
 

Abstract—Robust fault detection filter (RFDF) is mainly 

designed for detecting faults in linear time-invariant (LTI) 

systems inherently exposed to external disturbance and noise. 

One of the methods used for RFDF is Kalman approach. The 

estimation error of continuous Kalman filter (CKF) for the 

continuous original model is lower than discrete and 

continuous-discrete Kalman filters. Furthermore, discretizing 

the continuous model may cause losing some information. The 

fundamental purpose of our study is to introduce a new 

reference residual model generator to formulate the RFDF 

based on a CKF model through which the generated residual 

signal can be evaluated and then applying it in a drum boiler in 

Synvendska Kraft AB Plant in Malmo, Sweden as a 

multivariable and strongly coupled system. We hypothesize the 

proposed design is more explicit and more accurate with lower 

estimation error than other Kalman approaches. To the best of 

our knowledge, this is for the first time that a CKF model is 

employed to detect actuator and sensor faults and studied in a 

real boiler. It is demonstrated that both sensor and actuator 

faults can robustly be detected. Also sensor faults can be 

isolated through this approach. 

 
Index Terms—Boiler, continuous Kalman filter, fault 

detection, robustness. 

 

I. INTRODUCTION 

In each power plant, boilers provide the required thermal 

energy for power generation. One of the important 

characteristics of a properly boiler system is to maintain a 

desired steam pressure at the outlet of the drum. This aim will 

be satisfied by the combustion system, which is a complex 

process with high nonlinearity, uncertainties and load 

disturbances. Another important characteristic is to control 

the drum-water level. To this aim the drum level should be 

sensed. A fault in a boiler may have effects on the drum level 

and pressure, and therefore, it may cause a dangerous 

occurrence such as explosion in a power plant. So fault 

detection in a boiler as soon as possible is very crucial [1]. 

Due to higher performance, and higher safety and stability 

standards, the fault detection and isolation (FDI) 

model-based approaches have attracted a great deal of 
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attention during last decades. 

The most common method among the model-based 

procedures is the observer-based approach. One of the 

important aspects of an observer-based FDI system is 

robustness [2]. The main task of robust fault detection filter 

(RFDF) is to design observers having two capabilities. The 

first one is robustness to uncertainties and unknown inputs 

such as disturbances, and the second one is being sensitive to 

fault detection.  

Because the effect of the possible faults and disturbances 

are often coupled, a suitable trade-off between robustness 

and sensitivity should be considered to measure the 

performance of an FDI system. Kalman filter is a suitable 

method to solve robust fault detection problems.  

Given a continuous state-space system model, there are 

three different Kalman filter designs depending upon the 

measurement process.  

1) If the measurement process is continuous, the 

continuous Kalman filter (CKF) is used. 

2) If the measurement process is discrete, there are 

two options: 

 Using a continuous-discrete Kalman filter 

(CDKF). 

 Discretizing the continuous model and using a 

discrete Kalman filter (DKF). 

The main question here is: Which one is the best? It should 

be noted that no textbooks (for example, [3] and [4] and 

references therein) have addressed this issue. 

It should be considered that DKF is only optimal with 

respect to the discrete model. The estimation error of CKF for 

the original model is lower than the other Kalman methods. 

Therefore, we design CKF for the continuous model [5]. 

Many papers such as [6] and [7] discretize the continuous 

model and then design a discrete Kalman filter. And some 

papers design extended Kalman filter for a nonlinear system 

which is again discrete and has more difficulties [8] and [9]. 

But we mentioned that the estimation error of CKF for the 

original model is lower than DKF and CDKF. Also when we 

discretize the continuous model we lose some information. 

On the other hand, to our best knowledge, the CKF has not 

been used to detect actuator and sensor faults in a real boiler. 

Here we propose a simple accurate FDI approach in a real 

boiler which is in Synvendska Kraft AB Plant in Malmo, 

Sweden as a multivariable and strongly coupled system. 

