

Abstract— The paper presents a tool to transform a Simulink

model to a UML model. The embedded control software design
process consists of the control logic design phase and the
software design phase. MATLAB/Simulink is widely used to
build controller models in control logic design. On the other
hand, UML is generally used to build software models, which
are modified or composed with other UML models during
software design. To shift from the control logic design phase to
the software design phase smoothly, we have developed a
transformation tool to transform a Simulink model to a UML
model. The tool generates class diagrams and object diagrams
of UML. Each class or object corresponds to a subsystem block
of the Simulink model, which represents a part of control logic.
So a part of the control logic can be represented and reused as a
class. We have applied the transformation tool to a number of
Simulink models and have found it useful for embedded control
software design.

Index Terms—Embedded control system, model-based
design, UML, simulink.

I. INTRODUCTION
The embedded control software development process

consists of the control logic design phase and the software
design phase. In the control logic design phase, model-based
design with a CAD/CAE tool such as MATLAB/Simulink[1]
has become popular. In model-based design, a controller
model is designed with block diagrams and verified by
simulation.

In the software design phase, UML is widely used to
represent a software model. We build a software model to
implement the controller model, taking account of not only
functional properties but also non-functional properties. An
embedded control system is a hard real-time system with
timing constraints and the control software is usually
executed in a preemptive multi-task environment. So we have
to design the software to meet timing constraints and to
correctly execute the control logic in the preemptive
multi-task environment. UML provides a number of
diagrams that is useful for both functional design and
non-functional design.

Research on aspect-oriented modeling to separate
non-functional properties from functional properties has

Manuscript received April 10, 2012; revised May 5, 2012. This work is

supported in part by KAKENHI (20500037).
T. Kamiyama and T. Soeda were with Graduate School of Engineering,

Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557
Japan. He is now with A&D Company, Limited, 1-243, Asahi, Kitamoto-shi,
Saitama-ken 364-8585 Japan.

M. Yoo and T. Yokoyama are with Department of Computer Science,
Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557
Japan (e-mail: {yoo, yokoyama}@cs.tcu.ac.jp).

been done. Non-functional properties are represented as
aspects and woven into the program with functional
properties. Wehrmeister et al. have discussed model level
aspects for non-functional requirements of distributed
embedded real-time systems[2]. We have presented a design
method with aspect patterns for embedded control systems[3].
To apply UML-based aspect-oriented design to embedded
control systems, a Simulink model built in control logic
design should be transformed to a UML model.

Research on model-driven software development such as
OMG's MDA (Model-Driven Architecture)[4] has been also
done. UML is generally used to represent a software model in
model-driven software development. In MDA, a PIM
(Platform Independent Model) is transformed to a PSM
(Platform Specific Model) and both PIM and PSM are
represented in UML. A Simulink model is a kind of PIM
because a Simulink model represents
implementation-independent control logic. To apply
model-driven software development techniques and
transformation tools to embedded control software design,
Simulink models should be transformed to UML models.

A control system consists of various software modules.
Simulink models are suitable to represent control logics such
as feedback control and feedforward control. On the other
hand, UML is suitable for some software modules such as
application modules with procedural algorithms, input and
output modules and network communication modules. To
integrate a controller model with software models, the
controller model should be translated to a UML model before
the integration because UML is suitable for software design.

Ramos-Hernandez et al. have presented a tool that
transforms a Simulink model to a UML model[5][6]. The tool
generates interface classes corresponding to each blocks of
the Simulink model. A dependency is generated
corresponding to a line that connects blocks. An interface
class Demux is inserted if a junction of lines exists.
Müller-Glaser et al. have presented a method to transform a
Simulink model to a UML model, in which each object of the
generated UML model corresponds each element of the
Simulink model[7][8][9]. Blocks, lines and junctions are
represented as objects in the UML model. However, UML
models generated by their tools are not suitable for software
design, in which software models are modified to meet
non-functional requirements. The generated UML models
represent just the structures of the block diagrams of the
Simulink models, not represent the control logics.

