
  

  

Abstract—Solid waste selection is a common problem of the 

cities in emerging economies. In order to overcome this problem, 

a concept of smart selection of solid waste system has been 

developed, composed by a transportation system, a sensorial 

systems and a robotic system for selection of the solid waste. 

This paper focuses of the robotic system, the aim of this paper 

being the multi -objective optimization of a parallel robotic 

system in order to achieve maximal workspace and dexterity. 

Hence, the paper illustrates a small introduction in the concept 

of the new solid waste selection system and presents a recent 

literature review regarding the optimization of robots. Then, 

the structure and formal analysis of the robotic systems that has 

application for a smart selection of solid waste. The 

optimization is carried out using Genetics Algorithms and the 

objective function of the optimizations that takes into 

consideration the volume of the constant orientation workspace 

alongside with the average isotropy index within the workspace. 

 
Index Terms—Robots, optimization, genetic algorithms, 

workspace, isotropy.  

 

I. INTRODUCTION 

Unsorted waste (UW) produced by the inhabitants of cities 

from emerging economies has become one of the most 

relevant problem in the middle and low income regions in the 

past years. The quantity of plastic, metal, paper, leather, glass 

or other type of solid waste is growing exponentially, aspect 

that generates environmental and public health issues[1], [2].  

The concept of the Automated Solid Waste Selection 

System has been presented extensively in the papers [3] and 

[4] and is composed by a ramified Transportation System 

(TS) , such as set of conveyors that transport the unsorted 

waste (UW) from the loading point up to the unloading point, 

a waste Image Recognition and Sensorial System (IRS) , that 

identifies the type of waste that passes beneath,  and a waste 

selective Robot Disposal System (RDS), that extracts a 

specific waste from the conveyor and places it in a specific 

container. If necessary, a more detailed description of the 

Automated Solid Waste Selection System is presented in the 

papers [3], [4].   

This paper focuses on the development of the Robot 

Disposal System (the Robots from 1 to N from the Fig. 1, by 

optimizing the architecture of a parallel robot that may be 

used to dispose a solid waste from a conveyor. Therefore, the 

robot is optimized in order to achieve the maximal workspace 
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and very good kinematic performance within the workspace. 

The optimization is implemented using Genetic Algorithms.  

In the following, a literature review is presented, regarding 

the key topics of this paper: solid waste selection system, 

workspace and performance criteria of the parallel robots and 

optimization algorithms. The rest paper is organized as 

follows. The Section II illustrates the architecture of the robot, 

the Section III presents the design vector, objective function 

and constraints and the Section IV the numerical results are 

illustrated. In the end, the Section V presents the conclusions 

of the presented optimization.   

 

 
Fig. 1. Concept of automated solid waste selection system. 

 

Automated selection of the solid waste is a public health 

problem that has drawn attention to researchers in the past 

years. Therefore, there are already published examples of 

solid waste selection system, as presented in [5]-[7], that 

propose the use of robots, image recognition system or fluids 

to select several types of solid waste. On the other hand, the 

concept presented in [4], integrates both transportation, 

image recognition using CCTVs and smart selection using 

robots.   

Parallel robots are mainly used in industrial application 

due to their advantages regarding high operational speeds, 

high accuracy and stiffness. On the other hand, the workspace 

of a parallel robot is reduced in comparison to its dimensions. 

This is why, in the process of designing a parallel robot is 

desired to take into consideration to maximize workspace, 

while preserving other kinematic characteristic as high as 

possible.  

The kinematic performance of parallel robots has been 

expressed in several forms in the scientific literature, mostly  

by evaluating the condition number [8], the inverse of the 

condition number[9], manipulability[10] or isotropy (with 

average condition number) [11], [12].  

Since it is desired that the robot designed for waste 

selection to have best kinematic performance along the 
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workspace, this paper will focus on enlarging as much as 

possible the workspace of the robot and, at the same time, 

preserving the kinematic performance as high as possible. 

The kinematic perfomance [11], [12] will be expressed in 

terms of average isotropy, presented in the scientific 

literature as the average condition number within the 

workspace (that expresses the local isotropy that varies with 

the robot configuration and parameters), expressed in the 

eq.1. 
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where, W is the workspace of the robot, and kj is the local 

isotropy index, dependent by the Jacobian matrix of a robot, 

given by the eq. 2 .  

