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Abstract—Queueing research has a plethora of applications 

and has been an area of study spanning from 
telecommunications to economics. Traditionally, studies on 
queueing has mainly concentrated on design, performance and 
running of the service facility with customers arriving following 
a stochastic process. In this paper we take an agent based 
modeling approach to develop a behavioral model of a queueing 
system using Cellular Automata (CA). We study how adaptive 
expectation along with a simple information network (as 
defined by the CA) affects decision-making behavior among 
agents (customers). 
 

Index Terms—Agent based modeling, adaptive expectations, 
cellular automata, queueing. 
 

I. INTRODUCTION 
Since the publication of the first paper in 1909 by the 

Danish engineer Agner Krarup Erlang [1] queueing theory 
[2]-[4] has been studied extensively in several disciplines. 
While there is a large number of models and wide range of 
applications of queueing they have one thing in common i.e. 
they take an aggregated view where customers arrive 
following an exogenous distribution, they disappear after 
being serviced and their experiences will have no influence 
on the future arrival of customers. Furthermore, most models 
have been linear and it has been possible to find a closed form 
solution and to determine the optimal capacity. However, 
many queueing situations are in fact not one-off experiences 
but repeated choices of which queue to join based on past 
experiences. Recently there has been a general move towards 
behavioral studies in operations management, and this has 
included empirical studies in service marketing. For instance, 
Law et al. [5] and Bielen and Dumoulin [6] have studied 
customers' repeat purchases based on past queuing 
experiences. A number of more recent theoretical models 
include feedback in order to understand the relationship 
between customer satisfaction and their decision to return to 
the service facility [7], [8]. Despite this, there has been 
relatively little emphasis on understanding the effects of 
expectations and experiences (while using the service 
facility) on customers' decision making and the impact of 
individual choice on the formation of queues.  

 We begin by deviating from traditional queueing 
research and include past experience into queueing by 
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adopting an agent based modeling [9] paradigm wherein we 
model a population of agents who repeatedly make a choice 
of which facility to use. Agents use standard economic 
behavior such as adaptive expectations [10] for updating 
their expectations regarding sojourn time; agents then decide 
which facility (among several other service points) to choose 
for the next time period.  We adopt a framework based on 
cellular automata, which defines the structure and the 
interactions between agents. Another way to view this is that 
we create a collective choice model with negative 
externalities, i.e. all agents have to take their decisions at the 
same time without knowing what other agents decide and the 
more agents who choose the same facility, the longer the 
sojourn time.   

By adopting a disaggregated framework we try to delve 
into the micro dynamics of queueing. It allows us to 
understand and study the formation of agents' expectations 
and how the flow of information between agents affects 
expectations and in turn impacts their decision making as 
well as the aggregated effect of these choices in terms of the 
formation of queues at the service facilities.  

The paper is organized as follows. After this brief 
introduction, we provide a model description, which is 
followed by the simulation setup and results. Finally we 
conclude the paper with comments and future work. 

 

II. MODEL DESCRIPTION 
We consider a group of customers who, each period must 

choose which service facility (referred to as queues) to 
patronize. They make their choice based on the sojourn time 
they expect to face at the different facilities. We model this 
situation using a variation of one-dimensional cellular 
automata (CA) [11]-[13], which has local interactions 
between intelligent (neighboring) adaptive agents. 

The model assumes a ring structure, wherein each cell of 
the CA represents an agent and each agent has exactly two 
neighbors, one on each side. Agents base their decision on 
their own experiences as well as on their neighbors' 
experiences through local interactions, i.e. sharing of 
information. The parameter K defines the number of 
neighbors, referred to as the K-neighborhood [14], from 
whom there are direct information exchanges. The 
neighborhood represents for instance a social network 
encompassing colleagues, friends, people living next-door 
etc. As an example, if K = 1 and Ai represents the agents then 
agent Ai will interact with agents Ai-1 and Ai+1 while in the 
case of K = 2 agent Ai will interact with the two neighbors on 
each side. We call the agents intelligent because each agent 
(i.e. each cell in the CA) has a memory, which contains the 
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expected sojourn time for each facility. We use the following 
notation: there are N agents, who each time period choose 
one of the Q queues. We use the same service rate μ for all the 
queues and an arrival rate λj. Note that λj is endogenous and 
represents the number of agents choosing queue j at that 
period t. Each time period, each agent updates its expectation 
(memory) of the sojourn time based on two sources of 
information: its own experience, and that of its neighbors.  