The goal of the research is to develop a tool that transform
a Simulink model to a UML model that represents the control
logic of the Simulink model. To achieve the goal, we define
rules to transform a Simulink model to a UML model and

A Simulink to UML Transformation Tool for Embedded
Control Software Design

Tatsuya Kamiyama, Takahiro Soeda, Myungryun Yoo, and Takanori Yokoyama

197

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

develop a transformation tool based on the rules.
The tool generates class diagrams and object diagrams of

UML. Each class or object corresponds to a subsystem block
of the Simulink model, which represents a part of control
logic. So a part of the control logic can be represented and
reused as a class. A generated class diagram and a generated
object diagram are functional models that represent
functional properties. We can modify the functional model to
build an implementation model with non-functional
properties during software design.

The rest of the paper is organized as follows. Section II
describes a control software development process with model
transformation. Section III describes correspondence
between a Simulink model and a UML model. Section IV
describes a model transformation tool we have developed.
Section V shows examples of model transformation with the
tool. Finally, Section VI concludes the paper.

II. CONTROL SOFTWARE DEVELOPMENT PROCESS
Fig. 1 shows the embedded control software development

flow that consists of the control logic design phase, the
software design phase and the programming phase. In the
control logic design phase, we build a Simulink model that
represents control logic.

Then, in the software design phase, we build a software

model in UML. Software design can be divided into
functional design and non-functional design. We transform a
Simulink model into a UML model in functional design. We
call the UML model the functional model because the model
represents implementation-independent control logic without
non-functional properties. We present a tool for the
transformation in this paper.

In non-functional design, we build an implementation
model in UML taking account of non-functional properties.
For example, we design the task structure, scheduling policy,
task priorities to meet timing constraints. We also add
mechanisms such as synchronization, mutual exclusion and
inter-task communication to the model so that the software
correctly executes in the preemptive multi-task environment.

We have presented an aspect-oriented non-functional
design method, in which non-functional properties for
embedded control software are represented as aspect
patterns[3]. For example, mechanisms for triggering methods
(time-triggered or event-triggered)[10], synchronizations and
inter-task communications are defined as aspect patterns. We
select aspect patterns for the software and weave them into
the functional model with a model weaver. Then we get an
implementation model as an output of the model weaver.

Finally, in the programming phase, we write source
program to implement the software model. The source
program may be automatically generated from the software
model[11] or the controller model[12].

III. SIMULINK MODEL AND UML MODEL

A. Simulink Model
We define rules to build a Simulink model and to

transform the Simulink model to a UML model. A Simulink
model is a kind of block diagram. We have presented a
method to transform a block diagram to a class diagram of
UML [13], [14]. We define the transformation rules of the
tool based on the method.

A Simulink model must be built according to the rules
before the transformation. A Simulink model of a control
system usually consists of a plant model and a controller
model. The target of the transformation is the controller
model.

A controller model can be layered. Fig. 2 shows an
example of a layered Simulink model. Subsystem blocks are
used to build a layered Simulink model. This example has
two subsystem blocks at the higher layer. The details of the
calculation algorithm of each subsystem block are described
at the lower layer.

To make subsystem blocks of the higher layer be reusable,

data presented at the higher layer should be reasonable
physical values such as input values, output values, observed
status variables of the system, and target values of the system
[12]. These data are rarely deleted or added even if the
detailed control logic is modified. The modification is done
just at the lower layer and the higher layer model can be
reused without modification.

The target of the transformation is the higher layer model,
which consists of subsystem blocks, inport blocks and
outport blocks. An inport block is used to represent an inputs

Control logic design
(MATLAB/Simulink)

Software
design

Programming
(Hand coding / Code generator) Source program

Control logic
(Simulink model)

Functional model
(UML model)

Functional design
(Transformation tool)

Nonfunctional design
(UML editor /

Model weaver) Implementation model
(UML model)

Fig. 1. Development flow of embedded control software.

Out1
In1

Import1

Import2
In2

Out1 In1
Outport1

Subsystem1 Subsystem2

Fig. 2. Layered Simulink model.

198

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

and an outport block is used to represent an output. The
transformation tool deals with a Simulink model that consists
of the three kinds of blocks.

Data presented at the higher layer must be named. Fig. 3
shows the method to declare data names in a Simulink model.
The name of an inport block must be the name of the data
from the inport block. The name of an outport block inside of
a subsystem block must be the name of the data from the
subsystem block. The data name is presented in the
subsystem block. A data type can be declared as a name of a
line corresponding to the data.

