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Abstract—Shape memory alloy (SMA) actuators provide 

unique features for motion control applications due to their 

compact design and high force to weight ratio. Integration of 

SMA actuators in motion control applications has not been 

widely employed due to their nonlinear behaviors and control 

difficulties. In this paper, the concept of model-based control of 

SMA actuators is introduced. Time variable parameter (TVP) 

model is used to describe the actuator dynamics. Gain 

scheduled Proportional-Integral (PI) controller with time 

variable gains has been developed based on pole placement 

technique. Experimental evaluation of gains schedule PI 

controller for SMA actuators shows stable and robust response 

that could compensate for the nonlinear phenomenon of these 

actuators. 

 
Index Terms—Shape memory alloy actuators, nonlinear 

actuators, gains schedule controllers, tvp model.  

 

I. INTRODUCTION 

Shape memory alloys (SMAs) are a type of smart materials 

that can be deformed at low temperature and regains to its 

original undeformed configuration when heated to a higher 

temperature. SMAs possess interesting characteristics in 

terms of high power-to-weight ratio, large recovery strain, 

and low driving voltages. These characteristics make SMAs 

ideal for use as actuators. SMA actuators offer advantages 

over traditional actuators and have many potential 

applications such as robotic grippers [1], automotive mirror 

actuators [2], aerospace [3], etc.  

However, SMA actuators have disadvantages, including 

slow speed and inaccurate response. The nonlinearity 

hysteresis effect that exists in SMA actuators has significant 

potential on the performance as it introduces delays and leads 

to inaccuracy in the control of these actuators [4]. 

Utilizing SMA actuators in real applications is, thus, 

constrained by the nonlinear behavior which requires 

complex control strategies [5].  In recent years, many control 

strategies ranging from simple controllers to highly 

sophisticated nonlinear controllers are applied to improve the 

performance of SMA actuators. Due to the nonlinear 

behavior with hysteresis, proportional controllers are 

generally inadequate for SMA actuators for critical 

applications. Mostly, the modified forms of classical 

controllers like PI, PD and PID are used for SMA actuators.  

Sreekumar et al. [5] reviewed recent developments in 

nonlinear control technologies for SMA actuators. The 

nonlinear and hysteresis effects are formulated with the help 
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of compensators and error governors [6]. Yee and Roy [7] 

presented architecture for force control using differential 

controller, which consists of a PID controller, a dynamic 

saturation block, and an anti-windup circuit for the integrator. 

A PI type controller for radiant energy powered SMA 

actuator developed by Hull et al [8]. A halogen lamp was 

integrated to provide the radiant energy to activate SMA 

actuator. A modified PID controller called PID-P3 was 

proposed by Shameli et al. [9] for a typical SMA actuator, 

where a bending leaf spring was used to produce the bias 

force required to activate SMA actuator.  

For larger values of error present in the position feedback, 

the cubic term of this controller produced great control effort 

that had considerable effects in reducing the settling time and 

overshoot of the system. For small error values, the cubic 

term vanishes and the controller works as a PID controller.  

Most of these works required a precise system model, 

which makes the controller synthesis complicated and time 

consuming. Tai et al [4] investigated model predictive control 

algorithm as a method to compensate the SMA hysteresis 

phenomenon. 

This paper focuses on force control of SMA actuator by 

integrating a gains schedule PI controller. Generally, Gains 

schedule for linear controllers are most effective for mapping 

the nonlinearity present in nonlinear control problems.  

 

II. EXPERIMENTAL SETUP 

Experimental apparatus was established to model the 

behavior of shape memory alloy (SMA) actuator also to 

online test the controller. The actuator consists of Flexinol™ 

wire from Dynalloy® [10] has the following specifications 

 Diameter = 0.008 inch , Length = 180 mm 

 Transition temperature =90º C  

 Max operating current = 400 mA 

The experiment apparatus is concerned with modeling the 

force-current behavior, so that the wire is fixed from one 

terminal and the other terminal is fixed to a force sensor as 

shown Figure 1, 2. The force sensor is a precise load cell from 

NBC® (AH series 5kg max capacity, 2 gram resolution). 

Load cell signal is amplified using NBC® signal conditioner 

model SD03. The interface device is NI 6008 DAQ from 

National Instrument®, which has 12-bit A/D converter and 

sampling rate of 10 kS/s. 

