
  

  

Abstract—The paper presents aspects regarding six degree of 

freedom (6DOF) model used for attitude control of the 

three-stage micro-launcher (ML) with a payload of up to 50 kg. 

This work uses two separate attitude control models dedicated 

for different flight phases. In the ascending phases, we will 

control the attitude angles related to the start frame, and in 

injection phases, we will control the attitude angles related to 

the geographical frame. The results analyzed will be the flight 

parameters in longitudinal, in lateral, and in roll movement. 

Using this model, the attitude control of the launcher can be 

evaluated. The novelty of the paper consists in alternative 

attitude angles used for control and in description of guidance 

signal. 

 
Index Terms—Mathematical model, micro-launcher, attitude 

control, guidance signal  

 

I. INTRODUCTION 

The present work is a continuation of the paper [1] where, 

using three degree of freedom (3DOF) model, based on 

translational equation, the ascending phase of the 

micro-launcher (ML) was optimized and performance for 

Low Earth Orbit was evaluated. The present work proposes 

to develop the ML model adding the equations of the 

movement around center of mass (dynamic and kinematic) 

and the equations of the aerodynamic angles to obtain a six 

degree of freedom (6DOF) model. From the beginning, we 

must emphasize that the issue of launcher control is 

particularly important because, unlike rocket with fins, the 

launcher is naturally unstable, which leads to the 

impossibility of motion assessment without the loop control 

of the vehicle's attitude. The attitude control of ML can be 

separate in two problems. First consist in choosing the right 

frames to express the attitude angles and define desired 

angles in these frames. The second problems consist in 

obtaining a robust controller, which ensures pursuit of the 

desired angles by the accomplished angles. In the dedicated 

works, this problem has been addressed in different ways. In 

the classical work [2], the translational equations are written 

in quasi-velocity frame and in start frame, and the kinematic 

rotational equations are written in relation to the start frame, 

but attitude control problem does not be approached. In the 

recent work [3], the translational equations are written in 

Earth frame known as Earth-centered inertial (ECI) frame. 

The kinematic rotational equations are written also in relation 

to ECI frame, which complicates the description of the 
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guidance commands. Work [4] is dedicated to solve the 

second problem of the launcher control and to obtain a robust 

controller using   synthesis technique. In relation to 

nonlinear motion equations, the problem in this work is 

formulated in annex A in the body frame. The work is 

focused on linear form of motion equation, in particular the 

longitudinal plane. A practical approach is propose in work 

[5], where the main phases of ascension are defined, which 

then would help us with the 3DOF model approach of this 

paper [1]. Work [6], dedicated to reentry vehicle, proposed 

the use of no inertial geographical frame for express attitude 

of the vehicle, an idea that we will develop in this paper for 

the orbital injection phases. The present work intends to seek 

an answer for first formulated control problem, to choose the 

right frames with desired angles, and to obtain a preliminary 

solution for ML control. Summarizing, this present work 

evaluated the attitude of the launcher using two reference 

frames and 6DOF calculus model. In ascending fazes, we will 

use the attitude angles in order (3-2-1) in relation to the start 

frame, which allow us to consider nullifying the yaw angle, 

and the link matrix without singularity for vertical position of 

the ML. In contrast, for injection phases, we will use attitude 

angle in order (2-3-1) in relation to the geographical frame, 

which allow to transpose easily the desired attitude angle 

from the orbital frame to the body frame. As for the 

translational equations, although we have shown in works [7], 

[8] that it is possible to work in the linked start frame, the 

present work used the equations in quasi-velocity frame to 

obtain a 6DOF model compatible with the developed 3DOF 

model and to use the previously obtained results, especially 

regarding the optimization of the ascending phases. Because 

one of the basic ideas for a micro-launcher is simplicity and 

low cost and because the avionics and related software are the 

most expensive, the main purpose of the paper is to get a 

simple attitude control system based on tracking the desired 

attitude angles. Although the problem of the evolution of the 

launchers is not a very new one, with the exception of the 

Earth frame (ECI), which is the same, the rest of the reference 

systems used are different for each author or group of authors, 

which is why we recommend work [9] where the frames used 

are defined. 

