
  
Abstract—A difficulty associated with widespread acceptance 

GW model is that there is no analytic expression for the 
parameters of interest at the interface. The probability density 
of asperity heights for nearly 90% of engineering surfaces tends 
to be Gaussian. Applying GW model simple exponential 
probability density to approximate the Gaussian one is not 
explicit for some cases. The evaluation of parabolic cylinder 
function was carried out by employing software Maple. Some 
practical closed form analytic expressions were derived for the 
contact load, contact area and contact spot number for both 
GW elastic contact model and CEB elastoplastic contact model 
by the generalized exponential probability density fitting the 
Gaussian one. Some main digital features of the two contacting 
rough surfaces were given in the tabulating form. 
 

Index Terms—Surface roughness, partial lubrication regime, 
surface separation, individual asperity 
 

I. INTRODUCTION 
It is well known that most engineering surfaces are rough. 

Although the contact behavior between two such surfaces is 
complex, understanding the nature of the contact phenomena 
is pivotal to gaining insights into interfacial behavior, such 
as thermal resistance, electrical resistance, and wear. The 
milestone was set forth in the classic paper of Greenwood 
and Williamson who introduced a basic elastic dry contact 
GW model [1]. McCOOL [2] numerically compared the 
basic GW elastic microcontact model with two more general 
isotropic and anisotropic models and suggested after a series 
of detailed numerical examples that GW model, in despite of 
its simplistic form, gave good order-of-magnitude estimates 
of the number of contacts, real contact area fraction and 
nominal pressure, thus justifying its practical use. CEB 
model [3] extended GW model to involve elastoplastic 
deformations of the asperities. Lee and Ren [4] gave 
numerical solutions of elastoplastic rough surfaces. 
Following the original GW model, numerous researchers 
used the simple exponential probability density of asperity 
heights in order to attain closed form expressions. For 
example, Hess and Soom [5], [6] and Hess and Wagh [7] 
applied the simple exponential probability density to 
dynamic friction model with angular motions. Etsion and 
Front employed the same density and made a reasonable 
assumption in static sealing flow of end face seals [8]. A 
different method had been adopted by Bhushan [9] who 
empirically used least square method to fit the results of GW 
model instead of statistical distribution of asperity heights to 
 

Manuscript received February 21, 2012; revised May 8, 2012. 
The authors are with College of Mechanical and Material Engineering, 

China Three Gorges University, 443002, Yichang city Hubei province, the 
People’s Republic of China (e-mail: thl19732003@yahoo.com.cn). 
 

numerically calculate. 15 years later, of particular interest is 
the pioneering work of Polycarpou and Etsion [10] who 
theoretically checked two fitting constants of Ref. [9] by 
applying the modified exponential function. An original 
work of Lin and Lin [11] derived the maximum contact 
pressure factor different from CEB model by the method of 
curve fitting. Antoine et al. [12] obtained numerical 
approximate solution for Hertzian contact theory by using 
approximates of elliptical functions. Farhang and Lim [13] 
derived approximate closed-form equations for normal and 
tangential contact forces of rough surfaces in dry friction. 
Akbarzadeh and Khonsari [14] simplified parabolic cylinder 
function by using the polynomial. Jeng and Peng [15] 
investigated the microcontact behavior of rough surfaces 
consisting of elliptical asperities with non-Gaussian height 
distributions. Zhang and Zhao [16] gave a general 
distribution of microasperity heights by introducing the 
roughness exponent α  where we can obtain the Gaussian 
and simple exponential distribution function when 1/ 2α =  
and 1α = , respectively. Zhao et al. [17] presented an 
exponential distribution of asperity peak height different 
from simple exponential one. Zhao et al. [18] constructed a 
function to satisfy four boundary contact conditions by 
mapping an appropriate “template” cubic polynomial 
segment into the quadrilateral bounding. 

Based on experimental evidence of cumulative height 
distribution of mild steel specimen, GW model showed that 
the height distribution of the asperities for nearly 90% of 
engineering surfaces tends to be Gaussian. Although in the 
cases where the asperity heights are at first sight highly 
non-Gaussian, the uppermost peaks would behave in contact 
as if Gaussian. A Gaussian distribution would require 
numerical evaluations and does not allow closed form 
solution of the contact equations. GW model used a Monte 
Carlo method to calculate the parabolic cylinder function 
while the method does not do with the small probability 
problem [19]. In the manuscript, parabolic cylinder function 
was evaluated by using software Maple. Some practical 
closed form analytic solutions were derived for the contact 
load, contact area and contact spot number for both GW 
elastic contact model and CEB elastoplastic contact model 
by the generalized exponential probability density fitting the 
Gaussian one. Some main digital features of the two 
contacting rough surfaces were given in the tabulating form. 

