
  

  

Abstract—In aerodynamics, the phenomenon of flutter 

suppression represents a great challenge. Since it is a complex 

and difficult process, it requires an innovative approach. In this 

paper, a V-shaped piezoelectric actuator whose role is to widen 

the aircraft flight envelope by raising the speed limit at which 

flutter occurs is presented. The demonstrator is in fact an 

intelligent model of wing, which is itself a control system, with 

sensors, piezo actuator and an implemented control law. The 

control law is obtained through the receptance method of 

eigenvalues assignment using the measured transfer function. 

The content of the paper refers to technical solutions for wing 

model design and to experimental results in subsonic wind 

tunnel. Another contribution of the paper concern the 

consideration of a time-delayed feedback control. 

 
Index Terms—Piezoelectric actuator, flutter, flight envelope, 

time-delay, feedback control, receptance method  

 

I. INTRODUCTION 

The purpose of this paper is to present a solution to 

counteract the flutter, based on the use of a V-shaped 

piezoelectric actuator. The flutter is a self-sustaining unstable 

oscillation that increases quickly in intensity. It is a complex 

and difficult process to study. In the case of planes, as speed 

increases, there is a threshold beyond which structural 

vibrations can no longer be damped, and they begin to 

increase in amplitude by accumulating energy in the structure. 

Once the flutter is reached, the plane is destabilized and it can 

no longer be controlled. 

At the dawn of aviation, there were several flight disasters 

caused by unstable vibrations [1], [2]. Gradually, flight flutter 

tests were introduced [1], [3]. At present, all aircraft get their 

approval to fly after passing a series of tests, including a test 

for establishing the flight envelope, in which a safety margin 

is considered. However, no flight regime is really immune to 

flutter [1]. 

The countering of dangerous phenomena such as flutter 

and buffeting, for example, was made first by passive 

techniques: increasing structural rigidity, mass balancing, 

changing geometry. This led to increase both weight and cost, 

while reducing overall performance. At some point, the use 

of primary flight controls and associated actuators was 
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considered efficient to combat flutter [4]-[7]. Thus began the 

active control era [8]. However, as demonstrated in [9], there 

are many drawbacks when using primary flight controls for 

auxiliary purposes. 

The present paper addresses the problem of control 

synthesis for weakly damped aeroelastic wing structures by 

means of the primary flight controls servos. In order to 

outline a general approach, the aeroelastic model consists of a 

quasi-steady formulation of the aerodynamic lift and moment 

of a typical section with flap, which is connected with a 

servoactuator [10]. 

 

II. PIEZOELECTRIC ACTUATOR AND WING MODEL DESIGN 

The actuator has a special design, that of two piezo stacks 

disposed in a V-shape, which included it in the class of an 

ultra-fast actuators developing a high bandwidth. The 

kinematic schema and the 3-D CATIA view is given in Fig. 1. 

The piezo stacks are arranged along the segments P1P3 and 

P2P4, respectively. When the stack P1P3 is activated by 

increasing supply voltage V which determines its extension to 

move to the right and slightly below the articulated point P3, 

the stack P2P4 withdraw to the left and slightly upward of the 

articulated point P4 to not oppose resistance to movement 

down of the articulated point P5 in the slider crank 

mechanism. 

 

 

 
Fig. 1. Up: Scheme of V-shaped piezo actuator (coordinates in mm); 

down: CATIA 3D view of the V-shaped piezo stacks. 

 

The piezo stacks NAC2022-H98-AO1 were bought from 

NOLIAC and have the following basic properties: height 

98 mm, stroke 148.8 μm, capacitance 19010 nF, maximal 

force developed 4200 N, maximum operating temperature 

150 °C, material NCE51F. The advantage of the piezo 
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actuators is their small size, large bandwidth and high energy 

density. The disadvantage is linked to their lower strokes. It is 

important to note that, for the antiflutter aero-elastic control 

to be effective, the deflection of the control surface must be at 

least 5-6 degrees, to the frequency range of at least 25 to 30 

Hz, as it is stated in the paper [11].  

The demonstrator is represented by a wing made from a 

spar (longeron) covered by an aerodynamic layer (profile 

NACA 0012). The wing has a primary flight control surface, 

an aileron, at one end. At the other end of the longeron there 

is a flange whose role is to fix the wing in the subsonic tunnel. 

The spar is a rectangular tube (1200×120×25) with 1 mm 

thickness and provided with notches to control its stiffness. 

The elements defining the aerodynamic surface are made 

from wood and resin ROHACELL 71S.  The wing structure 

and the position of the actuator on the wing are given in 

Fig. 2. 

 

 

  
Fig. 2. Up: The structure of the wing; down: Framing of actuator in the 

available space in wing. 

 

III. EXPERIMENTAL SETUP AND RESULTS 

The tests for wing characteristics show that the first two 

measured frequencies are 5.865 Hz (bending frequency) and 

14.463 Hz (torsion frequency), while those obtained 

numerically, by CATIA, are 6.23 and, respectively, 10.21 Hz.  