 

JJk j .1−=          (2) 

 

The optimization of the robot in order to achieve both is 

implemented using Genetic Algorithms, an evolutionary type 

algorithm, that mimics the genetics of real life beings. The 

algorithms evolve from an initial state to its final solution 

(called populations) and preserves best the best solution from 

all the population, usually this one being the solution of the 

optimized problem.  As seen in the scientific literature, this 

type of algorithms have been successfully implemented in 

several other studies regarding optimization problems, as 

presented in [13]-[15].  

The main purpose of this paper is to develop an 

optimization method of a parallel robot used for a solid waste 

selection system, taking into consideration both to maximize 

the workspace and to attain very good kinematic performance 

within the workspace. Since more than one performance 

criteria are evaluated in the cost function, the optimization 

may be considered as multi-objective (even though a Paretto 

diagram is not presented). On the other side, if more than one 

cost function is evaluated in an optimization problem, there 

are more viable solution of the optimized problem. The 

approach from this paper eliminates the evaluation of two 

cost functions at once by calculating two performance factors 

of a parallel robot (size of the workspace and the kinematic 

performance) in a single equation (a proper tradeoff between 

these factors is realized).  

 

II. ROBOT TO BE OPTIMIZED 

The robots that is optimized is a 6 DOF parallel robot with 

rotational actuators, composed by six identical 

rotational-universal-spherical kinematic open loops (RUS – 

from the bottom fixed plate to the top mobile plate). The 

architecture of the robot is presented in the Fig. 2. 

The robot shall be used as a translational robot in order to 

select the unsorted waste from a moving conveyor. The waste 

is taken from the moving conveyor and placed in a specific 

waste container, based on prior information received by and 

Image Acquisition System (see the Fig. 3) as presented in the 

concept from [3] and [4] (this aspect being beyond the scope 

of this paper).  

 
Fig. 2. Parallel robot to be optimized. 

 

 
Fig. 3. Parallel robot to select unsorted waste from a conveyor. 

 

III. OPTIMIZATION SETUP  

In order to maximize both the workspace and the global 

dexterity, the setup of the optimization using Genetics 

Algorithms has to be properly defined. Firstly, de design 

variables are selected, the constraints are imposed, and the 

cost function is defined. All of these steps are crucial in order 

to achieve proper results of the optimization, so a human 

designer shall attach the same importance to all of these steps  

A. Design Vector 

The design vector shall contain the geometrical 

characteristics of the robot that influence the most the results 

of the optimization. Since the time demanded to compute an 

optimization problem evolves exponentially with respect 

with the number of variables in the design vector, it is desired 

to exclude from the deign vector the variables that have less 

influence in the results of the optimization or that may be 

expressed as a function of other variables. 

In the optimization problem addressed in this paper, it has 

been assumed that the robot is symmetrical, aspect that 

increases the kinematic performance, as seen in [16]. The 

design vector x, contains the parameters from the eq. 3.   

 

( )Rrratioratiollx du ,,,,, 21=      (3) 

 

The variables from the eq. 3, define geometrical 

parameters of the robot, as seen below: 

1) l1 and l2 are the first and the second links from the RUS 

open kinematic loop, as seen in the Fig. 2 

2) ratiou and ratiod, are the ratios between two 

consecutive angles αi and βi, that define the position of 
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the spherical joints on the mobile platform and of the 

rotational joins on the fixed platform, as seen in the Fig. 

4  

3) R and r are the radiuses of the fixed and of the mobile 

platform (Fig. 4).   

 

   
Fig. 4. Fixed (a) and mobile platform of the robot. 

 

B. Constraints  

The constraints play an important role, due to the fact that 

these sets the bonds of the interval in which the variables are 

searched, and, moreover, influence the computational time. 

For the design vector presented in the eq. (3) the constraints 

have been defined as follows: 
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In order to express the constraints in a matrix form, we 

consider the following equation: 

bxA t           (5) 

where, A and b are given eq. (6) and (7) 
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C. Cost Function 

The cost or fitness function may represent the core of an 

optimization function, since the result of a cost function is the 

value that expresses mathematically the degree of validity of 

the current solution of the design vector (or, expressed in 

other terms, how close is the current solution to the optimal 

solution).  