 

II. GENERAL EQUATIONS OF TWO CONTACT SURFACES 

A. Elastic contact of two Rough Surfaces 
The contact spot number, elastic contact area and elastic 

contact load of the two contacting rough surfaces are given 
below, respectively 
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n 0 ( *)n A F dη=            (1) 

e n 1( *)A A F dπβ=          (2) 

e n 1.5
4 / ( *)
3

P E RA F dβ σ′=         (3) 

where η  denotes the areal density of asperities, nA  the 
nominal area, Rβ η σ=  the roughness parameter, R  the 
radius of curvature of asperity summits, σ  standard 
deviation of asperity heights and the integral is given by 

*
( *) ( * *) *( *)d *i

i d
F d z d z zφ

+∞
= −∫          (4) 

B. Elastic-Plastic Contact of two Rough Surfaces 
The dimensionless contact spot number, elastic contact 

area, plastic contact area, elastic contact load and plastic 
contact load of the two contacting rough surfaces are given 
below, respectively 

0* ( *)n F d=      (5) 

*
c**

e *
( * *) *( *)d *

d w

d
A z d z zπβ φ

+
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d w

A z d w z zπβ φ
+∞

+
= − −∫      (7) 

*
c** 1.5

e *

4 / ( * *) *( *)d *
3

d w

d
P R z d z zβ σ φ

+
= −∫      (8) 

*
c

* *
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[2( * *) ] *( *)d *
d w

HP K z d w z z
E

πβ φ
+∞

+
= − −

′ ∫      (9) 

where H is the hardness of the softer material and *d  the 
dimensionless surface separation based on asperity heights. 
The dimensionless critical interference at the inception of 
plastic deformation and maximum contact pressure factor are 
provided below, respectively 

2 2 2
*
c 2 2

1
4
K H Rw
E

π
σ ψ

= =
′

        (10) 

0.454 0.41K μ= +          (11) 

 

III. EXPONENTIAL DISTRIBUTION OF ASPERITY HEIGHTS 
GW model first assume that the asperity height probability 

density follows a simple exponential distribution given by 

simple *

0 if * 0
*( *)

e if * 0z

z
z

z
φ

−

<⎧
= ⎨

≥⎩
           (12) 

Similarly, assume that the asperity height probability 
density follows another exponential distribution given by 

generalized *

0 if * 0
*( *)

e if * 0bz

z
z

a z
φ

−

<⎧
= ⎨

≥⎩
 (13) 

where a and b are positive constants. Note that the integral 

of generalized *( *)d * /z z a bφ
+∞

−∞
=∫  is equal to 1, only when 

a b= . Therefore strictly speaking, Eq. (13) is not an 

exponential probability density but only termed as the 
generalized one. 

A. Elastic Contact of two Rough Surfaces 
Substituting equation (13) into equations (1)-(3) yields 

*
n e bdan A

b
η −=              (14) 

*
e n2 e bdaA A

b
πβ −=          (15) 

*
e n2.5 / e bdaP E RA

b
π β σ −′=          (16) 

Utilizing equation (16) yields 
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n 2.5 e
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bdp ap

bE R
π

β σ
−= =

′
 (17) 

Equation (16) dividing equation (15) gives 

e
e

e
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p E
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π
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A p

b
A E R

π
β β σ
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Equation (15) dividing equation (14) provides 
eA

nR b
π

σ
=  (20) 

B. Elastic-Plastic Contact of two Rough Surfaces 
Inserting equation (13) into equations (5)-(9) gives 
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b
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where 
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2

21( ) e d
2

vx
x v

π
−

−∞
Φ = ∫          (28) 

is the normal probability integral and widely tabulated. 
 

