

Abstract—In recent years robots have begun to become an

active presence in everyday life in various forms. Helpful robots

that offer help and support to people with special needs or social

robots that are able to interact with customers in stores. The

presented paper presents a method for design and implement a

6DOF robotic arm over the IoT concept. The core of this project

is a Raspberry Pi board and the I2C protocol.

Index Terms—DOF, anthropomorphic robotic, raspberry PI.

I. INTRODUCTION

For years robots have been slowly making their way into

every aspect of our lives from huge scale industrial processes

to every day around the house appliances and small gadgets.

One of the main reasons that robots have gained all this

popularity is in part that they can help with small tasks

around the house for example automated vacuum cleaners,

lights windows and so on, they make lives easier and public

perception slowly changed for the better. The problem is that

the public doesn’t realize how much more robots do for us,

they do the work no human wants or can do. They handle

materials and substances that are highly dangerous [1].

With the emergence of IoT, Cloud-Computing, humanoid

robots and intelligent robot services, more and more studies

have been developed on robot control and on how robotics

have intersected with IoT [2], [3]. Two aspects need to be

considered for robot control. The first concerns the limitation

of resources managed by the robot’s system due to large

volume data constraints and costs [3]. The second aspect

concerns the cost of integrating robots with IoT.

II. CORE CONCEPT

A. 3D Printing and Material Choice

3D printing, also known as additive manufacturing [4], [5]

is an innovative technology which allows fast prototyping. Its

working principle is based on layer by layer composition of

an object. All layers are pressed onto each other at a distance

which defines the resolution of the 3D printing process. The

smaller the distance, the better the resolution and overall

quality of the final product.

Regarding the 3D printed parts, ABS [6] was chosen

because of its mechanical properties: flexibility, toughness

and improved impact resistance and since it is used in a

Manuscript received March 29, 2019; revised May 2, 2019. The research

presented in this paper was supported by the following projects: ROBIN

(PN-III-P1-1.2-PCCDI-2017- 0734) and SeMed (2933/55/GNaC 2018)

Ovidiu Stan and Andrei Manea are with the Technical University of Cluj
Napoca, Faculty of Automation and Computer Science, Department of

Automation, Cluj Napoca, Romania (e-mail: ovidiu.stan@aut.utcluj.ro).

different field [10]. The only downside was the difficulty of

obtaining the required bed temperature (110° C) and extruder

temperature (230° C).

B. 6-DOF Structure

Robotic arms are a common approach designed for

resolving automated tasks. One of the most common

structures, yet a relatively complex one, is the six degrees of

freedom structure. It resembles a closer representation of

human arm, being considered an anthropomorphic structure

[7], [7].

Fig. 1. Human arm - 6 DOF structure.

In order to reproduce the mechanical capabilities of a

human arm, one must analyze the physiological and

kinematic properties of interest. Figure 1 presents a

simplified analogy made when adapting the 6-DOF structure

for the current project purpose used in order to notice the fact

that are four positioning and two orientation actions.

C. Finite State Machine (FSM)

One of the most used tools for conceptualizing models are

finite state machines, they represent the interactions at a

discrete level in the system [9]. FSM represents how an

activity can change its behavior over time reacting to internal

or external triggering events.

In Figure 2 the state machine diagram for the system is

shown. After the system is powered, the current sensors start

measuring the current drawn by the servo motors. The data

gathered is sent to the Arduino slaves, they have had

uploaded onto them the source code which takes the current

values as an input through the I2C bus that sends them to the

master controller which displays the data. Two of the

Arduino NANO boards are tasked with monitoring the

current, the third one is tasked with controlling the stepper

motor and managing the data from the reflectance sensor.

The same figure also applies to the third slave module, their

design in finite state machines is identical. After the system is

initialized, the sensors start sending data to the slave, at the

same time the stepper starts moving, when encountering the

white strip on the base of the robotic arm, the reflectance

sensor sends a signal to the slave and the stepper stops in that

position.