A result of the ANSYS-Matlab calculation applied to a 

different wing model in the paper [12] is eloquent in itself to 

see the shape of the modes in their sequence from the base 

mode (bending, yaw, bending, torsion, bending) (Fig. 3).  

The next step was to test the wing in the subsonic wind 

tunnel at various air speeds. The test to trigger the aeroelastic 

mechanism of the flutter has led to the following important 

results: flutter speed: 41 m/s, flutter frequency: 5.8 Hz. In Fig. 

4 some sequences of flutter evolution in the subsonic wind 

tunnel are shown. The wing model was a sacrificial one to 

certify that the pair aerodynamic tunnel-wing model is 

compatible for triggering the flutter in the absence of a 

control loop. 

For the synthesis of the antiflutter control law, a first step 

consisted of the identification operation of the open loop  

transfer functions ( ), 1,2
iy uH s j =  from the piezo actuator to 

two accelerometers who had the role of “seeing” the two 

basic vibration modes. More specifically, the number of 

poles and zeros, respectively the coefficients of the 

numerator and the denominator were determined, so that the 

frequency response ( )
jy uH i  approximates as best as 

possible the response in the experimental frequency 

( )
j

ex
y u

H i response. For that, the method of receptance is 

applied. 

 

  

Fig. 3. Natural first 5 modes of the wing:a) 1st bending; b) yaw; c) 2nd 

bending; d) 1st torsion;3) 3rd bending [12]. 

 

  
Fig. 4. Sequences of flutter evolution. 

 

The receptance method for poles allocation has been 

recently developed in the paper [13]. The specificity of the 

method consists in the elaboration of the control law based on 

the measurements in the process, and not on the conventional 

theory based on the space of the states. Practically, the 

methodology calls for flight measurements of the frequency 

response, eluding the need for knowing the matrices M,C, K  

(mass, damping and stiffness). In the following, a brief 

description of the method for a single input control is given. 
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The matrix equation of the second order is  

( ) ( ) ( ) ( ) ( )( )2Ms +Cs+K x s = B s r s u s−  (1) 

where 

( ) ( ) ( )
TT T sx

u s = f g = sf +g x
x

 
− − 

 
 (2) 

represents the control law, and ( )r s is a reference signal. The 

state vector x  has the dimension 4, corresponding to the 

basic  bending and torsion modes. The influence vector 

( )B s  (by which control is located) is written as a function of 

s. An usual form is that of PI (proportional-integral) 

( ) 2
1

b
B s = b +

s
 (3) 

From (1) and (2) it results 

( )( ) ( )( )( ) ( ) ( ) ( )T T2Ms + C + B s f s+ K + B s g x s = B s r s  (4) 

with the consequence of changing the rank of the stiffness 

matrix, which leads to a significant damping for stability. 

What is interesting herein is the formula derived from the 

relation (4) of the characteristic polynomial in closed loop. 

This will be calculated using the Sherman-Morrison formula 

in matrix algebra which gives the characteristic polynomial 

of the closed loop matrix  

( ) ( )( )( )
( ) ( ) ( )( )( )

1
T1

T T

ˆ :

1

H s H B s sf + g

H HB s sf + g HB s sf + g H

−
−= +

= + +

 (5) 

in function of the inverse of the open loop matrix 

( ) ( )
1

2 .H s = Ms +Cs+ K
−

 (6) 

The closed loop characteristic polynomial has just the 

expression ( ) ( ) ( )
T

1+ g +sf H s B s .  The problem of poles 

allocation to the values   1 2, ,..., n    can be solved as it 

follows.  

Let us note          

( ) ( ) ( )k k k kq H b =    
 (7) 

Then, for the characteristic equation we have 

T 1, 1, , 2k k kq g q f k n+  = − =  (8) 

The system of 2n  equations with 2n  unknowns could be 

written in the matrix form 

T T
1 1 1

T T
2 2 2

T T
2 2 2

1

1
:

...

1
n n n

q q

g q q
G = , G

f

q q

 − 
  

−     =        
−     

 (9) 

allowing, thus, the determination of control vectors g and f  

by inversion of the matrix G. The key for control law 

synthesis by the method of receptance is just the relation (9). 

The transfer functions are identified at a specific air 

velocity. In Fig. 5 it can be observed that the identified 

transfer function based on a Matlab algorithm follows closely 

the measured one.  

Based on the analytically identified transfer function the 

control law is determined based on the poles allocation for 

one or two basic modes; the prescribed poles to be assigned 

for the closed loop are chosen in a manner to double the 

damping factor of the bending mode and to increase by 2 Hz 

its own torque frequency in the idea of increasing the spread 

of the two modes as they will overlap during flutter. Fig. 6 

attests that in the closed loop (with control obtained by the 

receptance method) an attenuation of the bending mode of 

approx. 8 dB is obtained. 