IV. GAUSSIAN DISTRIBUTION OF ASPERITY HEIGHTS 
Assume that the asperity height probability density 

follows the Gaussian distribution given by 
2*

2
Gauss

1*( *) e if *
2

z

z zφ
π

−
= − ∞ < < +∞  (29) 

A. Elastic Contact of two Rough Surfaces 
Introducing equation (29) into equations (1)-(3) gives 

0* ( *) 1 ( *)n F d d= = − Φ  (30) 

e n 1( *)A A F dπβ=  (31) 

e n 1.5
4 / ( *)
3

P E RA F dβ σ′=  (32) 

* n
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4 ( *)
3/
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p F d
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= =
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 (33) 

where 
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2
*

1( *) ( * *) e d *
2

z
i

i d
F d z d z

π
−+∞

= −∫  (34) 

Is a parabolic cylinder function whose values are given in 
Table I. 

 
TABLE I:  SOME DISCRETE VALUES FOR PARABOLIC CYLINDER FUNCTION 

*d  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0 ( *)F d  0.5 0.4602 0.4207 0.3821 0.3446 0.3085 0.2743 0.242 0.2119 

1( *)F d  0.3989 0.3509 0.3069 0.2668 0.2304 0.1978 0.1687 0.1429 0.1202 

1.5 ( *)F d
 

0.4299 0.3715 0.3191 0.2725 0.2313 0.1951 0.1636 0.1363 0.1127 

*d  0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

0 ( *)F d  0.1841 0.1587 0.1357 0.1151 0.0968 0.08076 0.06681 0.0548 0.04457 

1( *)F d  0.1004 0.08332 0.06862 0.0561 0.04553 0.03667 0.0293 0.02324 0.01829 

1.5 ( *)F d
 

0.09267 0.07567 0.06132 0.04935 0.03944 0.03129 0.02463 0.01925 0.01493 

*d  1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 

0 ( *)F d  0.03593 0.02872 0.02275 0.01786 0.0139 0.01072 0.008198 0.00621 0.004661 

1( *)F d  0.01428 0.01105 0.00849 0.006468 0.004887 0.003662 0.00272 0.002004 0.001464 

1.5 ( *)F d
 

0.01149 0.008773 0.006646 0.004995 0.003724 0.002754 0.00202 0.001469 0.00106 

*d  2.7 2.8 2.9 3 3.2 3.4 3.6 3.8 4 

0 ( *)F d  0.003467 0.002555 0.001866 0.00135 0.000687
1 0.0003369 0.0001591 0.0000723

5 0.00003167 

1( *)F d  0.00106 0.000761
1 

0.000541
7 

0.000382
2 

0.000185
2 

0.0000866
6 

0.0000391
1 

0.0000170
2 

0.00000714
5 

1.5 ( *)F d
 

0.000758
7 0.000538 0.000378

4 
0.000263
9 

0.000125
1 

0.0000572
4 

0.0000252
9 

0.0000107
9 

0.00000443
8 
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Equation (32) dividing equation (31) gives 

e 1.5
e
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         (36) 

Equation (31) dividing equation (30) yields 
e 1

0

( *)
( *)

A F d
nR F d

π
σ

=         (37) 

B. Elastoplastic Contact of two Rough Surfaces 
Putting equation (29) into equations (5)-(9) gives 
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4 / [3 ( * ) 1.5 ( * )]
3

P R w F d w w F d wβ σ= + + +  

(43) 
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4* / [ ( *) 3 ( * )
3

0.5 ( * )]

P P P R F d w F d w

w F d w

β σ≈ + = + + +
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(44) 

V. SOME FITTING EXAMPLES 

A. Elastic Contact of two Rough Surface 

 

Fig. 1. Asperity height probability density versus dimensionless asperity 
height 

 
Fig. 1 stands for the asperity height probability density. 

Contrary to the description made by GW model that “the 
exponential distribution is nevertheless a fair approximation 
to the uppermost 25% of the asperities of most surface”, the 
simple exponential probability density is the worst fit to the 
Gaussian one especially at large *z . The fourth generalized 
exponential probability density is a better fit to the Gaussian 

one in the large range of 1 * 5z≤ ≤ . However, the first 
generalized exponential probability density is a better fit to 
that in the low range of 0 * 2z≤ ≤ . 