 

II. LAUNCHER MOTION EQUATIONS  

Because the translational equations were presented in 

paper [1], in 3DOF model, we will briefly review the 

translational equations and focus on rotational equations.  

A. Translational Dynamic Equations in Quasi-Velocity 

Frame 

Summarizing the papers [1], [9] to obtain the translational 

equation in quasi-velocity frame, we start from vector 

equation:  
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where we have grouped aerodynamic force with thrust 

force, TFN += . g  is the gravity acceleration vector 

obtained from the so-called “J2” model [1], [2], with radial 

rg  and polar 
g components, and 

ca  is Coriolis acceleration. 

The rotational velocity of the quasi-velocity frame in relation 

the local frame 

VΩ  can be express in vector form:  

λχγΩ  +++= V
 (2) 

with the components along quasi-velocity frame:  

( )





sincossin

sinsincoscoscos*





+

++=l
 

( )





cossinsin

cossinsincoscos





+

−+−=

m
 

  +−= cossincosn
 

(3) 

Starting from relation (1), we have obtained in paper [1] 

the dynamic translational equation that describes the motion 

of center of mass of the launcher in quasi-velocity frame. 

B. Translational Kinematic Equations in Spherical 

Coordinates 

The dynamic equations are complemented with 

translational kinematic equations: 

 coscos
R

V
=  ;


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

cos

cossin

R

V
−= ; sinVR = . (4) 

which describe the position of center of the mass in 

spherical coordinates.  

C. Dynamic Rotational Equations in Body Frame 

Next, we will write the rotation equation in the body frame. 

Because the body frame is not inertial frame, applying the 

moment theorem, we obtain: 

( ) JΩAJUHJΩ 

−− ++= 11
, (5) 

where 
 AAA NML=H

 is the aerodynamic moment 

and 
 TTT NML=U

 is the thrust moment. 

In relation (5), we used the anti-symmetric rotation matrix: 
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and the inertial moment matrix: 
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where the inertial moments are given by: 
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If we have an axial symmetric configuration, as it is in the 

ML, the transverse moments are equal ( BC = ), and the 

dynamic rotational equations become: 
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D.  Aerodynamic Terms  

Taking into account the launcher geometrical symmetry, 

the polynomial form of the aerodynamic coefficients 

indicated in the works [10], [11] [12] is:  
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where the aerodynamic angles  , will be obtained later 

using differential equations. Using reference force and 

moment defined by standard [13], we obtain aerodynamic 

forces and moments: 

 

A

x

A CFX 0= ; 
A

y

A CFY 0= ; 
A

z

A CFZ 0= ; 

A

l

A CHL 0= ; 
A

m

A CHM 0= ; 
A

n

A CHN 0= . 
(10) 

E. Thrust Terms 

Considering that the roll command l  is given by separate 

reaction control system (RCS) and pitch m , and yaw n  

commands are given through the angular deflection of 

themain rocket motor by TVC. The thrust components 

according [9], [14] are given by: 

 

nm

T TX  coscos= ;

nm

T TY  sincos−= ; m

T TZ sin=  
 

 

(11) 

with moment command given by: 

lr

T dTL = ; mT

T

T

T TxZxM sin−−= ;  (12) 
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F. Rotational Kinematic Equations  

The kinematic equations complete the dynamic equations, 

allowing obtaining a first-order ordinary differential equation 

system.  

1) Euler kinematic equation in start frame 

If we want to obtain Euler angles for rotation from start 

frame to body frame, we will use the kinematic Euler 

equations: 

   TA

T
rqpW=  . (13) 

where the rotation velocity components of the body frame 

 T
rqp  are the solution of dynamic rotation equation 

(5), and the link matrix is given by: 


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One can observe that, due a rotation order (3-2-1) and 

orientation of the start frame, the link matrix AW  has no 

singularity for vertical position of the ML.  

