
 

Abstract—In this work, assuming as a model the 

Multifractional Processes with Random Exponent (MPRE), we 

propose a simulation algorithm able to replicate financial time 

series, specifically pertaining to the FX market. We show how, 

properly choosing the functional parameter of the MPRE, the 

simulated series fit with significant accuracy the actual ones. It 

is worthwhile to underline that the sole knowledge of the 

functional parameter ensures by itself that the surrogates 

succeed in replicating the empirical  data. The results can be 

used in scenario analysis as well as in forecasting. 

 
Index Terms—Financial modeling, goodness of fit, 

multifractional processes, simulation. 

 

I. INTRODUCTION AND MOTIVATION 

In the last quarter century a huge amount of empirical 

contributions questioned the effectiveness of the 

Brownian-based standard financial theory, unable to match 

most of the features displayed by actual data. Many 

alternative models were proposed to reproduce anomalies 

such as the fat tails and the high peaks in the distributions of 

the price variations, the absence of autocorrelation in the log 

returns or the highly autocorrelated volatility process. 

In order to overcome the limits of the traditional models, 

we investigate the capability that the Multifractional Process 

with Random Exponent (MPRE) has to describe in a 

parsimonious way the empirical dynamics. The process was 

introduced by [1] as a generalization of the multifractional 

Brownian motion (mBm) [2], [3]; in its turn this extends the 

very well-known fractional Brownian motion (fBm) by 

allowing its Hurst parameter to change through time. The 

mBm and the MPRE – used in signal, image and texture 

analysis as well as in TCP traffic modeling – are generally 

still disregarded in finance, mainly because their 

nonstationarity encumbers the inference of global 

probabilistic properties. The main distrust of the financial 

community towards these models resides perhaps in the 

difficulty to grasp how to conciliate the no-arbitrage principle 

with their ability to both catch the empirically observed 

features of prices and give a rationale to the market 

mechanism. Precisely for this ability, MPRE deserves much 

more attention. 

There are several reasons for claiming the robustness of 
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the MPRE as a model of the financial dynamics (detailed 

discussions can be found in [4]–[8]); here  

we restrict ourselves to mention the capability the MPRE has 

to (a) replicate the patterns shown by financial data, and (b)  

provide a rationale for the trading mechanism. The formers 

will be shortly recalled in Section 2. Section 3 deals with the 

description of the model, while Section 4 introduces the 

simulation algorithm, whose effectiveness in capturing the 

main features of financial time series in discussed in Section 

5. Section 6 concludes. 

 

II. MAIN STYLIZED FACTS OF FINANCIAL TIME SERIES 

It is well known that, albeit widely used, the basic 

Gaussian model is unable to capture the main features 

displayed by the financial time series; in his seminal paper, 

Cont [9] summarizes them in the followings: (1) Absence of 

autocorrelation – (2) Heavy tails – (3) Gain/loss asymmetry – 

(4) Aggregational Gaussianity – (5) Intermittency – (6) 

Volatility clustering – (7) Conditional heavy tails – (8) Slow 

decay of autocorrelation in absolute returns – (9) Leverage 

effect – (10) Volatility/volume correlation – (11) Asymmetry 

in time scales. Although each item should deserve a detailed 

discussion, to quote Cont “these stylized facts are so 

constraining that it is not easy to exhibit even an (ad hoc) 

stochastic process which possesses the same set of properties 

and one has to go to great lengths to reproduce them with a 

model”. 

The purpose of this work resides just in addressing this 

issue: we show that the proper composition of two stochastic 

processes is able to replicate many of the features above 

recalled. In particular, even if the model we are going to 

discuss seems to be able to address all the stylized facts, we 

will focus for brevity on the most relevant ones, i.e. on (1), 

(2), (6) and (8).  