This paper is organized as follows. In section II the 

problem formulation is presented. In this part a system model 

including the process noise, measurement noise and external 

disturbance is proposed. Section III represents the Kalman 
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filter formulation, the residual generation and their 

characteristics. This section is the core of the present paper, 

in which the basic designing procedure of RFDF is presented. 

Then the residual signals will be evaluated in section IV. A 

suitable threshold is designed in section V. To illustrate the 

derived results, a numerical example is given in section VI. 

The last section, i.e., section VII, represents the conclusion of 

this paper. 

 

II. SYSTEM DESCRIPTION AND PRELIMINARIES 

This section introduces the preliminaries necessary for the 

work presented in this paper. At first, the following model is 

considered as a linear system. 
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where 
nRx  is the state vector, 

pRy
is the output 

vector, 
mRu  is the control input vector,

q
p Rn 

 is the 

process white noise vector, 
p

s Rf 
 is sensor fault vector, 

m
a Rf 

 is the actuator fault vector, 
p

s Rn 
is the 

measurement white noise vector and 
dRw is the unknown 

external disturbance vector. The matrices A, B, C and D are 

assumed to be time invariant with suitable dimensions, and 

p<n. 

For the sake of simplicity, we postulate a setting in which 

only one single sensor or actuator is faulty at one time. The 

objective is to design an observer to generate output 

estimation 
)(ˆ ty

 according to the available input u and output 

y. The following assumptions are used throughout: 

A1) (C,A) is detectable. So the reccati equation has a 

positive semidefinite  solution. 

A2) Only one actuator or sensor is faulty at one time. 

 

III. CONTINUOUS KALMAN FILTER DESIGN 

In this section, we aim to design a Kalman filter as follows 
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where 
nRtx )(ˆ

 and 
pRty )(ˆ

are the estimated state and 

output vectors, respectively. 

The observer gain matrix is 

1T RPCK   

where P is the continuous error covariance between the true 

state x(t) and the estimated state 
)(ˆ tx

. P is obtained from the 

following riccati equation 

QPAAPCPRPCP T1T  "  

The residual signal is as below 

1 1
ˆ( ( ) ( ))r y t y t t t t t       

where σ denotes the standard deviation of measured variables 

from the estimated values, t1 is time between the start time 

and the end time and Δt represents the legth of the time 

window. 

Therefore from (1) and (3) we have 

tttttntftxtxCr 11ss  ))()())(ˆ)(((  

As a conclusion the residual signal depends not only on 

sf  and u, but also on the state x and therefore on the actuator 

faults. 

It has been demonstrated that the designing method 

proposed in this section is very simple and we have aimed at a 

continuous Kalman filter for the original model.  

 

IV. RESIDUAL EVALUATION 

After designing of the CKF, the remaining task for fault 

detection is the evaluation of the generated residual signals. 

In this step a threshold 0J th   is imperative to be selected. 

The method for designing the threshold will be discussed in 

the next section. Therefore, the fault occurrence can be 

alarmed if the absolute value of the residual signal exceeds 

the threshold. 

In other words, we use the following logical relationship to 

detect the fault. 

.occuredhasfaultnoJr

alarmoccuredhasfaultaJr

th

th








 

V. DESIGN OF THRESHOLD 

We consider the designed residual generation system (5). 

We have 

fu rrr  maxmax 


Now we establish an estimate of the effect of control inputs 

u(t) on the residual r(t). Here )(tru  and )(tr f  are defined as 

follow 

0uf

0fu

rr
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In the fault-free case the residual evaluation function is 
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uthJr ,  

where 

uuth rJ max,   

 

VI. SIMULATION ON A DRUM BOILER MODEL 

This section involves following tasks. A real drum boiler 

model is presented firstly. A continuous Kalman filter is 

designed secondly. And finally, simulation results will be 

demonstrated to prove the effectiveness of the method. 

A. The Drum Boiler Model 

A third order non-linear state space model was obtained 

from the mass and energy balance equations [10]. Three state 

variables which are selected here are the drum pressure, 

electric output, and fluid density [11]. The linearized model 

at a nominal operating point is obtained from this non-linear 

model. 