Ovidiu Stan and Andrei Manea

Design and Implement a 6DOF Anthropomorphic Robotic

Structure

International Journal of Modeling and Optimization, Vol. 9, No. 6, December 2019

352DOI: 10.7763/IJMO.2019.V9.736

Fig. 2. Finite state machine.

III. CONTROL SYSTEM

A. Electrical Design

The focus of this section is the design of the electronics of

the robotic arm and the tools used for this stage of the

development. The electronical assembly should be able to

deliver power to the transmission, to the motors, and it should

be able the power the electronic circuits and microcontrollers

used in the assembly. The 600 watts power supply has two 25

Amps channels, each channel having three outlets for the 3.3

volts, 5 volts and 12 volts, each of them being used fed into a

distribution board with outputs for each of the necessary

prototyping boards, each receiving the necessary voltage.

The wireless device which can control the robotic arm will be

powered by a 2S Li-Po battery that provides 8.4 volts and can

provide up to 30 Amps of current at peak performance for a

time of 10 seconds. In the case of this device that amount of

current is not necessary, but the option of a Li-Po battery is

preferred because of its versatility over other batteries such as

nickel-cadmium, which provides a much smaller output

voltage and current. The number of cells is enough for the

task at hand, being a Raspberry Pi 0 W, a display and the

circuitry required to run everything in the device.

The methodology used when designing the system was

straight forward, making the circuit as simple as possible so

that if complications arise, they can be easily identified and

resolved [10]. Since some of the electronics are done by hand

some of the parts in the system might be more susceptible to

wearing out faster than others, so we came up with a solution,

making the design modular. The system is spread out onto

four boards and three layers. This way, if something goes

wrong and needs changing, it can be done so in a manner of

minutes. One of the most important aspects when designing a

circuit, besides the functionality, is to make it as legible as

possible for someone that has not previously seen the circuit

diagram to be able to understand it. If one has the desire to

recreate the circuit, they must be able to do this based on the

given information.

As shown in Figure 3, the circuit is designed around the

I2C protocol. To make the circuit as simple as possible,

wiring wise, the Raspberry Pi master is placed in such a

manner as to accommodate all the signals coming from the

Arduino Slaves and the servomotor driver coming to the

Serial Data (SDA) and Serial Clock (SCL). When taking a

closer look at the diagram one can see the signals linked to

the SDA and SCL are bi-directional, this is because the I2C

protocol is omnidirectional, otherwise known as full duplex,

receiving and sending data at the same time. The diagram was

constructed in the same manner as the circuit, following the

figure from top to bottom, the circuit can be easily

reconstrued. Starting from the top of the diagram, the 9 nine

step-down modules, LM2596, which receive 12 volts from

the power supply and they output 6.2 volts to a board

containing 1000 µF capacitors, they are used for attenuating

the current spikes generated by the servo motors when they

start receiving power, all nine modules are connected to a

capacitor. The current sensors, ACS712, are each connected

to one of the servo motors in the same fashion as the

step-down modules, each sensor is powered by the 5-volt

power line. Each of the eight motors receive 6.2 volts from

the step-down modules and the sensors measure how much

current they draw. There are nine current sensors and nine

modules, but they are connected to eight motors, this is

because of two reasons. The first one is safety related, there

are more modules because if one of them failed, they can be

swapped on the spot, the ninth module is not connected to any

motor. The second reason is structural integrity, the modules

are placed in a tower like formation, each tower consisting of

three modules, if each column has the same number of

step-downs it makes the whole ensemble more stable, as a

bonus they also look more esthetically pleasing. The same

reasons apply to the current sensors, the difference being they

are not laid out in a tower of three formation, they are

positioned one alongside another on the board. The servo

motors, MG996R, tasked with the movement of the robotic

arm receive the command, PWM, from the servo driver,

PCA9685, the command received consists of the position

desired for the servomotor. The command is received from

the I2C bus. The power necessary for the driver to function is

3.3 volts, supplied by the corresponding line from the power

supply.