 

III. MULTIFRACTIONAL PROCESSES WITH RANDOM 

EXPONENT 

In this Section the basics of the Multifractional Process 

with Random Exponent (MPRE) will be recalled. The 

starting point is the fractional Brownian motion (fBm), 

introduced 1940 by Kolmogorov and revived in 1968 by 

Mandelbrot and Van Ness [10]. Denoted by a+ = max(a, 0) 

and by W the Gaussian measure, the fBm can be represented 

through the Wiener integral 
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The pointwise Hölder exponent1 fBm(t,) = H  almost 

surely at any point t. This value tunes the strength of 

dependence of the process: H = 0.5 recovers as a particular 

case the Brownian motion, whereas values larger (lower) 

than 0.5 indicate persistence (antipersistence), the stronger 

the more H deviates from 0.5. 

In many situations, the constancy of the pointwise 

regularity can be too restrictive, so the most immediate 

generalisation – known as multifractional Brownian motion 

(mBm) and independently introduced by [2] and [3] – 

replaces the parameter H by a (Hölderian) function H(t).  

The moving average representation becomes 
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and the pointwise Hölder exponent mBm(t,) equals almost 

surely H(t) at any point t. 

The process has covariance given by 
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Notice that the mBm assumes H(t) to be a deterministic 

function; Papanicolaou and Sølna [11] suggest to replace it 

by a stationary stochastic process {S(t)}t[0,1] with smooth 

paths and decaying correlation function independent on W. 

The work is developed by Ayache and Taqqu [1], who define 

the Multifractional Processes with Random Exponent 

(MPRE).  

Their construction starts from the definition of (a) the 

Gaussian field {BH(t)}(t,H)[0,1]×[a,b](0,1) depending on t and H, 

with integral representation provided by (1) and (b) the 

stochastic process {S(t)}t[0,1] with values in the arbitrary 

fixed compact interval [a,b]. Equipped with this notation, 

Ayache and Taqqu define the MPRE of parameter {S(t)}t[0,1] 

as the stochastic process  

 

 2 1 ( , )( , ) ( ) ( , )S tZ t f f t B t                (4) 

 

Any trajectory of Z(t,) is the composition of two 

functions: 

 f1: [0,1][0,1]×[a,b], t(t,S(t,)), that builds the 

random process which serves as functional parameter, 

and 

 
1 Remind that the Hölder exponent measures the degree of irregularity of 

the graph of a function. Given the function f(x), if there exist a constant C and 

a polynomial Pn of degree n<h such that |f(x)  Pn(x  x0)| ≤ C|x x0|
h, the 

Hölder exponent H(x0) is defined as the supremum of all h's such that the 

above relation holds. The polynomial Pn is often associated with the Taylor 

expansion of f around x0, but the relation is valid even if such expansion does 

not exist. 

 f2: [0,1]×[a,b]  , (t,H)BH(t,), that rules the 

resulting process. 

The functional parameter {S(t,)} is not necessarily 

stationary nor independent from the white noise W in (2); 

when independence is assumed, the main results known for 

the mBm can be extended to the MPRE. 

The continuity of the MPRE ultimately relies on the 

continuity of the trajectories of the process that provides its 

random exponent. So, choosing the stochastic functional 

parameter properly, one can simulate in a parsimonious way 

even very complex phenomena, ranging from finance to 

physics, from information theory to physiology. 

Fig. 1 displays sample paths of (a) an fBm with parameter 

H=0.6, (b) a shifted mBm with sine functional parameter 

rescaled to range in the interval [0.2, 0.8] and (c) an MPRE 

with random exponent in the interval [0.25, 0.65].  

As a term of comparison, Fig. 2 shows the British 

pound/Canadian dollar quotes of the last five years. Even at a 

first glance, the series shares with the MPRE many features, 

such as the volatility clustering or the local trends which 

alternate to antipersistent phases. Notice that for the fBm the 

pointwise regularity is the same along the whole trajectory; it 

changes with the deterministic function H(t) and with the 

random function {S(t,)} in the case of the mBm and of the 

MPRE, respectively. 

 

 
Fig. 1. Surrogated time series 

 

 
Fig. 2. GBP/CAN (01/10/2005-06/30/2010) 

 

Just its larger flexibility makes the MPRE a process to be 

310

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012



  

kept at due distance because of its complexity and, at the 

same time, a good candidate to model the financial dynamics. 