2) Euler kinematic equation in geographical frame 

In order to obtain Euler angles between geographical 

frame and the body frame, we must take in consideration that 

the geographical frame is a non-inertial one. 

Considering the vector expression:  

GIBG ΩΩΩ += . (15) 

where  Trqp=Ω  is rotation of the body frame in 

relation to inertial frame, define by components in body 

frame, and  TbbbBG rqp=Ω  is rotation on the body 

frame in relation to geographical frame defined by 

components in body frame and  TgggGI rqp=Ω  is 

rotation of the geographical frame in relation to inertial frame, 

defined by components in geographical frame. 

In this case, matrix expression of the angular velocity of 

the body frame related to geographical frame is given by: 
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where  Trqp  are the solution of dynamic rotation 

equation (5), and the rotation matrix GA  in order (2-3-1) is 

given by relation : 
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where sincos;  sc  and the components of the rotation 

of the geographical frame are given by: 
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with: 

ps +=   . (18) 

The derivatives  ,  as derivatives of latitude and 

longitude angles along geographical frame were previously 

defined by relations (4) for translational equations.  

In this case, we can write kinematic Euler equations: 
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T

ggg rqpW= 
, 

(19) 

where the rotation velocity components of the body frame 

 Tbbb rqp  related to geographical frame are 

previously defined by (16), and the link matrix is given by: 
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One can observe that, due the rotation order (2-3-1) and the 

orientation of the geographical frame, the link matrix GW  

has singularity for vertical position of the ML. For this reason, 

we use Euler angles relatively to start frame in ascending 

phases and Euler angles relatively to geographical frame in 

injection phases. The equations (19) that express attitude in 

geographical frame are equivalent to the equations (13) that 

express attitude in the start frame and theoretically can be 

analytically written in relations that link that two groups of 

angles. But, the cod robustness, in 6DOF model, will be used 

to solve simultaneously both groups of equations, and in 

different flight phases, the cod robustness will be used 

alternatively for the control, which is one of the groups of 

angles.  

G. The Aerodynamic Angles  

From the previous relation, we can observe that, in order to 

obtain the components of the aerodynamic and thrust force in 

quasi-velocity frame, we need the aerodynamic angles 
*,   and  . To get them in the form of differential 

relationships, we can start from vector relation:  
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Projecting along axis of body frame result:  
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where IA is the rotation matrix in order (3-2-1) from start 

frame to body frame [9], 
 A is rotation matrix from 

quasi-velocity frame to the body frame [9], and 
A  is 

rotation matrix from the aerodynamic frame to the body 

frame [9].  

Replacing the rotation matrices where we get the following 

system of differential equations:  
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with rotation velocity along body axis:  

pppp −=
; pqqq −=

; prrr −=
. (25) 

where the components of the rotation velocity in the body 

frame rqp ,,  result from dynamic equation around center 

of mass (5), and components of the angular velocity in 

quasi-velocity frame 


nml  ,, **
 are given by relation (3).  

The translational equations, from [1] as 3DOF model, 

together with rotational equations (9) and (13) or (9) and (19) 

with auxiliary relations (24) describe uncontrolled movement 

of the launcher, grouped in the so-called 6DOF model. As we 

said in the introduction, because the launcher is unstable, the 

system cannot be integrated in this form, and it is necessary to 

add the control loop that will be the subject of the next item. 

 

III. RELATIONS FOR GUIDANCE AND CONTROL 

In order to obtain the guidance command for ML, we start 

with the simple forms of the command signals: 
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(26) 

with the significance 
u  (roll signal), u  (pitch signal), 

u  (yaw signal), u  (incidence signal), u  (sideslip 

signal), nu  (pitch angular deflection signal), and mu  (yaw 

angular deflection signal). Using signal commands, resuming 

paper [10], [15], [9] we obtain the guidance commands: 

A. Ascending Phases 

In these phases, the guidance commands are based on 

attitude angles related to the start frame having the form: 
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with the relative parameters: 

ddd  −=−=−=
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;~;
~

 , 
 (28) 

During this phase, a coasting sequence may occur, when 

the thrust is stopped and launcher has ballistic evolution. In 

this case, only roll control is ensured by RCS. Switching from 

one phase to the other, the desired angles d  d  values can 

be considered as flight parameters in the ascending evolution 

and can be the subject of a parametric optimization. The end 

of the ascending evolution is considered when we reached the 

flight parameters (velocity, position, attitude) that allow the 

start of orbital injection maneuvers. 