Fig. 4 shows an example Simulink model, which is a

higher layer model of a part of automotive control logic. The
Simulink model inputs engine revolution, engine status and
accelerator opening, and outputs throttle opening. The
model consists of three inport blocks for engine revolution,
engine status and accelerator opening, two subsystem blocks
to calculate torque and throttle opening, and an outport block
for throttle opening. The data type of torque and throttle
opening is uint16 (16 bit unsigned integer). The details of the
calculation of torque and throttle opening are described in the
lower layer models. The calculations are periodically
executed in the control period.

B. UML Model
The output of the transformation tool is a functional model

represented in UML: class diagrams and object diagrams. A
class diagram is generally used to represent the structure of
object-oriented software. An object diagram is useful for the
embedded control system with static structure. Most objects
are statically created at the initialization process, not
dynamically created, in embedded control systems with
limited resources such as automotive control systems. So we
think not only class diagrams but also object diagrams are
useful for embedded control software design.

The model transformation method is based on the method
we have presented[13][14]. The method identifies objects

referring to the data flow of the block diagram that represents
control logic. The data presented at the higher layer model
are candidates for objects.

Fig. 5 shows the base abstract class named ValueObject for
functional models. The class has an attribute named value for
storing the data and a method named update for updating
(calculating and storing) the value. If values stored in other
objects are required to calculate its own value, the required
values are obtained by calling methods get of the relevant
objects. Concrete classes of functional models are subclasses
of the base abstract class.

Fig. 6 shows the class diagram of the functional model

corresponding to the Simulink model shown by Figure 4. The
class diagram consists of five classes: EngineRevolution,
EngineStatus, AcceleratorOpening, Torque and
ThrottleOpening. The association named cons means that the
following class consumes the value of the preceding class.
For example, method update of class Torque gets the value of
EngineStatus and the value of AcceleratorOpening,
calculates its own value, and stores the calculated value in
attribute torque. Method update of class Torque and method
update of class ThrottleOpening are called periodically in the
control period.

Fig. 7 shows the object diagram of the functional model
corresponding to the Simulink model shown by Figure 4. The
object diagram consists of five objects of the classes shown
in Figure 6. Just one object of each class exists because each
block of the Simulink model is just one instance of the block.

data name
Subsystem

data name In1 data type

Fig. 3. Naming of data.

engine
revolution

torque
In1 uint16

1

engine
status

2

accelerator
opening

3 In2

throttle
opening

In1

In2 1

In3

uint16

Out1

torque
calculation

throttle
opening

calculation

Fig. 4. An example Simulink model.

ValueObject

value

+ update()
+ get

Fig. 5. Base abstract class of data object.

ThrottleOpenig

+update()
+get()

cons
#throttleOpening:

uint16

Torque

+update()
+get() cons

#torque:uint16
AcceleratorOpening

cons
EngineStatus

cons

EngineRevolution

cons

Fig. 6. An example class diagram.

:ThrottleOpenig

:Torque

:AcceleratorOpening

:EngineStatus

:EngineRevolution

Fig. 7. An example object diagram.

199

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

The objects are connected with links that correspond to the
lines of the Simulink model shown by Figure 4 and to the
associations of the class diagram shown by Figure 6.

IV. SIMULINK TO UML TRANSFORMATION TOOL

A. Transformation Rules
Fig. 8 shows rules to transform elements of a higher layer

Simulink model to elements of a UML model. The
transformation is done as follows according to the rules.

 Classes and objects are generated referring to the data of
the Simulink model.

 Associations and links are generated referring to the lines
of the Simulink model.
A class and an object correspond to a data in a Simulink

model. A data presented in a higher layer Simulink model is
an output of an inport block or a subsystem block. Column
(a) of Figure 8 shows the rule to transform a data from an
inport block to a class of the class diagram and an object of
the object diagram. A class with just the name is generated
referring to the data. The name of the generated class is the
name of the data (DataA in this case). An object of the object
diagram is also generated referring to the data.