Fig. 3. Electrical diagram.

As stated earlier, the circuit design is centered around the

I2C protocol, as it can be easily deduced from the diagram.

The positioning of the devices is purposefully in this manner

because the Raspberry Pi is the master and, on its SDA, and

SCL pins are the bus where all the information is exchanged.

International Journal of Modeling and Optimization, Vol. 9, No. 6, December 2019

353

Starting with the essential component, the master

microcontroller, it must be supplied with 5 volts in order to

function correctly. The master controller sends on the I2C

bus the necessary information for the devices, that

information ultimately becomes the movement of the arm.

The master has three slave devices, three Arduino NANO

boards, and their tasks are split up into two. The first two are

tasked with sending and receiving measurement from the

current sensors. Many pins are required for this, 18 to be

exact, and because using a shield or a number ADC, it is best

to use two Arduino Nano instead, for two reasons, size and

effectiveness. The two slaves receive the current

measurement from the sensors connected to the motors and

send them via the bus to the master. Each of the boards is

connected to the 5 volts power line. The reading of the values

from the sensors is done on the slaves which communicates

the information to the master. The third Arduino Slave is

tasked with the control of the stepper motor. Between the

power supply wire and the third slave is a 47 µF capacitor

tasked with keeping in check fluctuations in voltage from the

power supply. The slave sends the direction, the steps and

enables the pins to the stepper driver, A4988. The driver has a

passthrough for voltage, it takes as an input from the power

supply the 12-volt line and feeds it to the stepper motor, this

connection is made through the VMOT pin. The power for

the driver itself is handled by the slave, suppling the driver

with 5 volts using the VDD pin. The driver sends signals

through the 1A,1B and 2A, 2B pins, each pair of pins

corresponds to a coil of the stepper motor, polarizing each

coil one at a time to move the rotor of the motor. The module

features pins for adjusting micro stepping, the pins in

question are MS1, MS2 and MS3. Also connected to the third

slave is the reflectance sensor, QTR-1A, the sensor data is

sent to the Arduino which transmits it to the master. The

sensor is supplied via the 5 volts line. Finally, the diagram

ends with the touch screen LCD screen connected via a

HDMI cable with a micro-HDMI adapter to the Raspberry Pi.

Power wise, the screen is supplied by the 5 volts line. It goes

without saying that each of the devices are connected to their

respective common earth. It is also important to mention

what kind of wires were used, for the most important parts of

the circuit, where the most power flows, like the supply for

the motors and the transition boards for the power supply

wires and the capacitors board, 22 AWG copper wires were

used, with a resistance of 50 mΩ/m. The rest of the wiring

was done using a combination of 26 AWG copper wires, with

a resistance of 125 mΩ/m, standard jumper cables, and 28

copper AWG, with a resistance of 200 mΩ/m. When

choosing wires, one must take into consideration the length,

because it influences resistance but in our case the resistance

of the cables is negligible, and how much amps of current

they can support, the lower the AWG values the higher the

load they can support. In this case the thickest wire used is a

22, with a diameter of 0.64 mm, keeping in mind that the

diameter can slightly change if a large amount of current is

passed through, creating heat dissipation. The maximum

amount of current that can pass through the selected wires is

3.5 amperes.

The Diagram was designed in such a way that it perfectly

represents the circuit and it was kept as barebones as possible

so that is it easily understandable to the reader. The circuit

was designed in such a way that hardware and electrical

problems are avoided from the start, problems like heat

dissipation, wire insulation and magnetic field cancelation.

The wires and devices are arranged in such a manner that the

connections between do not create a magnetic field to affect

other devices. This is achieved by giving enough space for all

the components, but not too much because that would defeat

the purpose of using small modules and the wires are

intertwined in a way that even if the field is somehow created,

it will be nullified.

