture, Operating Systems, Parallel GPU

based computing and Chaos theory based applications.

Ms. Anisha Goel obtained her Bachelor of Technology

from Maharaja Surajmal Institute of Technology, Guru

Gobind Singh Indraprastha University, New Delhi in

2011 with specialization in Computer Science. She was

selected for Summer Research Internship program at

Dept of Information Technology, Govt. of India under

Mr. A. B. Patki and Mr. R. C. Meharde, during the year

2010. She has been involved in developing parallelized

prototypes of algorithms including Data Encryption Standard, Max-Min

operations for Type-I fuzzy sets, image processing filters and

One-Dimensional Logistic Map in Chaos Theory for the CUDA platform.

She has also co-authored a paper –– A comparative study of various variants

of SPARQL in Semantic Web.

 She has been instrumental in the development of an introductory course

for initiating CUDA/GPU activities at the B.Tech level in engineering

colleges. Her current research interests include Compilers, Operating

Systems, Parallel GPU based computing and Chaos theory based

applications.

Mr. A. B. Patki obtained his M Tech from Indian

Institute of Technology (IIT), Kharagpur in 1975 with

specialization in computers. He had worked as faculty in

Government College of Engineering, Amravati,

Maharashtra, during 1972-73. He also worked as Project

Officer at IIT, Kharagpur during 1975-77 on

hardware/software R&D projects. Since March 1977, he

was employed with Department of Information

Technology (erstwhile Department of Electronics), Government of India and

superannuated in March 2010 as Senior Director/Scientist-G & HoD. He has

worked in various capacities on several projects in the areas of Artificial

Intelligence, Software Technology Parks, Reliability Engineering, VLSI

Design, Soft Computing and E-Commerce. He was also instrumental in

spearheading post-legislation activities of Information Technology (IT) Act,

2000. He has been member of Scientists selection committees in DRDO.

 His current research areas include Soft Computing for Information

Mining, Evidence Based Software Engineering, Professional Outsourcing,

ICT enabled Productivity Enhancement, Cyber Laws, Cyber Ethics including

Cyber forensics & Chaos Theory applications information security.

 Mr. Patki has been trained in VLSI Design at Lund University, Sweden

and Mentor Graphics, USA. He has been a referee for IEEE Transactions on

Reliability for over twenty years. He holds a copyright for FUZOS©- Fuzzy

Logic Based Operating Software. He has over fifty International

publications. He has delivered invited lectures at leading academic

institutions. He has developed courseware for VLSI design using VHDL that

has been used for training the teaching faculties at leading engineering

colleges and microelectronic industry. He has been supervising B.Tech/ ME

thesis and also imparting training for Engineering Interns in Computer

Science and Information Technology.

Mr. R. C. Meharde obtained his Bachelor of

Engineering degree in Electronics with specialization in

Control & Instrumentation, from SGS Institute of

Technology and Science, Indore in 1978. He had worked

with Hindustan Copper Ltd., a PSU from April, 1979 to

January, 1981. In January, 1981 he joined the Directorate

General of Light Houses and Lightships, Ministry of

Shipping and Transport, Government of India. Since

February, 1987, he is employed with Department of Information

Technology, (erstwhile Department of Electronics), Government of India,

which has been recently renamed as Department of Electronics and

Information Technology by the Government of India.

He has worked extensively in field of Control & Instrumentation, Coastal

Navigation System, Futuristic Navigation Systems. His current areas of

interest include promotion of Electronics and IT systems and application in

areas of Industrial Electronics, Automation System, Intelligent

Transportation System and Power Electronics. He has contributed for

evolving several R&D projects in these areas which have been successfully

implemented and resulted into technology transfer amongst Indian Industry.

Presently, he is Senior Director/Scientist G-HoD Electronics Systems

Development & Applications (ESDA).

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

588