B. Injection Phases 

In these phases, guidance commands are based on attitude 

angles related to the geographical frame having the form: 
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with the relative parameters: 
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~

;~;
~

 , 
(30) 

where the reference values are ddd  ; . 

As shown in paper [1] for the orbital injection, the optimal 

maneuvers can be obtained from Gauss perturbing equations 

[16]. Defining 1 , which is the angular deflection of the 

thrust vector, relative to the perpendicular direction on r  in 

the orbit plane and 2 , which is the angular deflection of the 

thrust vector outside the orbit plane, we have obtained: 

1) Optimal maneuver for increase major semiaxis: 


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2) Optimal maneuver for decrease eccentricity: 
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International Journal of Modeling and Optimization, Vol. 9, No. 6, December 2019

313



  

3) Optimal maneuver for increase/decrease orbit 

inclination: 

01 = ;
2

2


 =  (33) 

where e  is the eccentricity,   is the eccentric anomaly, 

22 1 e−= , and cos1 ef −= . 

Taking into account that through a simple rotation along 

gy  axis with air-path track angle   we can overlap orbital 

frame with the geographical frame, we can impose optimal 

pitch and yaw command for injection in circular orbit: 

1 =d ;  cos2=d  (34) 

where: 

( )diik −−= 32  (35) 

with i  (orbital inclination angle) and di  (desired inclination 

angle). 

For guidance, command application is necessary to know 

the gain constants introduced by relations (26) when we 

expressed the command signals in simple form. These values 

will be specified in the next item. 

In order to obtain angular deflection for TVC and an 

equivalent roll command, considering the system delay, we 

define the actuator equation system in scalar form: 
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where the gains are included in the command signals (26). 

The time constants for the relation (36) will be specified in 

the next item. 

 

V. INPUT DATA FOR ML MODEL 

The input data used are taken from paper [1]. In Fig. 1, we 

have P/L (payload) and ST (stage). All sizes are in meters.  

 

 

Fig. 1. ML configuration [1]. 

In Fig. 2, mass (m), center of mass (xcm), inertial moments 

(A,B), and stage operating parameter (itr) in time were 

presented. 

 

 
Fig. 2 Mass characteristics. 

 

From Fig. 2, due to the model hypothesis, we can observe a 

linear variation of the mass characteristics between 

characteristic points. 

In Fig. 3, thrust (T) and stage operating parameter (itr) in 

time were presented. 

 

  
Fig. 3. Thrust characteristics. 

 

From Fig. 3, we can observe the irregularly of the thrust 

force for the first two stages due to geometry of the solid 

propellant. In contrast, the thrust force for the third stage is 

constant, due to liquid rocket motor.  

The gain values used in command signals from relation (26) 

are:  

.10=
k ; .80=

k ; .800=
k ; .20=pk ; 

.60=qk ; .60=rk ; 

.20=
k ; .20=

k ; .5=nk
  .5=mk

  

The time constants for the relation (36) are: 

1.0=== nml    
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Fig. 4. Operation of the stages and guidance phases. 