The experimental setup is used to collect the input/output 

data of SMA actuator to be modeled furthermore to apply the 

controller algorithm to the actuator hardware. The input 

current to SMA actuator is 0 to 400 mA current to induce 

internal wire force up to 1200 gram. SMA wire is preloaded 

with 295 gram force to prevent any slack when the current is 

disconnected.  . The minimum force is the preload force with 
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maximum 1200 gram force generated when the maximum 

current applied. Collected data is acquired using Labview™ 

program with 20 Hz sampling frequency and data set of 4047 

samples.  

 

 
Fig. 1. Schematic diagram of SMA test rig 

 

 

Fig. 2.  SMA actuator test rig 
 

III. MODELING AND CONTROL 

A. Linear Modeling and Identification  

Based on the experimental setup, Pseudo Random Signal 

(PRS) has been used to excite the system with different input 

current levels as shown in Figure. 3. Both input-output data 

are normalized by (1), (2) to remove any measurements 

offsets (i.e. preload force) which may affect the model 

estimation.  

𝐹𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐹 − 𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛
                      (1) 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼 − 𝐼min

𝐼max − 𝐼min
                        2  

Although, it is known that the dynamic behavior of SMA 

actuators is typically nonlinear but identification and 

estimation of a simple linearized model may be useful to 

determine the best regressors for the final nonlinear model 

structure. Therefore, as a first step, it is required to find a 

linearized representation of the dynamic system based on a 

transfer function (TF) model, with parameters identified and 

estimated from the measured data. The modeling approach is 

based on the discrete time transfer function on the following 

form (3). 

where, 

𝑦𝑘 =
𝐵(𝑧−1)

𝐴(𝑧−1)
𝑢𝑘                                 (3) 

𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + ⋯ + 𝑎𝑛𝑧
−𝑛

𝐵(𝑧−1) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + ⋯ + 𝑎𝑚𝑧−𝑚  

 

where 𝑦𝑘  is the output force, 𝑢𝑘 the input current, 𝑎1 …𝑎𝑛and 

𝑏1 …𝑏𝑚  are the model parameters, while 𝑧
−1

is the back ward 

shift operator, i.e.𝑧−1𝑦𝑘 = 𝑦𝑘−1. An appropriate structure for 

the transfer function (3) needs to be defined, i.e. n, m, 

where  is the time delay, typically represented by setting 

𝑏1 …𝑏𝛿−1 = 0 . The two main statistical measures employed 

to help determine these values are the coefficient of 

determination 𝑅𝑇
2  , which is a simple measure of the model fit 

(4). 

where: 

𝑅𝑇
2 = 1 −

𝑐𝑜𝑣 (𝑒𝑘)

𝑐𝑜𝑣  𝑦𝑘 
                           (4) 

𝑐𝑜𝑣(𝑒𝑘) =
1

𝑁
 (𝑒𝑘 − 𝑒 𝑘)2𝑁

𝑘=1   , 

cov(𝑦𝑘) =
1

𝑁
 (𝑦𝑘 − 𝑦 𝑘)2

𝑁

𝑘=1

 

 

 

And , 𝑒𝑘 = 𝑦𝑘 − 𝑦 𝑘 ,𝑒 = 𝑚𝑒𝑎𝑛(𝑒𝑘) , and 𝑦 𝑘 = 𝑚𝑒𝑎𝑛(𝑦𝑘) 

, 𝑦𝑘  is the actual measured output , an 𝑦
∧

𝑘  is the theoretical 

response coming out from the model. The other statistical 

tool is Young Identification Criterion (YIC), which provides 

a combined measure of fit and parametric efficiency, with 

large negative values indicating a model which explains the 

output data well, without over-parameterization [11]. 

 The present work utilizes the Simplified Refined 

Instrumental Variable (SRIV) algorithm to estimate the 

model parameters [11]–[12]. These statistical tools and 

associated estimation algorithms are apart from the Matlab® 

CAPTAIN toolbox [12]. The first step is to find the best 

identification structure. CAPTAIN® toolbox was used to 

evaluate all models on the range {1, 1, 1} to {3, 3, 3}. Table1 

shows the identification results which compose of the best ten 

linear models. The model ranking is based on both YIC 

and 𝑅𝑇
2 . All ten models nearly have the same value of the 

coefficient of determination 𝑅𝑇
2  but they have a different YIC 

values. Since YIC for all models is negative, all ten models 

are controllable. The best two models have the following: 

yk =
b3z−3

1 + a1z−1 + a2z−2 + a3z−3
uk              5  

𝑦𝑘 =
𝑏1𝑧

−1

1 + 𝑎1𝑧
−1

𝑢𝑘                          (6) 

 

The second model (6) has the least number of parameters; 

also it has a good YIC by comparing to the first model (1) 

which has a large number of parameters. 
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Fig. 3.  SMA actuator output force for different input current levels    

 

Identification criteria discussed above, reveal that a first 

order model with one numerator having one sample time 

delay provides the best estimated model and most optimum 

fit to {85%} the data across a wide range of operating 

conditions. The parameters a1=-0.9656, b1= 0.0284 yields the 

best overall fit. 