In fact, as suggested in [4], [5], [12] and [13], the 

pointwise regularity can be assumed as a proxy of the weight 

that investors assign to the past prices in taking their trading 

decisions. 

 

IV. THE SIMULATION ALGORITHM 

Roughly speaking, the construction of the MPRE 

described in the previous Section counts two steps: the first 

one consists in generating a (eventually continuous) 

stochastic process valued in the rectangle [0,1]×[a,b]; the 

second one consists in compounding the image of this 

random function with a fractional Brownian motion, 

depending on t[0,1] and H[a,b]. The resulting process 

will have at t the pointwise Hölder exponent given by the 

value of the stochastic process built in step one. This 

construction is in principle somewhat simple but problems 

arise when one uses it to fit an empirical (financial) time 

series. To this aim, it is necessary to have a clear idea of how 

the pointwise Hölder exponent of the series one wants to 

replicate evolves through time. Therefore, the very basic step 

resides in estimating the pointwise Hölder exponent of the 

empirical time series. The knowledge of its dynamics allows 

to choose the stochastic process S(t,) and to start the 

construction of the MPRE. In order to accomplish this 

fundamental step we use the estimator introduced in [4] and 

improved in [13]. Since its description goes beyond the scope 

of this work, we will just recall that the estimator – written for 

the q-lagged increments of a series {Xj,n} with n data sampled 

in discrete time on the grid t = 1,…, n and with unit time 

variance equal to K2 – is referred to a window of length  and 

reads as 
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The moving-window estimator (5): 

 is based on the assumption that the increments             

Xj+q,n – Xj,n of the series are normally  distributed within 

the window  with mean zero and variance equal to  

  /( 1)22 / ( 1)
t nH

K q n


 ; 

 is itself normally distributed with mean equal to the 

parameter to be estimated and variance that can be 

explicitly calculated when H(t) = 0.5. Confidence 

intervals for the each  and H(t) are provided by Monte 

Carlo simulations in [13]; 

 has a ( log )n -rate of convergence,  and n 

respectively being the length of the estimation window 

and the number of sampling points. 

Just to get an idea of the goodness of fit of estimator (5), 

consider Fig. 3, which displays in panel (b) the estimation of 

the -pointwise Hölder exponent for the path surrogated in 

Figure 1, panel (b). For the series considered in the example, 

made of 2,048 data points, a window =25 was assumed (i.e., 

 
Fig. 3. Estimated -pointwise Hölder exponent 

 

a trading month is sufficient to get rather reliable estimates on 

a sample of five years). While for modeling purposes it is 

necessary to infer the properties of the stochastic process 

which is supposed to have generated the set of values 

estimated by Hk
,q,n,K(t), for simulation purposes we will be 

content with replicating the series, a part from the knowledge 

of the generating process. 

In fact, the analysis of the random exponent process – 

strongly dependent on the area of interest the model is 

applied to – would deserve for financial time series a separate 

and more extensive discussion, started in [13] with reference 

to the stock markets.  

The idea we use in this contribution is somewhat simple 

but effective. Once the random exponent process has been 

estimated, we set as functional parameter of the MPRE the 

sequence of values obtained by (5). The assumption S(t,) = 

Hk
,q,n,K(t), t = ,…, n allows to generate as many replicates as 

necessary, all sharing the same pointwise regularity structure. 

In order to simulate the MPRE we use the modified Chan 

and Wood algorithm [14]. Basically, denoted by n the 

number of grid points and by  the grid width, the algorithm 

simulates a BH(t) at locations on the grid , 2, …, n. 