In the following calculations, 300η =  mm-2, 

0.0001Rσ =  mm2, / 25E Rσ′ =  MPa, and n 1A =  cm2. 
Fig.2 denotes the elastic contact load. The fourth 
generalized exponential probability density is a better fit to 
the Gaussian one. However, the first generalized 
exponential probability density gives a better fit to that in 
the load range of e 10P ≥  N as is already shown in the low 
range of 0 * 2z≤ ≤  in Fig.1. Contrary to the conclusion 
made by GW model that “the results approximate closely to 
those for the exponential distribution”, the simple 
exponential probability density overestimates the surface 
separation at a certain contact load. At low * 0.4d =  and 
applying the simple exponential probability density, first to 
fifth generalized one, Gaussian one, e 89.11P =  N, 22.33 N, 
9.914 N, 49.59 N, 43.66 N, 60.53 N, 23.13 N, respectively. 
Similarly, at large * 3.6d =  and employing the simple 
exponential probability density, first to fifth generalized one, 
Gaussian one, e 3.632P =  N, 0.07036 N, 0.002415 N, 
0.00637 N, 0.002957 N, 0.002162 N, 0.002529 N, 
respectively. 

 

 
Fig. 2.  Dimensionless separation versus elastic contact load 

Fig. 3 gives the elastic contact area versus elastic contact 
load. The best agreement with the Gaussian result is the first 
generalized exponential probability density. The simple 
exponential probability density underestimates the elastic 
contact area at any given load. 

 

 
Fig. 3.  Elastic contact area versus elastic contact load 

 
Fig. 4 gives the elastic contact pressure versus elastic 

contact load. The simple exponential probability density 
overestimates the elastic contact pressure. 
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Fig. 4.  Elastic contact pressure versus elastic contact load 

 
Fig..5 provides the nominal pressure. The simple 

exponential probability density overestimates the surface 
separation at a given nominal pressure. 

 

 
Fig. 5.  Dimensionless separation versus dimensionless nominal pressure 

 

B.  Elastoplastic Contact of two Rough Surfaces 
In the following calculations, 0.078β = , *

c 1w = , 
/ 0.0039Rσ = , and 0.577K = . Fig.6 stands for the 

contact load. The simple exponential probability density 
overestimates the contact load at a given surface separation. 
The third generalized exponential probability density is the 
better fit to the Gaussian one. 

 
Fig. 6.  Dimensionless contact load versus dimensionless separation 

 
Fig.7 denotes the contact area. The simple exponential 

probability density also overestimates the contact area at a 
given surface separation. The third generalized exponential 
probability density is a better fit to the Gaussian one in a 
large range of surface separation while the first generalized 
exponential probability density is a better fit to that in a low 
range of surface separation. 

 

 
Fig. 7.  Dimensionless contact area versus dimensionless separation 

 
Fig. 8 denotes the contact spot number. The simple 

exponential probability density also overestimates the 
contact spot number at a given surface separation. However, 
the third to fifth generalized ones bring about unacceptable 
errors in the low range of surface separation. 

 

 
Fig. 8.  Dimensionless contact spot number versus dimensionless 

separation 
 

Fig. 9 denotes the plastic contact area. The simple 
exponential probability density also overestimates the 
plastic contact area at extremely large surface separation. 

 
Fig. 9.  Dimensionless plastic contact area versus dimensionless 

separation 
 

VI. COMPARISON OF RESULTS FOR VARIOUS CONTACT 
MODELS 

According to Eq. (13) and Figs. 1-9, a better generalized 
exponential probability density is chosen to fit the Gaussian 
one as follows 

special 3 *

0 if * 0
*( *)

17e if * 0z

z
z

z
φ

−

<⎧
= ⎨

≥⎩
       (45) 
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Bhushan solution for mean elastic real pressure was given 
below 

Bhushan e 0.32
/
p

E Rσ
≈

′
       (46) 

Adopting equation (18) gives 

simple e 1 0.5642
/ 1

p

E Rσ π
= =

′ ×
          (47) 

special e 1 0.3257
/ 3

p

E Rσ π
= =

′ ×
        (48) 

Applying equation (35) results in 

Gauss e 1.5

1* 3

4 ( *) 4 0.0002639 0.293
3 ( *) 3 0.0003822/ d

p F d
F dE R π πσ =

×= = =
×′

 (49) 

Bhushan solution for elastic real contact area was given 
below 

Bhushan e n

n

3.2
/

A p
A E Rβ β σ

=
′

       (50) 

