
  

  

Abstract—Waterflooding is the oldest and most extended 

method to enhance recovery from oil reservoirs in primary 

production with low natural energy in the Golfo San Jorge 

Basin, Argentina. Water injection has proven to be an effective 

method to enhance recovery from oil reservoirs for project 

CM-123-A at Cañadón Minerales field, Golfo San Jorge Basin. 

Defining the optimized injection rates and injection patterns, 

which depend on the geological structure of the reservoir, is an 

essential operational and economical decision for reservoir 

management. 

  In this paper, the capacitance resistive model (CRM), which 

takes into account implicitly the geological and 

reservoir parameters, is used to find inter-well connectivity by 

layer (independent reservoir), optimize injection rates with the 

complement of net sand maps and petro-physical and 

production test data, and check the consistency of the solutions 

with all the available data to support the decisions. 

The CRM receives the injection rates variations as 

input signal, from the different reservoirs, whereas the 

producer responses determine the injector/producer pair 

connectivity quantitatively. The different runs of the CRM can 

be used to detect how some abrupt changes in the artificial lift 

of the producers affect the connectivity and propose some 

improvements. Also, this model is used to predict gross 

production for individual reservoir, together with a multilayer 

FFM (fractional flow model) can be estimated the oil 

production for each individual reservoir, identify the potential 

from different reservoirs and improvements in the injection 

rates to optimize the oil production. The results reveal that the 

CRM has the capability to match the production history to 

calibrate the dynamical effective parameters and with this 

characterization optimize the injection rates of the different 

wells injectors and reservoirs, during the immiscible flooding, 

understand water injection movement, and as accessory the 

joint validation of the net sand maps. The CRM was able to 

detect inter-well connectivity for producers connected not only 

at the first line but also at the second line, with a clear response 

in the field. 

 
Index Terms—Reservoir engineer, mature waterflooding, 

multilayer CRM (capacitance resistive model), multilayer 

fractional flow model, nonlinear optimization, mathematical 

programming, AML, gams, conopt, octave, R. 

 

I. INTRODUCTION 

It is common to evaluate the dynamic behavior from 

 

 

 

waterflooding project through simple plots of field 

production data to full-field numerical reservoir simulation 

models. The latter requires an extensive set of data, such as 

PVTs (physical properties of the fluids in the function of the 

pressure and temperature) and petro-physical parameters. 

These data are often not available for typical waterflooding 

projects at Golfo San Jorge Basin consisting of multiple 

sands, many of which are independent hydraulic units during 

the times of water injection response. Also, history matching 

and forecasting for these models are complex with large 

computing time and lack of reliability due to high uncertainty 

with reservoir parameters, with the hardware, and software 

that currently is available. 

The project CM-123-A is a multiple sand commingled 

production. Sands water injection is done selectively through 

mandrels and regulated valves. Due to the limitations 

described above in evaluating the waterflooding project 

CM-123-A, an alternative Parametric mathematical 

programming (PMP) model, i.e., CRM, was tested. This PMP 

model, i.e., CRM, is used to simplify the problem, but 

keeping the influence of each sand at each injector over the 

neighbor producers at the first and second lines (if is 

necessary). The goal of this model is to calculate the 

waterflooding production only at the maturity stage or when 

there is enough information to conclude that the main driven 

energy for the project is obtained from waterflooding. At the 

maturity stage, it is assumed that the effect of primary 

production is low due to project maturity. This simplification 

is also assumed to have used a multilayer fractional flow 

model (FFM) [1], [2] to calculate oil production from the 

layer gross production at the CRM. The workflow starts 

collecting necessary data to build the multilayer CRM. The 

available data includes the following: 

a) Tank well production tests. Sometimes production test 

by sand, measured using PLTs [1], is available 

b) Injection flow measurement at each sand layer for each 

injector. 

c) History of well intervention for each producer and 

injector. This data reports for each producers and 

injectors the open or shut-in sands time evolution. 

d) Projected sand coordinates; vertical wells only require 

one pair of values. 

The first step is to process the information and build the 

multilayer CRM in a framework of an optimization problem. 

The details of the methodologies can be found at [1], [3]. The 

problem consists on solving a continuous variables nonlinear 

optimization problem with a local optimum criterion using 

the AML GAMS with CONOPT (GAMS) solver. This is 

done to calibrate the parameters with the history matching of 
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the total production. 

The next stage is building, for each sand layer, the FFM 

using the same optimization problem framework as above 

and then calibrating the parameters of FFM with oil 

production history. 

Qualitative consistencies of the model solutions against 

structural maps, net sand maps, and production history were 

checked. The production of each sand and each well from the 

model is compared with that of the net sand calculated from 

petro-physical analysis, as well as production test from each 

sand, if available. It is suggested that no anomalous solutions 

exist, for example, that most well production is not calculated 

from a sand layer that has actually zero net sand or very low 

values of net sand coincident with a dry test of production (if 

available). Then the model solution is considered to have a 

good qualitative agreement with all the available data. This is 

important for decision support. 