Setting tj = j, the simulation of the mBm whose parameters 

are H1,…,Hm on a finite grid of m points, proceeds through 

the following steps: 

1. simulate {Yj,u=
-Hu(BHu(tj)  BHu(tj–1)): j=1,…,n; 

u=1,…,m 

2. for each j and u, calculate BHu(tj) =
Hu(Y1,u+…+ Yj,u) 

3. for each j, “predict” BH(tj)(tj) using some kriging based on 

the values { BHu(tj): j=1,…,n; u=1,…,m}. At each 

location (H(tj), tj), the kriging is built through a set of 

neighbours Nj = {(, k)} and the mBm is predicted by 
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where  ( ) 1

, ( ){ ( ( )} ( ), ( )
v v j

j

v k H k H k H t jcov B t cov B t B t  and the 

covariance is given by (3). 

As it will be shown in the next Section, we find evidence 

that the information provided by S(t, ) is sufficient to 

simulate series sharing with the empirical ones most of the 

features included in the list of Section 1. 
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V. APPLICATION TO CURRENCY EXCHANGE RATES 

For brevity, the analysis we discuss here concerns only 

two exchange rate series: the Euro-Dollar (EUR/USD) and 

the Euro-Yen (EUR/JPY). According the the European 

standard, the quotes use the so called price notation; this 

means that the values are expressed in units of the base 

currency per unit of the target currency. A number of 

financial series were analysed, not only with regard to the FX 

market but also for the stock markets, but no relevant 

differences were found in terms of goodness of fit. Table I 

summarizes the main statistical features of the two datasets: 

in both the cases the kurtosis is significantly higher than 3, 

the value characterizing the normal distribution. Also the 

skewness and the tail index (both should be equal to zero for 

the Gaussian law) denote that the distributions are not 

symmetric and that the tails decrease more slowly than one 

would expect for the normal law. 

 

 
Fig. 4. EUR/USD Exchange Rate 

 

 
Fig. 5. EUR/JPY Exchange Rate. 

 
TABLE I: ANALYSED EXCHANGE RATE SERIES 

 Mean  St.Dev. Kurtosis Skewness Tail-index 

EUR/USD 1.18×10-4 0.0082 6.6818 0.1661 0.1535 

EUR/JPY -7.17×10-7 0.0062 9.3274 0.5156 0.1424 

 

The very first step consisted in estimating the random 

exponent process. Fig. 4 and 5 display – in panel (a) – the 

exchange rate series and – in panel (b) – the pointwise Hölder 

exponent estimation. Notice that in both the cases, the 

random exponent – although with large deviations – 

fluctuates around 0.5 until 2008, year in which it drops 

downwards. Given the meaning of the pointwise exponent, 

the path designed by H(t) summarizes the state of the market; 

it captures both the trends typical of `bull' or `bear' markets 

and the mean-reversion, symptomatic of the frenetic 

buy-and-sell activity occuring during the financial crises. It is 

worthwhile to underline the consistency of the estimates: the 

exchange series show an overall strong negative correlation2 

equal to 0,7959, while the exponents series display a 

significant positive correlation (0.5789) and this indicates 

that the information flow – that ultimately engenders the 

variations of H(t) – acts similarly for the two series. 

Regardless of the financial interpretation, here we are 

interested in replicating the features of Table I (high-peaked, 

fat-tailed distributions) as well as the behavior of the sample 

autocorrelation (remind that the price variations are not 

autocorrelated whereas the absolute or squared variations do 

show slowly decaying autocorrelations). Applying the 

algorithm described in the previous Section we generated 

1,000 samples of MPRE for each time series, all sharing the 

same pointwise Hölder function. 

Fig. 6  displays the normal probability plots [15] for both 

the datasets. The data (actual and surrogated ones) are plotted 

against the theoretical normal distribution  represented by the 

straight line. Obviously, departures from the line indicate 

departures from normality. In detail, the Gaussian model fails 

in capturing the fat tails, which are on the opposite fitted by 

the surrogated series, that in addition match almost 

“perfectly” the distributions of the empirical data. 