Column (b) of Figure 8 shows the rule to transform a data
from a subsystem block to a class of the class diagram and an
object of the object diagram. A class with the name, attributes
and methods is generated referring to the data. The name of
the generated class is the name of the data (DataB in this
case). The name of the attribute is also the name of the data. If
the data type (int in this case) is declared in the Simulink
model, the data type is added to the attribute of the class. The
generated class has method update and method get. An object
of the object diagram is also generated referring to the data.

Column (c) of Figure 8 shows the rule to transform a line
between subsystem blocks (Subsystem1 and Subsystem2 in
this case) to an association between classes (DataC and
DataD in this case) of the class diagram and a link of the
object diagram. The preceding block with a line can be an

inport block. The association cons is generated referring to
the line. the link is also generated referring to the line.

B. Transformation Rules
Figure 9 shows the processing of the transformation tool.

The transformation tool inputs a mdl file, which is a file to
store information on a Simulink model. The tool analyzes the
input file and extracts information needed for the
transformation. Then the tool transforms the information to
elements of UML according to the transformation rules
described in Section IV.A. Finally, the tool generates XMI
files of a class diagram and an object diagram. XMI is a
standard file format of UML[15].

V. EXPERIMENTAL EVALUATION

We have applied the transformation tool to a number of
Simulink models such as a fuel injections system, a hybrid
electric vehicle system and a stepping motor control system
provided by the MathWorks, Inc.[1]. The original Simulink
models do not conform to the layering rules described in
section III.A, so we modified the original models into layered
models that conform to the layering rules before the
transformation.

We show the case of a hybrid electric vehicle system. The
example hybrid electric vehicle is a series-parallel hybrid

Simulink model

Subsystem2

DataD In1

Subsystem1

DataC In1

DataD DataC

DataC
+ update()
+ get()

DataD
+ update()
+ get()

(c)

:DataD :DataC

Subsystem

DataB In1

DataB

DataB:int
+ update()
+ get()

:DataB

(b)

int
DataA

DataA

:DataA

(a)

Class
diagram

Object
diagram

UML
model

cons

Fig. 8. Transformation rules from Simulink model

mdl file XMI file

Transformation tool

input output

Simulink
model

analysis

XMI file
generationTransformation

Fig. 9. Transformation tool.

200

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

electric vehicle that consists of a gasoline engine and an
electric motor. Figure 10 shows the Simulink model, the
generated class diagram and the generated object diagram.

The Simulink models used in the experiments represent
just control logics. They are built by control engineers
without considering implementation. After layering the
original models, the transformation tool successfully
transforms the layered Simulink models to class diagrams
and object diagrams. So we think the transformation tool can
be applied to embedded control software design.

Fig. 10. Models of a hybrid electric vehicle

VI. CONCLUSION
We have developed a tool that transforms a Simulink

model to a UML model. The tool generates class diagrams
and object diagrams. Each class or object corresponds to a
subsystem block in a Simulink model that represents a part of
control logic. We have also applied the tool to a number of
Simulink models and successfully have got the
corresponding UML models.

To apply the transformation tool, we have to build a
layered Simulink model, the higher layer of which consists of
just subsystem blocks, inport blocks and outport blocks. To
make the transformation more efficient, we are going to add a
function to support the layering of the Simulink model. We
are also going to extend the tool to generate behavioral UML
diagrams such as sequence diagrams.

REFERENCES
[1] The Math Works Inc, http://www.mathworks.com/.
[2] M. A. Wehrmeister, E. Freitas, C. E. Pereira, and F. R. Wagner, “An

Aspect-Oriented Approach for Dealing with Non-Functional
Requirements in a Model-Driven Development of Distributed
Embedded Real-Time Systems,” in Proc. 10th IEEE Int. Symposium on
Object and Component-Oriented Real-Time Distributed Computing,
pp. 428-432, 2007.

[3] T. Soeda, Y. Yanagidate, and T. Yokoyama, “Embedded Control
Software Design with Aspect Patterns,” in Proc. Int. Conf. on
Advanced Software Engineering and Its Applications, pp. 34-41,2009.

[4] MDA Guide, version 1.0.1, Object Management Group, 2003.
[5] D. N. Ramos-Hernandez, P. J. Fleming, and J. M. Bass, “A Novel

Object-Oriented Environment for Distributed Process Control
Systems,” Control Engineering Practice, vol. 13, pp. 213-230, 2005.