 

VI. TEST CASE DESCRIPTION 

As test case, we choose a polar orbit, with the following 

initial conditions: geographical orientation, azimuth angle 

= 900  (to the North); geocentric latitude, = 0  

(equatorial latitude); altitude, mh 10 = ; initial velocity, 

]/[10 smV = ; and initial pitch angle, = 900 . Payload 

mass is ][50 kgMPL = . Regarding flight parameters as can 

be seen in Fig. 4, we have two sequences of flight events: the 

first is link on stage operation and the second on guidance 

phases. Typical for three-stage launcher, from the point of 

view of stage operations, we have the functionality of three 

rocket engines separated by two coasting duration. The first 

coasting, between the first stage and second stage, has a small 

duration necessary for stage separation. The second coasting 

between the second and third stages has a significant duration 

in order to increase altitude and ensure better functionality of 

the third stage with liquid engine. Regarding guidance phases, 

we have two groups: first for ascending flight and second for 

orbital injection. Ascending flight starts with a vertical 

evolution, is followed by inclination manoeuver to an 

imposed pitch angle, continues with an evolution with 

constant pitch angle, and is finalized by gravity turn 

evolution. Orbital injection contains two phases: first for 

increase of major semiaxis and second for decrease of 

eccentricity. The flight parameters were the subject of 

optimization for 3DOF model, being described in paper [1]. 

For the end time of vertical flight st 21 =  and the end time 

of the inclination decrease st 72 = corresponding to the 

minimal value of performance index defined in paper [1], we 

obtained the following: duration of inclination flight with 

constant pitch angle ][101 s= ; coasting duration between 

the second and third stage, ][7.912 s= ; increasing major 

semiaxis duration on the third stage  s9.1723 = ; and 

pitch imposed for the first inclination = 581 .These 

parameters lead to a circular polar orbit with the altitude 

][496 kmhp =  and inclination = 80i . The test case 

defined is summarized in Fig. 4. 

Using these parameters, we obtain a circular orbit. The 

flight parameters are described in the next item. 

 

VII. RESULTS 

Fig. 5 shows the pitch thrust deflection angle (dn), the 

climb angle (ga) and pitch angle (Ted (desired) and Te 

(accomplished)), and incidence angle (alfa). Guidance phase 

(ic) was also represented. One can observe that thrust 

deflection angle (dn), except in the initial phases, is generally 

null, with some fluctuations when the ML changes the 

guidance phase. The pitch accomplished angle follows the 

pitch desired angle, and the climb angle is close to the pitch 

angle. The incidence angle is small except for the second 

phase when ML tilts to the desired pitch angle and during the 

sixth phase (circularization). 

 

 
Fig. 5. Longitudinal motion parameters.  

 

Fig. 6 shows the yaw thrust deflection angle (dm), the yaw 

angle (psd (desired) and ps (accomplished)), the glissade 

angle (beta), the air-path track angle (hi), the orbit inclination 

(inc), and guidance phase (ic). We can observe that similar 

longitudinal motion in the yaw thrust deflection is generally 

null, except for the beginning of the fifth phase when the 

injection phases begin. The yaw accomplished angle (ps) 

follows the yaw desired angle (psd), which finally assures the 

desired orbit inclination (ic). The glissade angle has 

significant values only in injection phases.  

 

 
Fig. 6. Lateral motion parameters.  

 

Fig. 7 shows the roll velocity (p), roll angle (fi), equivalent 
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roll deflection (dl) controlled by RCS, and the guidance 

phase parameter (ic). One can observe that, despite the 

oscillation, the roll parameters remain in a restricted area 

around the zero value. 

 

 
Fig. 7. Roll motion parameters. 

 

VIII.  CONCLUSIONS 

As we said at the beginning, the paper’s objective is to 

build a 6DOF model able to solve attitude control problem of 

the ML. In order to solve this problem, similar with paper [1], 

we separated the launcher's evolution in two groups of phases, 

the first group being the ascending phases until the launcher 

or the upper stage of it is in the optimal position to make 

orbital injection and the second phases group when the upper 

stage performs orbital maneuvers and payload injection. For 

each group of phases, we developed a separate calculus 

model. For the ascending phases, we controlled the attitude 

angles in relation to the start frame, and in injection phases, 

we controlled the attitude angles in relation to the 

geographical frame. Despite different models used for 

controlling each flight phases, for unitary approach, we 

actually use a unitary 6DOF model with translation equation 

in quasi-velocity frame and dynamic rotation equation in 

body frame. The difference between the flight fazes is done 

by rotation kinematic equation. The test case build and the 

results obtained prove the correctness of the developed model, 

including the alternative used of the different attitude angles 

for different flight phases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

[1] T. V. Chelaru, "Performances evaluation for microlauncher, 

mathematical model," International Journal of Modeling and 

Optimization, vol. 8, no. 4, pp. 197-201, Aug 2018. 
[2] A. A. Лебедев, “ГЕРАСЮТА,Н.Ф., Балистика ракет,” Mosквa: 

Издателъство Машиностроение, 1970. 