 
TABLE II: SURROGATED TIME SERIES 

 Mean  St.Dev. Kurtosis Skewness Tail-index 

EUR/USD -5.15×10-7 0.0063 5.7725 -0.0600 0.0377 

EUR/JPY -7.64×10-6 0.0083 8.0751 -0.0233 0.1077 

 

These findings are summarized in Table II, which displays 

the distributional properties of the  increments of the 

surrogated series. The standard deviation is slightly lower 

than the actual one and the same occurs for the kurtosis. This 

effect can be explained in terms of the smoothing introduced 

by the sliding window of length  the estimator works with. 

Improvements can be achieved by perturbation of the 

estimated Hölder exponents, but the issue is going to be faced 

in a future work. 

The symmetry of  the paths of the multifractional 

Brownian motion, simulated by BH(tj)(tj) (step 3 of Section 4), 

does not allow to replicate the positive (negative) skewness 

of the empirical data and some refinements - that we will not 

dwell upon here - should be considered in order to correct for 

this effect. 

In particular for the EUR/JPY exchange rate, the 

surrogated series capture the tail index too. A possible 

explanation of the poor fitting of the tail index for the 

EUR/USD series resides perhaps in the behavior of H(t). 

Looking at panels (b) of Fig. 4 and 5, it is easy to realize that 

the EUR/USD series is characterized by smaller variations 

with respect to the EUR/JPY case. In addition this  

 
2 To preserve coherence with panels (a) of Figures 4 and 5 the correlations 

were calculated maintaining the price notation for both the currencies. 

Generally, the correlation is calculated assuming one of the two currencies in 

price notation and the other in volume notation. In this case the overall 

correlation between the two series would be equal to 0.7758. 
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Fig. 6. Probability plot: actual and surrogated   

(a) EUR/USD, (b) EUR/JPY 

 

 
Fig. 7. EUR/USD. Sample autocorrelation function 

 

 
Fig. 8. EUR/JPY. Sample autocorrelation functions 

 

series is also affected by abrupt changes in the dynamics of 

the pointwise exponent that impact on the extremes of the 

distributions. 

In particular for the EUR/JPY exchange rate, the 

surrogated series capture the tail index too. A possible 

explanation of the poor fitting of the tail index for the 

EUR/USD series resides perhaps in the behavior of H(t). 

Looking at panels (b) of Figures 4 and 5, it is easy to realize 

that the EUR/USD series is characterized by smaller 

variations with respect to the EUR/JPY case. In addition this 

series is also affected by abrupt changes in the dynamics of 

the pointwise exponent that impact on the extremes of the 

distributions. 

Even more interesting is the behavior of the surrogated 

series with regard to their autocorrelation. Figures 7 and 8 

reproduce the sample autocorrelation functions of actual 

(panels (a)-(b)) and surrogated (panels (c)-(d)) data. Notice 

that the behavior is virtually undistinguishable for both the 

simple variations – for which the autocorrelation is pretty 

much null (panels (a)-(c)) – and the squared variations – for 

which the autocorrelation is significantly positive (panels 

(b)-(d)). 

 

VI. CONCLUDING REMARKS AND FUTURE DEVELOPMENTS 

In this work we have analysed the correspondence of the 

MPRE-based simulations with some of the most fundamental 

stylized facts well-known in finance. We found clear 

evidence that the surrogated series succeed in fitting the 

distributional properties and the autocorrelation behavior of 

the empirical data. By construction, the model can be proved 

to be able to replicate also other patterns of actual financial 

time series, but their detailed discussion goes beyond the 

scope of this work. 
 

TABLE III: CHECKED AND POTENTIAL MATCHES OF MPRE 

Stylized fact Surrogated 

Absence of autocorrelation Y 

Heavy Tails Y 

Gain/Loss asymmetry P 

Aggregational Gaussianity P 

Intermittency P 

Volatility clustering Y 

Conditional heavy tails P 

Slow decay of autocorrelation in absolute returns Y 

Leverage effect P 

Volatility/volume correlation P 

Asymmetry in time scale P 

 

We will be content with pointing out in Table III the features 

surely matched by the MPRE (Y) and those which are 

potentially compatible with the model but still missing of 

proper analyses (P). 
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