The wireless device (Fig. 4) is tasked with controlling the

robotic arm, controlling its servomotors and stepper

wirelessly. The device is incased in a 3D printed casing,

made from ABS, which houses a Raspberry Pi 0 W, master,

the same model is presented as the master controller in the

electrical system. The device is designed in such a way as to

be small and compact; its base is a square with 11 cm sides

and the corners are polished to be softer to the touch when

holding the device. The height of the device is 3 cm, enough

space for all the electronics to fit inside the casing with ease.

On top of the device a 20 by 4 LCD display is placed which is

connected to the Raspberry Pi. Inside of the casing an

Arduino NANO is present, as a slave.

Fig. 4. Wireless device circuit.

As shown in the figure above, a joystick is connected to the

slave, it is not directly connected to the master because is it

harder to properly interface the joystick directly. So, the

solution is using the protocol used previously for the

electrical circuit system, the I2C protocol. In the same

fashion as before, the SCL and SDA pins of the master are

connected to the corresponding pins on the Arduino. The

joystick is connected to the Arduino which sends the

collected data to the I2C bus. As presented in the diagram

(Figure 9.a), the joystick is connected to the slave using four

pins, one pin if for power receiving 5 volts from the Arduino,

one pin is digital for when the joystick is pressed, and two

analog pins are tasked with sending the measurements from

the OX and respectively OY axis. In the same manner, the

LCD screen is connected via the I2C to the Raspberry Pi

master. The power source for the device is lithium-polymer

battery 2S, with an output voltage of 8.4 volts. This value is

way too high for the master and the slave, they require 5 volts.

Instead of using modules, because the space is limited, the

solution is using a LM7805 voltage regulator, this regulator

has three pins, input, output and ground, they are placed in

the circuit in the same manner as before. This issue was

present before in the last circuit and the solution is the same,

International Journal of Modeling and Optimization, Vol. 9, No. 6, December 2019

354

between the source and the devices, these regulators are

placed to get the current from 8.4 volts to an acceptable 5

volts.

B. Node.js Server Architecture

The server is operating on event driven programming

principle, which stands for the fact that the control flow state

and actions are determined by triggering specific events. The

Express HTTP server implementation provides a clean

structure for handling incoming HTTP request, facilitating

the way one can provide complex data structures based on

low level data readings. There is one main module which

handles logic operation concluding in the actuators’

movement. The TCP/IP port listening is handled in a separate

controller, proofing the whole system against deadlocks,

handling on request and on receive events for each port

opening and manipulating global state variables.

The services layer handles fetching and transmission

operations between the whole system and the embedded

modules, accounting the information in a local log file. It

provides data parsing from byte level to JSON, deploying

asynchronous operations which do not interfere with the

normal flow. The asynchronous operations’ completion

emerges back to the main thread through standardized

callback functions which deliver either error messages

regarding process failure, or the result of the process

execution. Using this kind of approach one can sustain a full

feedback communication between the server and the

embedded system, but due to hardware design limitations, it

will not be implemented.

A detailed structure of main Node.js modules used in the

application and the relations between them is presented in

Figure 5. All the main modules are being called by the App.js

file which consist of the core of the server’s implementation.

Fig. 5. Node.js server module diagram.

The REST services are enabled for the server in order to

provide data fetching from the embedded system. The HTTP

server powered by “http” node module is listening on port

3000, in case of production environment deployment. The

express server handles URL routing and incoming requests.

One chose to implement only the base route ‘/’ for the local

server. All passed data through HTTP is parsed using

“body-parser” and “cookie-parser” modules, which delivers

JSON data regarding the request components (headers, query

parameters, cookies). All server errors were implemented

based on standard error handling guidelines. The frontend

part of the application is based on Embedded JavaScript, but

the only resource which responds with HTML frontend is

“not found” server error.