Utilizing equation (19) yields 

simple e n n

n

1 1.7725
/ /

A p p
A E R E R

π
β β σ β σ

= × =
′ ′

 (51) 

special e n n

n

3 3.07
/ /

A p p
A E R E R

π
β β σ β σ

= × =
′ ′

   (52) 

It follows from equation (36) that 

Gauss e 1 n

n 1.5* 3

n n

3 ( *)
4 ( *) /

3 0.0003822 3.4124
4 0.0002639 / /

d

A F d p
A F d E R

p p
E R E R

π
β β σ

π
β σ β σ

=

= =
′

× =
× ′ ′

 (53) 

Bhushan solution for maximum elastic contact spot 
number was given below 

Bhushan * 0* 0.5dn = =        (54) 

Using equation (14) gives 

simple * 0* 1dn = =       (55) 

special * 0* / 1dn a b= = =  when a b=      (56) 

Adopting equation (30) gives 

Gauss * 0* 1 ( *) 1 0.5 0.5dn d= = − Φ = − =      (57) 

From Eqs. (54) and (57), the dimensionless maximum 
elastic contact spot number is 0.5 which shows the 
limitation of a surface with separation *d−∞ < < +∞  can 
be envisaged to be covered with a large number of 
protrusive asperities as well as excellent adjacent hollow 
valleys! However, from Eq. (56) the dimensionless 
maximum elastic contact spot number is 1 which shows the 
limitation of a surface with separation * 0d ≥  can be 
envisaged to be absolute flat smooth. 

Bhushan solution for elastic individual asperity real 
contact area was given below 

Bhushan e 1.21
A

nRσ
≈       (58) 

Applying equation (20) gives 

simple e 3.1416
1

A
nR

π
σ

= =      (59) 

special e 1.0472
3

A
nR

π
σ

= =      (60) 

Utilizing equation (37) results in 

Gauss e 1

0* 3

( *) 0.0003822 0.8894
( *) 0.00135d

A F d
nR F d

π π
σ =

= = =      (61) 

CEB model solution for mean plastic real pressure was 
given below 

CEB pp KH=         (62) 

Equation (26) dividing equation (23) gives 

simple p special p p p/p p P A KH= = =           (63) 

Equation (43) dividing equation (40) gives 

Gauss p p p/p P A KH= =       (64) 

Bhushan solution for elastic nominal pressure was given 
below 

Bhushan n 0.57
/

p
E Rβ σ

≤
′

        (65) 

Applying equation (17) provides 

simple n *e 1.7725
/

dp

E R
π

β σ
−= ≤

′
        (66) 

special n 3 *
2.5

17 e 1.933
3/

dp

E R
π

β σ
−= ≤

′
       (67) 

Using equation (33) obtains 

Gauss n
1.5

4 4( *) 0.4299 0.5732
3 3/

p
F d

E Rβ σ
= ≤ × =

′
     (68) 

Employing equation (50) gives 
* Bhushan n

Bhushan e 3.2 3.2 0.078 0.57 0.1423
/

p
A

E R
β

β σ
= ≤ × × =

′
 

(69) 

Using equation (15) gives 
* *

simple e e 0.078 0.245dA πβ π−= ≤ × =       (70) 

* 3 *
special e 2

17 17e 0.078 0.4629
93

dA πβ π−= ≤ × =     (71) 

Using equation (31) results in 
*

Gauss e 1( *) 0.078 0.3989 0.09775A F dπβ π= ≤ × × =  (72) 
GW model criterion for the onset of a significant degree 

of plasticity was 1ψ =  or *
c 1w =  or another form given 

below 
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*

GW p 0.02
*
A

A
=           (73) 

Equation (23) dividing equation (24) gives 

*
c

*
c

* *
simple p c

1

2 3 0.8068
* 1 e1 ew

w

A w
A

=

+
= = =

++
      (74) 

*
c

*
c

* *
special p c

33
1

2 3 5 0.2371
* 1 e1 e w

w

A w
A

=

+
= = =

++
    (75) 

Equation (40) dividing equation (41) provides 

*
c

* * * *
Gauss p 1 c c 0 c

*
1 1 c1, * 3

2 ( * ) ( * )
* ( *) ( * )

2 0.000007145 0.00003167 0.118
0.0003822 0.000007145

w d

A F d w w F d w
A F d F d w

= =

+ + +
= =

+ +

× + =
+

  (76) 