[3] D. Wei, "Dynamic modeling and ascent flight control of ares-I crew 
launch vehicle,” Graduate Theses and Dissertations., Iowa State 

University, Iowa City, 2010. 

[4] G. D. Enrique, "Design of a robust controller for the vega TVC using 
the miu synthesis technique," Universitat Politecnica de Catalunya 

Barcelonatech, Barcelona School of Industrial Engineering, Noordwijk, 
2011. 

[5] J. M. Sullivan, "Trajectory optimisation for an asymetric launch 

vehicle," Massachusetts Institute of Tecnology, Massachusetts, 1990. 
[6] P. Gallais, Atmospheric Re-Entry Vehicle Mechanics, Springer, 2007.  

[7] T. V. Chelaru, C. Barbu, and A. Chelaru, "Dynamic flight and control 

for suborbital launcher for testing," in Proc. 1st International 
Conference New Challenges în Aerospace Sciences-NCAS 2013, 

Bucharest, 2013. 

[8] T. V. Chelaru and A. Chelaru, "Small orbital launcher, performance 
evaluation," in Proc. International Conference on Aerospace, Robotics, 

Manufacturing Systems, Mechanical Engineering, Mechatronics, 

Energy, Bioengineering and Neurorehabilitation (OPTIROB 2016), 
Jupiter, Constanta, 2016. 

[9] T. V. Chelaru and C. Mihailescu, Lansatoare Şi Sisteme de Lansare - 

Note de Curs, Bucureşti: Ed. Politehnica Press, 2017, p. 330. 
[10] T. V. Chelaru, “Dynamic flight - Guided missile,” 2nd edition revised 

and added), Bucureşti: Ed. Printech, 2004, p. 434. 

[11] T. V. Chelaru, “Dinamica zborului – Îndrumar de proiect,” Bucureşti: 
Ed Politehnica Press, 2013, p. 161. 

[12] J. Nielsen, Missile Aerodynamics, New-York, Toronto, London: 

McGraw-Hill Book Company, Inc, 1960. 
[13] Geometrical and Aerodynamic Characteristics of the Rocket - 

Nomenclature, Bucureşti, 1995. 

[14] C. Rotaru and I. Sprinţu, "State variable modeling of the integrated 
engine and aircraft dynamics," in Porc. AIP Conference Proceedings, 

vol. 1637, no. 1, pp. 889-898, 2014. 

[15] T. V. Chelaru, C. Barbu, and A. Chelaru, "Mathematical model in 
quasi-velocity frame for small launcher, technical solutions," in Proc. 

the 7th International Conference on Recent Advances in0 Space 

Technologies, Istambul, 2015. 

[16] K. C. Howell, D. J. Grebow, and Z. P. Olikara, "Design using gauss’ 

perturbing equations with application to lunar South pole coverage," 

Paper AAS 07-143. 

 
Teodor-Viorel Chelaru worked 19 years in research 

activity in field of guided missile in Electromecanica - 
Ploieşti. During this period, he led a research laboratory 

of aerodynamics, dynamic flight and control and 

participated to more than 10 projects, 5 of them being 
successful finalized. Between 2000 - 2016 he worked in 

CN Romarm SA in research department. After 2005 he 

come in University Politehnica of Bucharest where 
become an associate professor. Now he is a professor in UPB, and CCAS 

Manager.  

International Journal of Modeling and Optimization, Vol. 9, No. 6, December 2019

316