In the optimization presented in this paper, the cost 

function fit has to involve two dimensions: the size of the 

workspace (sub function fit_WS and the average dexterity of 

the robot, evaluated in each point of the workspace, sub 

function fit_DEXT, from the equation.  

 

DEXTfitWSfitfit __ +=       (7) 

 

The first sub function evaluates the size of the workspace 

by performing the kinematic analysis for a each point from 

predefined cube discretized in 503 points (50 for each 

dimensions). The cube is predefined in terms of number of 

points, not in dimensions (its dimensions variate 

proportionally to the geometrical dimensions of the robot, 

therefore, making it suitable for each set of the design 

vector). 

In the kinematic analysis, the generalized coordinates qi 

are evaluated (from the Fig. 2). If the kinematic analysis 

conducts to valid results (i.e. values of the generalized 

coordinates lie within the joints limits) the point form the 

cube is validated. In the end, the number of validated points 

compose the workspace. The value of the sub function 

(fit_WS) is given by the eq. (8) and for each valid case of the 

design vector (meaning that the has valid geometric length), 

fit_WS is lower than 1. In ideal case, fit_WS equals 1. 

 

 1,0_ WSfit          (8) 

 

The second sub function evaluates an approximation of the 

average of local isotropy index from the eq. (1) within the 

workspace. For each identified point of the workspace from 

the first subfunction the local isotropy index from the eq is 

evaluated, then the resulted values are added togheter and 

divided with the total number of the points from the 

workspace (therefore, obtaining an approximation of the 

average of the local isotropy index). As presented in [15], the 

local isotropy index lies in the following limits: 

 

 ) ,1jk          (9) 
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That means, that the average of the local isotropy index 

lies within the same interval.  

 

 ) ,1j          (10)  

 

The eq. 7 assumes that both of the sub functions have the 

same range of returned values (in order to have same 

influence on the value of the fitness function). Since fit_WS 

returns values from 0 to 1, it is desired that fit_DEXT  to 

return similar range values. Therefore, the sub function 

fit_DEXT return the value from the eq. 11. 

 

 1,0
1

_ =
j

DEXTfit


      (11)  

 

IV. NUMERICAL RESULTS 

The optimization has been implemented in Matlab, using 

the Global Optimization Toolbox. In order to decrease the 

computational time, all the equation has been implemented in 

a vectored manner (meaning that no for loops were used). 

Moreover, the Parallel Processing Toolbox has been used, in 

order to utilize all the threads available on an Intel i7 CPU.  

The evolution of the fitness value of the optimization is 

presented in the Fig. 5 and the final value is presented in the 

eq. 12. The algorithm has passed through 142 iterations until 

the final solution has been achieved. A population of 200 

members has been used.   

 

 
Fig. 5. Convergence of the objective function. 

 

3641.0=fit                 (12)  

 

In order to achieve this final value, the algorithm has 

modified the design vector on each iteration (the Fig. 6 

illustrates the best values for each iteration). The first 20 

iterations present high modification in the best values of 

design vector, in accordance with the descent in the value of 

the fitness function (Fig. 6).  

 

 
Fig. 5. Variation of the best values of the design vector. 

The best values of the design vector are presented below. 

 

]76.0,59.0,45.3,39.1,45.1,49.0[=bestx    (12)  

 

The optimal values of the design vector are correspondent 

to the minimal value of the fitness function. Therefore, the 

workspace of the robot is as large as possible, and presents 

the best kinematic performance for that configuration of the 

robot. The final workspace of the robot is presented in the Fig. 

7  

 

Fig. 7. Workspace of the optimized robot 

 

V. CONCLUSIONS 

This paper presents an optimization of a parallel robotic 

system used for solid waste selection, in order to achieve 

maximal workspace and dexterity. The main contribution of 

this paper regards the evaluation of a tradeoff between the 

size of the workspace and of the dexterity, both of these being 

evaluated in the same equation. This is why, it may be 

considered that the optimization takes into account more than 

one performance factors, hence it has performed in a similar 

manner to a multi-objective optimization. The future outlook 

regards the optimization of a reconfigurable parallel robotic 

system, in the case that fewer DOFs are necessary in an 

application.   
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