Based on its own experience, the agent will update its 
estimate of the sojourn time at its chosen service station using 
an exponentially weighted average (adaptive expectations) 
[15] with weight α given by: 

 
                     Mi, j

t = αMi, j
t−1 + (1−α)Mi, j

t−1                              (1) 
                                 
where Mi, j

t - denotes agent i’s expected sojourn time for 

queue j at time t; 1
,
−t
jiM - denotes agent i’s expected sojourn 

time for queue j at time t-1 and 1
,
−t
jiM - denotes agents i’s 

actual sojourn time for queue j at time t-1. 
For α = 0, no weight is given to the past, which implies that 

the expected sojourn time equals the most recently 
experienced time. A value α = 1 implies no updating of 
expectations, i.e. the expectation will never change whatever 
the agent's experience. Thus, the higher the value of α, the 
more conservative (or inert) the agent is towards new 
information, while a lower value means agents consider their 
recent experiences to be more relevant.  

The second source of information comes from the 
experience of the agent's neighbors. The agent checks, which 
neighbor in its neighborhood, had the shortest sojourn time. 
Using the same logic as described above for its own 
experience, the agent will update its expectation for the queue 
used by this neighbor using parameter β (Equation (1) holds 
true also for beta; interchange α with β). In the special case 
where the facility chosen by the agent and that chosen by its 
best performing neighbor coincide, the agent only updates its 
expectation once, using the minimum of α and β as weight. 
The queue for the next period is chosen based on these 
updated expectations.  

Finally, we need to define the sojourn time Wijt at queue j, 
given that λjt agents selected this queue at time t. Let us 
consider an M/M/1 system (i.e. a one-server system with 
Poisson arrivals and exponential service times) in steady 
state. Such a system satisfies the following two equations: 
Expected number of people in the system =  

L = ρ
1− ρ( ) = λ

μ − λ( )
                              (2) 

Expected sojourn time =  

W = L
λ =

ρ
1− ρ( )

⎡

⎣
⎢

⎤

⎦
⎥

λ =1 μ − λ( )                    (3) 

where ρ denotes the utilization rate given by λ/μ. 
Note that these two concepts are related to each other by 

the well known Little’s law: 
  

                           L Wλ=                                                 (4)           

Unfortunately, such steady state equations are only valid 
for systems that reach equilibrium, and in particular only for 
systems where ρ < 1. We need a congestion measure that can 
be used for our transient analysis where, at peak times, 
customers cluster in the same queue, and the arrival rate 
temporarily exceeds the service rate. Consider for instance 
the case of toll bridge where during peak time there is 
clustering of commuters as the arrival rate temporarily 
exceeds the service rate, and it takes a while for this queue to 
be absorbed.  

We have therefore attempted to identify a congestion 
measure that satisfies the behavioral characteristics of (2) to 
(4), but remains well defined when ρ ≥ 1. Such a measure 
should satisfy the following criteria: 

(i) If ρ equals zero the number of people in the facility L 
equals zero (2) (ii) As ρ increases there is a more than 
proportional increase in L (2) (iii) If the arrival rate tends to 
zero then the waiting time W is inversely proportional to the 
service rate µ (3) (iv) When the arrival rate and service rate 
increase proportionally, leaving ρ unchanged, the waiting 
time W decreases (3) (v) Little’s Law is satisfied: W = L/λ 
(4).  

With these requirements in mind, we have defined the 
following measure for the average sojourn time: 

                          L = ρ ρ +1( ) = ρ2 + ρ                                 (5)
              

Using Little's law and the definition of ρ yields the 
following expression for the sojourn time: 

  

                                      Wjt =
λ jt

μ 2 + 1
μ

                                (6)                

Regarding the decision rule, we consider the agents to be 
rational: each time period they choose the facility with the 
lowest expected sojourn time. The following describes the 
decision rule in an algorithmic form:  
Step 1. Chose the minimum among the expected values of 
sojourn time. 
Step 2. Is there more than one queue with the minimum 
value? 

2.1 NO: Choose the queue pertaining to the minimum 
value & go to Step 6 

 2.2 YES: go to Step 3. 
Step 3. Does the expectation of the queue chosen by the agent 
in the previous period match the minimum value? 

 3.1 YES: choose that queue & go to Step 6 
 3.2 NO: Go to Step 4. 

Step 4. Does the expectation of the queue chosen by the 
fastest neighbor in the previous period match the minimum 
value? 