 
Fig. 5. Frequency characteristics of the identified transfer function 

 

Fig. 6. Amplitude-frequency characteristics of the identified transfer 

functions, open loop vs closed loop. 

 

IV. A NEW APPROACH: TIME-DELAYED FEEDBACK 

CONTROL 

A simplified two degrees of freedom representation of an 

airplane wing is used in this work as the aeroelastic system 

for which flutter suppression is desired. The model is the 

well-known typical section with trailing edge flap [5], [14], 

[15]. The two degrees of freedom are the downward vertical 

displacement h of the elastic axis and a leading edge up 

angular rotation α about this line and are sketched in Fig. 7. 

These degrees of freedom correspond to the bending and 

torsion displacements of a high aspect ratio wing under real 
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loads [14]. 

 

 
Fig. 7. The aeroelastic model. 

The equations of motion describing the plunge and pitch 

during an aeroelastic response are derived starting from the 

Lagrange equations [13] 

( ) ( )
q

T U T U
Q

t q q

  −   −
− = 

   
 

 

(10) 

where the set of the generalized coordinates is  
T

,q h=  . 

The corresponding generalized forces are derived here as 

hQ = −  and Q = , where   and  are the lift and 

the moment, respectively. The kinetic energy is given by 

2 21 1

2 2
T mh mx h I = +  +   

(11) 

and the potential energy of strain is 

2 21 1
.

2 2
hU k k h=  +  

(12) 

Hence, the governing equations of the aeroelastic system 

under considerations are 

( )
0 0

0 0

h hm mx b c k
q q q F q

mx b I c k



   

−       
+ + = +       

      

 

3

0 0
( ) :

0
F q

 
=  

− 

 
(13) 

where m is the mass of the typical section, Iα is the mass 

moment of inertia about the elastic axis, xα is the 

dimensionless distance between the elastic center and center 

of mass and b is the semichord length. ch and cα are structural 

dissipation through the structural damping coefficients in 

pitch and plunge [13], [14]. The aerodynamic lift and 

moment are given by 

2 21

2
z z

h
U bc a b U bc

U U

   
=   + + − +    

  

 
      

(14) 

2 2 2 21

2
m m

h
U b c a b U b c

U U

   
=   + + − +    

  
 (15) 

where   is the density of the air, U is the velocity of the free 

air stream, ,z mc c 
are the lift and moment coefficients per 

angle of attack and ,z mc c 
 are the lift and moment 

coefficients per flap deflection and a is the dimensionless 

distance between the midchord and the elastic axis. After 

substituting the lift and moment into the equations of motion 

one obtains the standard, structural type, second order 

multidimensional linear time invariant system 

( ), :=
h

Mq Cq Kq B F q q

 
+ + =  +  

 
 (16) 

: ,
m mbx

M
mbx J



 

 
=  

 
 0 1: ( )C C C U= +   

( )

( )

2

2 3

1 2
:

1 2

z z

m m

Ch bC b a C U
C

b C U c b a C U

 

 


 +   −
 =
 − −  − 

  

0 12
: : ( )

0

h z

m

k bC
K K K U

k b C U






 
 = = +
 −  

  

2
2

02
: :

z

z

bC U
B B U

bC U



 

 −
 = =
  

  

(17) 

These equations serve as starting point for the 

development of the complete aeroservoelastic model. 

Introducing the actuation   as pure time delay     

( )sk t −   
(18) 

where sk  is the gain of aileron deflection β. Next, a modal 

transformation is made , where V is the modal vector 

matrix, and then a static cause-effect interaction by using the 

analogy between thermal and piezoelectric equations 

kq B=  is introduced. The following relations are 

successively obtained 

( )T T T TX V CVX V KVX V B V F X+ + =  +  

( )2 ˆdiag(2 ) diag( ) ( ),

1,..., 4, : [ ]

i i i

T T

X X X B t F X

i x X X

+   +  =  −  +

= =

     

Finally, we obtain the state space form of a nonlinear 

system with control delay 

( ) ( ) ( ) ( )( )cx t Ax t B u t F x t= + −  +            (19) 

The actuation β was introduced as a pure time delay 

( ).u t −   The mathematical model (19) will be studied further 

in the framework of equilibrium stability for nonlinear 

systems with delay on control.  

 

V. CONCLUSION 

A first contribution of the paper is the development and 

validation by tests in aerodynamic tunnel of a control law 

based on the receptance method. The purpose was to find an 

active control solution to increase the values at which flutter 

occurs. The tests were performed in the INCAS subsonic 

wind tunnel at various air velocities showing good 

attenuation results about 8 dB. Consequently, critical flutter 

speed can be increased by using a succession of such gains of 

control law. 

A second contribution consists in preparing a 

mathematical model of a nonlinear system with delayed 

control. The synthesis of the control law will be done in a 

later work by the predictive control method [16], [17].  
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