The requests the server responds to are: GET request on

base route ‘/’, which checks the authentication token of the

requesting client, delivering the latest current readings

alongside with the timestamp of the server, in a JSON

structured format. GET request on route ‘/report’ returns a

JSON file which contains all server log for the current session,

after confirming the authentication token. The PATCH on

route ‘/’ confirms the end of a session from the WPF

application point of view, setting the robot in idle state and

deactivating all motor command modules. The Node.js

application is set to deploy at the launch of the system, using

a custom Bash script.

Considering the application approach for local data

transmission and control, once can implement TCP/IP socket

communication. Using “net” node module, one can easily

configure a listening and responding socket in JavaScript.

One must implement the on receive callback method in which

all the data received is parsed from byte array to long formats

and, depending on its identifier, it is then passed to the proper

controller method in order to execute the commands.

Despite of common good practice of handling multiple

incoming connections on same socket using a

multi-threading approach, one chooses single thread

implementation and multiple socket connections deployment.

This was done in order to keep consistent local control, the

commanding server being able to listen to one data

transmitting client at a time, therefore implementing a first

come first served principle. This allows better data handling

without overcrowding TCP sockets, and being a local

application, it is taken as a confident manner for security

issues, because beside the handshake unique key the client

must transmit at the beginning of the communication,

multiple clients cannot connect if the socket is already in use.

The used ports range from 8000 to 8007 because they usually

represent unused ports on Debian running machines.

IV. ROBOT DESIGN AND DISCUSSIONS

Fig. 6.a above illustrates the final assembly of the robotic

arm and all the peripherals. Highlighted with red in the photo

is the plexiglass casing which houses the electronic circuits.

It can be seen in detail in Fig. 6.b.

(a)

(b)

Fig. 6. Designed and implemented robot: (a) 6DOF robotic arm; (b)

Electronic circuits after assembly.

International Journal of Modeling and Optimization, Vol. 9, No. 6, December 2019

355

After all the circuits were construed and assembled, the

connections made, screws tightened, cables connected, and

code uploaded to the microcontrollers the system was up and

running. When operating the switch present on the power

supply, supposing the supply is plugged in, the power supply

starts distributing power the entire system and all the afferent

devices connected to the supply. When everything was said

and done the system was working as intended, when

receiving the appropriate command, the master acted

accordingly. When an external command is transmitted to the

Raspberry Pi, for example the command specifies to move

the arm 400 to the left and open the gripper while at it, the

master sends the command further to the slaves and using

slave number 3 tasked with the control of the stepper, it

moves the base 400 to the left, meanwhile the master sends

the request to the first two slaves to control the stepper

motors, ultimately opening the end effector of the arm. All

the data from the sensors, current sensors and reflectance, is

collected and transmitted in real time to the master so it can

be later used for offline analysis. The results obtained after

the completion are satisfactory, taking into consideration the

limited budget it was built on and the fact that all the system

was built in house by hand. Compared to other solutions,

which tackle the same application [11], the results are

somewhat similar to what other achieved with more

expensive hardware and more time available [10].

V. CONCLUSIONS

After concluding the implementation and testing of the

project, we have obtained several results regarding proper

implementation of a robotic structure. The 3D printed

materials offer acceptable flexibility and durability in

complex structures, but as obtained from the current

mechanical design, one can easily notice the elasticity of the

material does decrease the overall system robustness

resulting in unwanted oscillations and inertia produced

movements. Nonetheless, this can be improved by

implementing a more robust mechanical structure and

designing one piece composed joints.

Another mechanical drawback was derived from the low

quality of the chosen actuators. The low-cost servomotor

batches ordered described a high nonlinear behavior, making

them difficult to control and to obtain the desired outputs.

Given the unreliability of the servomotors, the torque

provided was lower than expected, resulting in the

impossibility to control the heavier loaded joints of the robot,

such as the lower base ones.