 4.1 YES: Choose that queue & go to Step 6 
 4.2 NO: Go to Step 5. 

Step 5. Choose the queue randomly & go to Step 6. 
Step 6. Execute the choice of queue. 
Step 7. Update the expected sojourn times as explained above 
& go to Step 1. 

To summarize, the flow sequence of the model is as 
follows: at time t = 0, agents are allocated random memories 
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for each queue, they identify the minimum expected time 
among these random allocated sojourn times and select that 
queue, they experience a sojourn time for the selected facility 
and learn about their neighbors' experience. They update 
their expectation based on this new information and use these 
updated expectations to select the queue with the shortest 
expected sojourn time for period 1. These new choices lead to 
new experiences, and the updating and decision process is 
repeated. 

 

III. SIMULATION SETUP AND RESULTS 
We cannot provide a closed form solution for the model 

described above, due to its nonlinearities. This is the reason 
that we are turning to simulation to analyze the behavior. It is 
also well known in this type of models that even though one 
knows the individuals' decision rule (as we do) it is virtually 
impossible to predict the macro outcome of the interactions. 
However, we have a clear benchmark for our simulations. 
The social optimum and the Nash equilibrium coincide and 
correspond to the case where there is an equal distribution of 
agents across the three facilities. The corresponding average 
sojourn time is 1.80  

It is important to ensure that the one dimensional CA has a 
large enough number of cells to make behavior independent 
of the number of cells. Sensitivity analysis has indicated that 
for our example 120 agents is adequate. The cells are 
wrapped around so that each cell has two neighbors. In this 
paper we will only deal with models that take these two 
nearest neighbors into account, i.e. K = 1, due to limitation of 
space. The initial value of the memory for each agent is 
allocated by drawing random numbers from a uniform 
distribution around the equilibrium value. The model consists 
of three equal service facilities, each with a service rate of μ = 
5. The model can easily be configured with service facilities 
of different service rates, but we will not discuss this here due 
to space limitations. The model is typically run for 50 time 
periods for different values of α and β. For the 
implementation we use Matlab, a numerical computing 
environment used in engineering and science. 

 The four panels in Fig. 1 capture the evolution of the 
agents' choices of service facility over 50 time periods (one 
iteration) for 4 different pairs of (α, β) values. The horizontal 
axis represents time and the vertical axis the 120 agents. The 
3 colors (white, blue and black) depict the three service 
facilities. The agents' choice each time period is indicated by 
color, i.e. the same color in consecutive time periods means 
that the agent used the same service facility in both periods. 
The first observation applies to the four panels: the agents 
initially explore the different queues or in most cases at least 
two of the three choices. The exact sequence of these 
explorations depends on the (randomly allocated) initial 
expected sojourn times. After this transition period of around 
five time periods we can observe the emergence of more 
coherent patterns. In Fig. 1 (a) the parameters (α, β) = 
(0.5,0.5)  i.e. agents update their expectations with equal 
weight to their previous expectation and the experienced 
sojourn time. In this case agents distribute themselves more 
or less equally among the three service facilities after a 
transition period of about 10 time units. During the latter part 

of this transition period (times 5 to 10) the vast majority of 
the agents find themselves in the same queue (e.g. the blue 
queue at time 5). When many agents select the same queue, 
they face a very long sojourn time, and thus are reluctant to 
return to this queue. This happens to the black queue in 
period 9. Agents very gradually return to this queue between 
periods 10 to 20. At this time the system pretty much 
stabilizes, only agents who are located on the boarder of two 
homogenous groups keep changing queue.  

In Fig. 1 (b) agents give very little weight to the experience 
of their best performing neighbor: (α, β) = (0.3,0.9). After the 
initial transition we observe a relatively stable period which 
lasts until time = 28.  The automaton suddenly becomes 
unstable due to too many agents choosing the white service 
facility that period. Over the next 10 periods we observe 
people switching in droves to a given queue. An interesting 
pattern materializes between times 33 and 36: at time 33 a 
vast majority chooses the white service facility, increasing 
the expected sojourn time, so all agents move away from this 
queue. At time 36, they all end up at the black facility. 
Consequently they experience a huge sojourn time, which 
has such a major impact on their expectations that no agent 
choose the black facility after this event, i.e. the black facility 
is “forgotten” by the agents.  