 

II. MODEL DESCRIPTION 

There are several CRMs that can be learned at [1], [3], [4], 

[5], with each having different approaches. The use of a 

multilayer CRM with dynamical inter-well connections, in a 

simple way, is extensive and well described in [3]. The option 

used in this paper to infer inter-well connections and gross 

production by layer is CRMP (capacitance resistive model 

with producer-based representation of the reservoir), with 

dynamical connectivity, and without cross-flow between 

layers. 

In this paper, we use a similar notation and terminology as 

[3]. Let 𝑖, 𝑗, 𝛼, 𝑘 be the index for injectors, producers, layers, 

and time, respectively. If 𝑆𝑗𝛼 (k) is a binary variable 1 or 0 

that indicates if a perforation of producer 𝑗 and layer 𝛼  is 

open or closed at time 𝑘; 𝜏𝑗 is the response time of producer 𝑗; 

𝑓𝑖𝑗𝛼(k)  is the inter-well connection between injector 

𝑖 ,producer 𝑗  and layer 𝛼  at time  𝑘 ; 𝑋𝑗𝛼(k)  is the gross 

production from producer 𝑗, layer 𝛼 at time 𝑘 and 𝐼𝑖𝛼(k) is 

the water injection from injector 𝑖, layer 𝛼 at time k. Then the 

set of equations for time evolution of 𝑋𝑗𝛼(k)is: 

 

If 𝑆𝑗𝛼 (k)>0, k>1 

𝑋𝑗𝛼(k) = 𝑋𝑗𝛼(k-1) ∗ 𝑒
−

1

𝜏𝑗 + (1 − 𝑒
−

1

𝜏𝑗) × 𝐹𝑖𝑗𝛼(𝑘 − 1)  (1) 

  𝐹𝑖𝑗𝛼(k-1)= ∑ 𝐼𝑖𝛼(k-1) ×𝑖/𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑗 𝑓𝑖𝑗𝛼(k-1) (2) 

𝑋𝑗𝛼(𝑘) = 0 in other case (3) 

 

where the index of the sum in (2) is over 𝑖/𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑗 . 

Subsequently, a Euclidean distance needs to be defined, in 

this way only consider neighbors injectors 𝑖  located in a 

distance minor or equal than 𝑅 of the producers 𝑗. Also, if all 

neighbors injectors 𝑖 to producer 𝑗 at distance minor than R, 

has 𝐼𝑖𝛼(k)  =0 then 𝑋𝑗𝛼(𝑘) = 0 even 𝑆𝑗𝛼 (k) >0 for this 

producer 𝑗. This means that only the production due to the 

influence of the waterflooding process needs to be calculated. 

In this paper, this condition is reliable because the layers that 

are not selected for water injection have low initial fluid rates, 

compared with those selected for waterflooding, and almost 

without vertical connection between layers, considering the 

time of response of the waterflooding process and the very 

late implementation of the waterflooding process. So, those 

sands are considered to have a negligible contribution to the 

production due the high depletion for the maturity of the 

project. The distance 𝑅 is also a possible change for each 

producer 𝑗 that requires more distance in order to match the 

total production coincident with the layers with great areal 

extension. 

For the time evolution of 𝑓𝑖𝑗𝛼(k), if 𝑆𝑗𝛼 (k)>0: 

 

𝑓𝑖𝑗𝛼(k) = 𝑓𝑖𝑗𝛼(k-1) if  𝑆𝑗𝛼 (k) =  𝑆𝑗𝛼 (k-1) (4) 

 ∀ 𝑗 /𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑡𝑜 𝑖 
 

Unless 

Open or shutting a layer. 

An abrupt leap or drop in the gross production, coincident 

with a change in the artificial lift system for the producer or 

the well shut-in. 

 

  𝑓𝑖𝑗𝛼(k) = 0 𝑖𝑓  𝑆𝑗𝛼 (k) = 0 (5) 

 

Finally, the single objective function is minimized as 

follows: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ (𝑋
𝑗𝛼

(k) − 𝑄
𝑗
(𝑘))

2
𝑗,𝛼,𝑘   (6) 

 

where 𝑄𝑗(𝑘)  is the historical gross production from 

producer 𝑗  at time k . Also the use of (6) and aggregate 

restrictions is possible if some measures of PLTs (production 

logging tests) in some producer 𝑗𝑞 at time 𝑘𝑟 is available. 

Solving the optimization problem considering the 

variables with the defined constraints, can be obtained as 

𝑓𝑖𝑗𝛼(k), 𝜏𝑗 , 𝑋𝑗𝛼(k=1) . This optimization problem can be 

solved using GAMS (General Algebraic Modeling System) 

and CONOPT3/4 solver, the algebraic language, of which 

allows writing the problem in a simple and general form. 

Because enormous amount of equations and restrictions are 

needed in the model in the language of GAMS, the model 

was generated using Octave and R. Then GAMS–

CONOPT3/4, with reference in this type of optimization 

problem at [1] and [3], were used in this paper. 