The linear boiler model with process and measurement 

white noise and external disturbance has three inputs, and 

three states. This boiler is in Synvendska Kraft AB Plant in 

Malmo, Sweden. The capacity of the mentioned boiler is 

160Mw. 

The linearized state space model is as below [11] 
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The details about the definition and units of system inputs, 

states, and outputs are listed below [11] 

The inputs are defined as: 

1u - valve position for fuel flow, cm 

2u - valve position for steam control, cm  

3u - valve position for feed water flow, cm. 

The states are defined as: 

1x : drum pressure, 2cmKg /   

2x : electric output, MW 

3x : fluid density, 3cmKg /  

 The measured outputs are defined as: 

1y : drum pressure, 2cmKg / . 

2y : electric output, MW 

3y : drum water level, cm. 

Here, we assume that there are totally three actuators and 

three sensors in the system and only one single actuator or 

sensor is faulty in one time. Using the procedure of section III 

we can have the observer gain matrix as below: 

0.9992 9.9497 0.0063

9.9497 99.4108 0.0631

0.0979 0.9945 0.0053

K

 
 


 
  





As a result, by considering the fault free case, 

321iJ uthi ,,,,   are as below: 
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The residual signals are as follow: 
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where secsec 10t0 1   and σ denotes the standard 

deviation. 

So by evaluating the residual we can detect the fault 

occurrence. In the next part we consider real actuator and 

sensor faults in the boiler. 

B. Simulation Results of Actuator Faults 

The actuator faults are considered 10% of the nominal 

inputs [12]. We consider that one actuator is faulty in one 

time. 

If the first actuator is faulty, then the residual signal is 

shown as in Fig. 1. If each of the second or the third actuator 

is faulty, the residual signals will be shown as in Fig. 2 and 

Fig. 3, respectively. 
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Fig. 1. (a): fault signal in the first actuator (b): the first residual signal. 
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Fig. 2. (a): fault signal in the second actuator (b): the second residual signal. 
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Fig. 3. (a): fault signal in the third actuator, (b): the third residual signal. 

 

Obviously it can be observed that the actuator faults can be 

detected as quickly as possible. 

C. Simulation Results of Sensor Faults 

In this part, we consider abrupt sensor faults. In these 

cases, sensor measurement suddenly drops to zero from a 

positive value [12]. Consider that one sensor is faulty in one 

time. 

Figures 4, 5, and 6 show the residual signals and the faults 

in the first, the second and the third sensor, respectively. 
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Fig. 4. (a): fault signal in the first sensor (b): the first residual signal. 
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Fig. 5. (a): fault signal in the second sensor (b): the second residual signal. 
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Fig. 6. (a): fault signal in the third sensor. (b): the third residual signal. 

 

Based on these figures it is demonstrated that sensor faults 

not only can be detected but also can be isolated effectively. 

 

VII. CONCLUSION 

In this paper, the observer-based RFDF is studied for a linear 

time invariant (LTI) system inherently exposed to process 

and measurement white noise and external disturbance. In 

this study we introduce a simple continuous Kalman filter 

which takes into account the robustness of the fault detection 

filter against external disturbance and noise, as well as 

sensitivity to faults, simultaneously. Through this procedure 

the optimal reference residual signal can be evaluated to 

detect faults. This simple continuous Kalman filter has less 

estimation error than DKF and CDKF for continuous models. 

Furthermore some information will be lost by discretizing the 

continuous model which is unavoidable in discrete Kalman 

procedures. This provides the potential advantage of 

improved accuracy for the continuous model. 

Finally we employ the designed method of CKF to a real 

drum boiler system in Synvendska Kraft AB Plant in Malmo, 

Sweden to illustrate the efficiency of the proposed fault 

detection method for the first time. Simulation results have 

demonstrated that although there are process noise, 

measurement noise and sensor fault occurrence successfully 

and effectively. Also sensor faults can be isolated through 
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this method. Comparative field studies are needed in the 

future to validate this introduce filter model. 
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