Fig. 1 (c) represents the case where (α, β) = (0.0,0.0), i.e. 
the extreme case where agents place no weight on past 
expectations; their expected sojourn time for a service facility 
equals their (or their fastest neighbor’s) most recent 
experience. The massive move to the black facility in period 
3 results in this choice being discarded by all the agents in the 
next period, where almost all agents select the white facility. 
Consequently, in period 5 most people find themselves at the 
blue facility, except for three agents venturing back to the 
black one. These three agents results in the creation of a 
diffusion process, with agents gradually moving back to the 
black road. But it is not until period 14 that one of the agents’ 
moves back to the blue queue. From there onwards, the 
diffusion process continues across the three facilities until a 
more or less equal distribution among the facilities is 
achieved. The observed behavior with large area of the same 
choice of facility results from the agents' lack of memory. 

Finally, in Fig. 1 (d) we consider the other extreme: α, β) = 
(0.9,0.9), i.e. agents give much more weight to past 
expectations than to recent experience. The system thus has a 
“long” memory. This results in much more conservative 
behavior: agents need significant evidence before they 
change facility. There are even a few agents who stick to the 
same facility during the whole simulation period. Due to the 
relatively slow updating we also do not observe large 
homogenous agent groups (diffusions as in Fig. 1 (c)) but do 
notice a similarity with Fig. 1 (a) where agents who are 
located on the border between two homogenous agent groups 
keep switching facility.   

Fig. 2 provides more aggregated results for the simulations 
discussed in Fig. 1: each quadrant shows the minimum, 
average and maximum sojourn time each time period. In 
steady state a few agents keep changing facility, often 
oscillating between two facilities indicated in the discussion 
of Fig. 1. Consequently the average keeps fluctuating, as we 
can observe in Fig. 2. Fig. 2(a) and 2(c) show qualitatively 
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very similar behavior: initially the average waiting time is 
quite high, but it declines fast and ends up close to or at the 
Nash equilibrium (1.80 for 2(a) and 1.83 for 2 (c)). 
Furthermore, in these two cases the variation around the 
average value is relative small. 

In Fig. 2 (b) we observe a period of stability from around 
time 5 to 25. This is followed by a period of significant 
fluctuations due to the behavior described in Fig. 1 (b), 
before the system settles down again. However, while the 
first period of stability resulted in an average sojourn time 
close to the Nash value of 1.80, the second period results in 
an average which is 40% higher: a value of 2.6. This is the 
consequence of agents no longer using the black facility. The 
sojourn time remains very stable thereafter, and the minimum 
and maximum values are close to the average.  

Finally, in Fig. 2 (d), the “long memory” case, we observe 
a very different behavior. The initial variations in average 
waiting time are much less, with a peak below 2.5 compared 
to over 4 in the cases. We observe that the minimum and 
maximum values take much longer time to converge to the 
average waiting time than in the other cases. The slow rate at 
which expectations are updated result in more stability, but 
also in a much longer delay in approaching the Nash 
equilibrium. 

 

IV. CONCLUSION 
A simple, self-organizing disaggregated queuing system 

with local interaction and locally rational agents has been 
presented in this paper. We have shown how a simple spatial 
model can create a variety of different behaviors and, 
depending on the parameters in the agents’ expectation 

formation, lead in certain instances the socially optimal or 
Nash solution, while in other cases the resulting steady state 
is far away from optimal. While such a model is a poor 
representation of technical systems such as computer or other 
network system, it is applicable to repetitive situations where 
agents decide based on their expectations, which result from 
previously experienced sojourn at the different service 
facilities. If we want to understand the behavior of people in 
many situations ranging from the choice of supermarket, to 
car repair shop or restaurants, we need to get a better insight 
into how people's decisions leads to the formation of queues. 
The link between micro and macro behavior has long been 
considered an important issue in many disciplines, ranging 
from sociology to physics [11], [16] and so far there is 
generally limited understanding of how we can connect the 
levels of analysis. We consider this as a starting point to 
understand the connection between micro and macro 
behavior in queuing research and to supplement traditional 
queueing and not as a replacement to the traditional 
approach.  

This is clearly just the beginning of a long journey; we are 
working on extending this framework in many directions. 
Much of this work is currently in preparation including 
extending the model by looking at the effect of increasing the 
flow of information (i.e. changing the K-neighborhood), 
considering alternative forms of interaction between the 
agents, allowing for service facilities of different sizes, etc. 
Furthermore, as a part of the future work we are adopting an 
experimental approach where human subject take over the 
role of agents in the model. This should allow us to at least 
partially verify the model and the agents decision heuristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Spatial-temporal behavioral evolution of agents’ choice of service facility. Each color represents one of the service facilities 

 

           (d) 
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Fig. 2. Average sojourn time for different α and β values for one iteration of the model. 
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