Mentioned in the II.C section were the concept of state

machines and the design of the state machine, while here the

implementation will be discussed. You might have noticed

that in the previous chapter monitors were mentioned, but

only in the testing phase; this is because they are slowing the

program drastically and cannot be used in the final version of

the code. A vital rule of working with finite state machines is

avoiding using delays at all cost; the monitors and plotters

included in the IDE also cause delays. The code is written

using interrupt routines to avoid the use of delays, they

cannot be present in a code that is made for a real-time

application. As a bonus for the efficiency of the program, the

code in the interrupt routines was kept as compact as possible

to make the interrupt as fast as possible; it is worth

mentioning we are talking about software interrupts, not

hardware interrupts.

ACKNOWLEDGMENT

The research presented in this paper was supported by the

following projects: ROBIN (PN-III-P1-1.2-PCCDI-2017-

0734) and SeMed (2933/55/GNaC 2018).

REFERENCES

[1] L. A. Grieco, A. Rizzo, S. Colucci, S. Sicari, G. Piro, D. Paola, and G.

Boggia, “IoT-aided robotics applications: Technological implications
target domains and open issues,” Computer Communications, 2014,

vol. 54, pp. 32-47, 2014
[2] R. A. El-laithy, J. Huang, and M. Yeh, “Study on the use of microsoft

kinect for robotics applications,” in Proc. 2012 IEEE/ION Position,

Location and Navigation Symposium, pp. 23-26 April 2012
[3] R. Seiger, C. Seidl, U. Aßmann, and T. Schlegel, “A capability-based

framework for programming small domestic service robots,” in Proc.

the 2015 Joint MORSE/VAO Workshop on Model-Driven Robot
Software Engineering and View-based Software-Engineering,

L'Aquila, Italy, pp. 49-54, 2015.
[4] What is 3D printing. [Online]. Available:

https://ultimaker.com/en/explore/what-is-3d-printing

[5] E. Macdonald, R. Salas, D. Espalin, M. Perez, E. Aguilera, D. Muse,
and R. B. Wicker, “3D Printing for the rapid prototyping of structural

electronics,” IEEE Access, vol. 2, pp. 234–242, 2014.
[6] ABS-Poly (Acrylonitrile, butadiene, styrene) property data. [Online].

Available: http://www.matweb.com/reference/abspolymer.aspx

[7] C. Chang, C. Liang, Z. Xuefeng, and Y. Wu, “Controlling a robot using
leap motion,” in Proc. 2nd International Conference on Robotics and

Automation Engineering, pp. 48-51, 2017.

[8] Epson Exceed Your Vision, Epson LS3 SCARA Robots - 400mm.

[Online]. Available: https://epson.com/For-

Work/Robots/SCARA/Epson-LS3-SCARA-Robots---400mm/p/RLS3
401ST9P5

[9] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, Modeling
Software with Finite State Machines, Publisher: Auerbach Publications

Boston, MA, USA, 2006, ISBN:0849380863

[10] C. T. Kiang, A. Spowage, and C. K. Yoong, “Review of control and
sensor system of flexible manipulator,” Journal of Intelligent &

Robotic Systems, 2014, pp. 187–213
[11] J. Lee, P. H. Chang, and M. Jin, “Adaptive integral sliding mode

control with time-delay estimation for robot manipulators,” IEEE

Transactions on Industrial Electronics, pp. 6796 – 6804, 2017.

Stan O. is a lecturer in the Automation Department at

the Technical University of Cluj-Napoca. His research
interests include medical informatics, semantic

interoperability, information management in the age of

the Internet, dependability and fault-tolerant systems.

 Stan received a PhD in systems engineering from the

Technical University of Cluj-Napoca. He is a member
of IEEE.

Manea A. is a student in the Automation Department at
the Technical University of Cluj-Napoca. His research

interests include design embedded systems and embedded
software.

International Journal of Modeling and Optimization, Vol. 9, No. 6, December 2019

356