 
TABLE I: THE BEST LINEAR MODELS 

Rank  n m δ YIC 𝑅𝑇
2  

1 3 1 3 -10.55 0.852 

2 1 1 1 -9.02 0.850 

3 1 1 2 -8.99 0.851 

4 1 1 3 -8.96 0.851 

5 3 1 1 -7.41 0.853 

6 2 1 1 -6.21 0.852 

7 2 1 2 -6.06 0.852 

8 2 1 3 -5.89 0.853 

9 1 2 1 -5.28 0.853 

10 1 2 2 -5.03 0.853 

 

 
 

Fig. 4.  Comparison of the best linear model and the best nonlinear TVP 

model for the data set 

 

 

 
Fig. 5.  Structure of Gains Scheduled PI controller 

B. Nonlinear Modeling and Identification  

   The nonlinear modeling approach is based on the linear 

model with time variable parameter TVP. By rewriting the 

linear model (3) by TVP [12] form:  

𝑦𝑘 =
𝐵𝑘(𝜒𝑘 , 𝑧−1)

𝐴𝑘(𝜒𝑘 , 𝑧−1)
𝑢𝑘

𝐴𝑘(𝜒𝑘 , 𝑧−1) = 1 + 𝑎1(𝜒𝑘)𝑧−1 + ⋯ + 𝑎𝑛(𝜒𝑘)𝑧−𝑛

𝐵𝑘(𝜒𝑘 , 𝑧−1) = 𝑏1(𝜒𝑘)𝑧−1 + ⋯ + 𝑏𝑚(𝜒𝑘)𝑧−𝑚

    (7) 

 

where 𝐴𝑘(𝜒𝑘 , 𝑧−1)  and 𝐵𝑘(𝜒𝑘 , 𝑧−1) are the time varying 

equivalents of 𝐴(𝑧−1) and 𝐵(𝑧−1). The notation indicates 

that the parameters are nonlinear functions of the 

vector𝜒𝑘 where, in general, 𝜒𝑘 is defined in terms of any 

measured variables. By rewriting (6) to be in TVP form (8): 

𝑦𝑘 =
𝑏1(𝜒𝑘)𝑧−1

1 + 𝑎1(𝜒𝑘)𝑧−1
𝑢𝑘                      (8) 

The estimated value of 1b  is independent to the model 

input / output regressors, where 𝑏1 = 1.64𝑥10−4  By some 

trials and error, the best regressor for 1( )ka  is proportional 

to the square root of the output lag. 

𝑦𝑘 =
𝑏1(𝜒𝑘)𝑧−1

1 + 𝑎1(𝜒𝑘)𝑧−1
𝑢𝑘                         (9) 

 

𝑎1 𝜒𝑘 ∝  𝑦𝑘−1                            (10) 

Using Captain toolbox and SRIV algorithm to estimate the 

actual fit for (10). Using first order polynomial fit on the 

form: 

𝑎1 𝑦𝑘 = −3x10−4 𝑦𝑘−1 − 0.9665                   (11) 

Linear fitting for 𝑎1 yields  𝑅𝑇
2 = 0.945as shown in Fig. 4. 

For high order polynomial fitting, 𝑅𝑇
2  is insignificantly 

increased. The first order fitting is the most simple and 

efficient representation of the denominator coefficient 1a . 