[6] D. N. Ramos-Hernandez, I. Zubuzarreta, P. J. Freming, S. Bennett, and
J. M. Bass, “Towards a Control Software Design Environment Using a
Meta-Modeling Technique,” in Proc. 15th IFAC World Congress, pp.
255-260, 2002.

[7] K. D. Müller-Glaser, G. Frick, E. Sax, and M. Kühl, “Multiparadigm
Modeling in Embedded Systems Design,” IEEE Trans. Control
Systems Technology, vol. 12, no. 2, pp. 279-292, 2004.

[8] M. Kühl, C. Reichmann, I. Prötel, and K. D. Müller-Glaser, “From
Object-Oriented Modeling to Code Generation for Rapid Prototyping
of Electronic Systems,” in Proc. 13th IEEE Int. Workshop on Rapid
System Prototyping, pp. 108-114, 2002.

[9] M. Kühl, B. Spitzer, and K. D. Müller-Glaser, “Universal
Object-Oriented Modeling for Rapid Prototyping of Embedded
Electronic Systems,” in Proc. 12th IEEE Int. Workshop on Rapid
System Prototyping, pp. 149-154, 2001.

[10] H. Kopetz, “Should Responsive Systems be Event-Triggered or
Time-Triggered,” IEICE Trans. Information and Systems, vol. E76-D,
no. 11, pp. 1325-1332, 1993.

[11] F. Narisawa, H. Naya, and T. Yokoyama, “A Code Generator with
Application-Oriented Size Optimization for Object-Oriented
Embedded Control Software,” in Object-Oriented Technology:
ECOOP'98 Workshop Reader, Springer LNCS-1543, pp. 507-510,
1998.

[12] K. Yoshimura, T. Miyazaki, T. Yokoyama, T. Irie, and S. Fujimoto, “A
Development Method for Object-Oriented Automotive Control
Software Embedded with Automatically Generated Program from
Controller Models,” in Proc. 2004 SAE World Congress, 2004,
2004-01-0709.

[13] T. Yokoyama, H. Naya, F. Narisawa, S. Kuragaki, W. Nagaura, T. Imai,
and S. Suzuki, “A Development Method of Time-Triggered
Object-Oriented Software for Embedded Control Systems,” Systems
and Computers in Japan, vol. 34, no. 2, pp. 338-349, 2003.

[14] T. Yokoyama, “An Aspect-Oriented Development Method for
Embedded Control Systems with Time-Triggered and Event-Triggered
Processing,” in Proc. 11th IEEE Real-Time and Embedded Technology
and Application Symposium, 2005, pp. 302-311.

[15] XML Metadata Interchange Specification, version 2.0.1, Object
Management Group, 2005.

Tatsuya Kamiyama was born in 1987. He received
his B.E. degree and M.E. degree from Tokyo City
University in 2010 and 2012 respectively. He joined
A&D Company, Limited in 2012.

 Takahiro Soeda received his B.E. degree and M.E.
degree from Tokyo City University in 2009 and 2012
respectively.

 Myungryun Yoo received B.E from Andong
National University, Korea in 1994, M.S from Pohang
Unversity of Science & Technology, Korea in 1996
and Ph.D. degree from YeoungNam University, Korea
in 2002. She joined Andong Information Technical
Junior College as Assit. Professor in 1996. She
received Ph.D. degree from Graduate School of
Information, Production & Systems, Waseda
University, Japan in 2006. She joined Tokyo City

University as Associate Professor in 2006. Her research field is Real-Time
System, Scheduling, Mutimedia System, etc.

 Takanori Yokoyama received his B.E. degree, M.E.
degree, and Dr. degree in information science from
Tohoku University in 1981, 1983, and 2002
respectively. He joined Hitachi, Ltd. in 1983. He
joined Musashi Institute of Technology in 2004. He is
now a professor of Tokyo City University. His
research interest includes embedded systems,
distributed systems and software engineering. He is a
member of IEEE, ACM, IPSJ and IEICE.

201

International Journal of Modeling and Optimization, Vol. 2, No. 3, June 2012