Pullen-Williamson [20] solution for plastic real contact 
area for the onset of plastic deformation was given below 

*
c

* *
PW p c1

0.1425 /

0.1425 0.078 0.577 0.02015
w

A K wβπ

π
=

≤ =

× × =
     (77) 

Applying equation (23) gives 
*
c

*
c

* *
simple p c1

(2 ) / e 0.078 3/ e 0.2704w
w

A wπβ π
=

≤ + = × × =  

(78) 

*
c

*
c

3* *
special p c21

3

17 17(2 3 ) / e 0.078
93

5 / e 0.1152

w
w

A wπβ π
=

≤ + = × ×

=
 (79) 

Using equation (40) yields 

*
c

*
Gauss p 1 01

[2 ( * 1) ( * 1)]

0.078 (2 0.08332 0.1587) 0.07972
w

A F d F dπβ

π
=

= + + + ≤

× × × + =
     (80) 

Finally, the practical solutions of some parameters for the 
elastic contact and elastoplastic contact and main digital 
features of the two contacting rough surfaces are given in 
Table II. 

 
TABLE II:  PRACTICAL SOLUTIONS FOR ELASTIC AND ELASTOPLASTIC CONTACT [21,22] 

parameter elastic contact elastoplastic contact 

surface separation 0.65

n

0.5732 /* 1.4 lg E Rd
p

β σ′
=  —— 

maximum nominal pressure n max 0.5732 /p E Rβ σ′=  —— 

contact pressure 

0.04

e n0.42 0.3229
/ /

p p
E R E Rσ β σ

⎛ ⎞
= ≈⎜ ⎟

′ ′⎝ ⎠
pp KH=  

maximum contact pressure e max 0.4574 /p E Rσ′=  p max 0.659p H=  

contact area 

0.96*
e n n3.22.4

/ /
A p p

E R E Rβ β σ β σ
⎛ ⎞

= ≈⎜ ⎟
′ ′⎝ ⎠

 * n
p 2

p
A

H
=  

maximum contact area *
e max 0.09775A =  *

p max 0.07972A =  

contact spot number 

0.88

n n2.6446
* 1.2

/ /
p p

n
E R E Rβ σ β σ

⎛ ⎞
= ≈⎜ ⎟

′ ′⎝ ⎠
 

0.91
n57500 2 pEn

H HRη
′ ⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

 

maximum spot number *
max 0.5n =  *

max 0.5n =  

an asperity contact area 

0.08

e n2 1.21
/

A p
nR E Rσ β σ

⎛ ⎞
= ≈⎜ ⎟

′⎝ ⎠
 

0.09*
p n0.000004348 2

A pHR
n E H

η ⎛ ⎞≈ ⎜ ⎟′ ⎝ ⎠

 

VII. CONCLUSIONS 
Some practical analytic solutions were deduced for the 

contact load, contact area and contact spot number for both 
GW elastic contact model and CEB elastoplastic contact 
model by the generalized exponential probability density 
fitting the Gaussian one. The simple exponential probability 
density overestimates the contact load, contact area and 
contact spot number at a certain surface separation. In 
general, when the generalized exponential probability 
density was used to fit the Gaussian one, some solutions are 
in good agreement with the Gaussian numerical solutions. 
Finally, some digital features of two contacting rough 
surfaces were given by comparing different contact models. 

The natural logarithmic expressions of Eqs. (13) and (29) 

are ln *a bz−  and 20.5 * 0.5ln(2 )z π− − , respectively. 
Therefore, approximate fitting essentially refers to choose a 
certain line replacing the explicit parabolic line. a denotes 
the amplitude of probability density and b the magnitude of 
surface separation. For * 3d , the roughness effects are 
not important and smooth film theory is sufficiently accurate. 
When *d  approaches 3, the roughness effects become 
important. As *d  decreases further, asperities start 
interacting with each other and contacts form. Consequently, 
the range of * 3d <  is called as the partial lubrication 
regime where the effect of roughness is most important. The 
surface separation is not very sensitive to the nominal 
pressure: in fact the mean planes of two similar surfaces in 
contact are usually separated by σ  to 2σ . In words, Eq. 
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(45) replacing Eq. (29) can reflect the main features of the 
two contacting rough surfaces in the partial lubrication 
regime especially for 1 * 3d< < . 
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