 

IV. POLE PLACEMENT CONTROLLER TUNING 

Gains schedule PI controller is based on the idea that, at 

each sampling instant, the TVP model (9) can be considered 

as a „frozen‟ linear system. The control gains are determined 

at each sampling instant using pole placement linear 

methods. The general structure of linear discrete PI 

controllers may be presented by its closed loop 

characteristics equation as follows:  

𝐷 𝑧 = 𝑧2 +  𝑎 − 1 + 𝑘𝑝𝑏 + 𝑘𝐼𝑏 𝑧 −  𝑎 + 𝑘𝑝𝑏   (12) 

By comparing (13) to the general second order equation of 

closed loop poles:  

 
(𝑧 + 𝑝1)(𝑧 + 𝑝2) = 0

𝑧2 + (𝑝1 + 𝑝2)𝑧 + 𝑝1𝑝2 = 0
 

 

These lead to  

𝑝1𝑝2 = − 𝑎1 + 𝑘𝑝𝑏1                 (13) 

International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013

122



𝑝1 + 𝑝2 = 𝑎1 − 1 + 𝑘𝑝𝑏1 + 𝑘𝐼𝑏1           (14) 

The proportional gain is derived from the model by  

𝑘𝑝 =
−𝑝1𝑝2 − 𝑎1

𝑏1
                       (15) 

Also the integral gain is derived from the model by  

𝑘𝐼 =
𝑝1 + 𝑝2 − 𝑎1 + 1 − 𝑘𝑃𝑏1

𝑏1
                     (16) 

By substituting the proportional gain equation (15) into 

(16) 

𝑘𝐼 =
𝑝1 + 𝑝2 + 𝑝1𝑝2 + 1

𝑏1
                (17) 

Controller gains are described in (15), (17) in terms of the 

model parameters a1 and b1. It is clear from (7) that the 

integral gain 𝑘𝐼 is independent to any regressor. On the other 

hand, the proportional gain 𝑘𝑝 is directly coupled to the 

denominator coefficient 𝑎1  through 𝑦𝑘−1  regressor. 

Elimination of model parameters 𝑎1, 𝑏1from the control gains 

expressions (15), (17) by substituting the model parameters 

in terms of the regressor 𝑦𝑘−1 from (9)  

𝑘𝑝 =
−𝑝1𝑝2+3x10−4 𝑦𝑘−1+0.9665

1.64𝑥10−4                (18) 

𝑘𝐼 =
𝑝1 + 𝑝2 + 𝑝1𝑝2 + 1

1.64𝑥10−4
              (19) 

The stability conditions for (18), (19)  

𝑘𝐼 > 0, 𝑘𝑝 > 0

 𝑝1 < 1   ,  𝑝2 < 1
                     (20) 

Closed loop poles pairs are assumed to be identical. The 

proportional gain  𝑘𝑝  increases as the poles approach the 

stability unit circle; furthermore, poles selection is restricted 

by the sampling time and the bandwidth of the ref trajectory.  

Practically, due to slow response of the SMA actuator the 

stable poles may lie on the range {0.6:0.9}. These poles 

experimentally verified for 20 Hz sampling frequency. The 

complete structure of the controller is shown in Figure.5. The 

performance of the controller was experimentally 

investigated for different references inputs. Figures 6,7,8 and 

9  show the performance of the control system with respect to 

random references signal. The overshoot problem of linear PI 

controller is solved by the nonlinear version of gain 

scheduled PI controller. For sinusoidal and triangle 

trajectories, the gain schedule controller bandwidth less than 

the linear PI controller. 

 

 
Fig. 6.  Comparison of linear PI and gain scheduled PI controllers for step 

response 

 
Fig. 7.  Response of linear PI and gain scheduled PI controllers for 0.05Hz 

sin ref trajectory 

 

Fig. 8.   Response of linear and gain scheduled PI controllers for 0.1Hz sin 

ref trajectory 

 

Fig. 9.  Response of linear PI  and gain scheduled PI controllers for triangle 

ref trajectory   

 

V. CONCLUSION 

In this paper an effective gains schedule PI controller for 

shape memory alloy actuator was developed. The controller 

structure is based on Time variable parameter TVP model 

which has state dependant gains. Due to the nonlinear 

dynamics of SMA actuators, the linear model cannot exactly 

simulate the actuator. TVP model is used to model such 

nonlinear dynamics. TVP model based on first order unit 

sample delay and two state dependent parameters is 

identified. State dependent parameters are continuously 

estimated every sampling instant based on the measured 

state. The best estimate of state for the SMA force actuator is 

based on the square root of the unit delay of the actuator 

output force). The success of using this state depends on the 

physical characteristics of SMA actuators. The output force is 

directly proportional to the square of the actuator current. 

Pole placement technique has been used to tune the controller 

by mapping the controller gains and the actuator measured 
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output state. Experimental evaluation showed that the 

controller could achieve a good response to step and 

sinusoidal ref trajectories, and therefore could compensate 

for the hysteresis phenomenon of SMA actuators. The control 

system was able to satisfy a robust and stable performance 

which is suitable for low operating frequencies application.  
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