The next step was to calculate the total oil production by 

sand, which is related with the sand gross production 

calculated using the CRMP multi-sand model with dynamical 

connectivity and without cross-flow between layers. In this 

work, it is used a similar empirical power law technique at [1], 

[2] and [6]. 

The oil production calculated for the model is given through 

the power law: 

 

𝑂𝑖𝑙𝑗𝛼(k) = 𝑋𝑗𝛼(k)/(1 + 𝑎𝑗𝛼 × (𝐶𝑢𝑚𝑋𝑗𝛼(𝑘) + 𝑏𝑗𝛼)𝑐𝑗𝛼 )) 

𝐶𝑢𝑚𝑋𝑗𝛼(𝑘) = (∫ 𝑋𝑗𝛼(k-1) × 𝑑𝑥)
𝑘

1
  (7) 

 

where 𝑂𝑖𝑙𝑗𝛼(k)indicates the oil production from producer 𝑗 

and layer 𝛼 at time k. The 𝑎𝑗𝛼 > 0, 𝑏𝑗𝛼 > 0, 𝑐𝑗𝛼 > 1 indicate 

the empirical exponents for producer 𝑗 and layer 𝛼. Here, it is 

possible to calculate oil production from sands with the 

influence of the waterflooding process. The contribution of 

sands to oil production without water injection is considered 

negligible. This is a reliable assumption for the majority of 

the producers 𝑗. However, there are a few cases that exists 

contribution to the total oil production from a sand  𝛼 , 
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producer 𝑗 without waterflooding and this contribution may 

be not negligible compared with the total oil production of 

the producer  𝑗 . Again, the use of (7) and aggregate 

restrictions is possible if some measures of PLTs in some 

producer 𝑗𝑞 at time 𝑘𝑟 are available. 

The single objective function is minimized as follows: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ (𝑂𝑖𝑙𝑗𝛼(k) − (𝑂𝑖𝑙 𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑗(k))2
𝑗,𝛼,𝑘 (8) 

 

where (𝑂𝑖𝑙 𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑗(k)is the historical gross production 

of oil from producer 𝑗 at time k. 

Solving the optimization problem using the variables with 

the defined constraints, the parameters 𝑎𝑗𝛼 , 𝑏𝑗𝛼 , 𝑐𝑗𝛼  can be 

obtained. The optimization problem is again solved using 

GAMS-CONOPT3/4 solver. Again, due to the enormous 

amount of equations and restrictions needed in the model, the 

model was generated using Octave and R. 

 

III. MODEL CALIBRATION 

A. History Match Gross Production 

The waterflooding project CM-123-A has 41 producers, 21 

injectors, and 18 sands on injection. The project has been 

under waterflooding for almost 300 months. The complete 

waterflooding project data was used to adjust the CRMP 

model. 

 

 
Fig. 1. Adjustment of field total production. 

 

 
Fig. 2a. Example of producers with good adjustment. 

 

 
Fig. 2b. Example of producers with acceptable adjustment. 

 
Fig. 3. Example of producers with poor adjustment. 

 

Figure 1 presents a very good matching for total gross 

production for the whole project. The adjustment for each 

producer 𝑗was classified as good, acceptable, or poor. Ninety 

percent of the producers have a good or acceptable 

adjustment coincident with a good waterflooding response, 

and 10% of the producers have a poorer adjustment showing 

poor response. Figure 2a and 2b show examples of producers 

with good and acceptable adjustment, whereas Fig. 3 shows 

examples of producers with poor adjustment. 

The results are consistent because the model can only 

calculate the total production from the predominant energy, 

in this case, waterflooding. The model is calibrated with the 

parameters 𝑓𝑖𝑗𝛼(k), 𝜏𝑗that minimize Equation (6).The model 

solutions are quality control against net sands maps, fault 

system, and production tests for individual layers (where data 

are available). It is assumed that characterization of gross 

production time evolution from producers as function of the 

water injected at each sand of each injector is possible. 

B. History Match Oil Production 

 

 
Fig. 4. Adjustment of field oil production. 

 

Figure 4 presents a very good match between total model 

oil production and total actual oil production. This good 

match is due to the fact that total model oil production has a 

strong dependence on total cumulative production, as 

presented in Equation (7). Typically, the adjusted oil 

production rate has a lower quality than the gross production. 

This can be attributed to wells that oil production is from 

sands 𝛼 that are not under waterflooding. These sands can 

have lower water cut, and then, the contribution to the oil 

production is not negligible. Also, the adjusted oil production 

depends on the gross production adjustment, and drags some 

deviation. Also, for gross production, the adjusted oil 

production for each producer 𝑗  was classified as good, 

acceptable, or poor. 
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Fig. 5a. Example of producers with good adjustment. 

 

 
Fig. 5b Example of producers with acceptable adjustment. 

 

 
Fig. 6. Example of producers with poor adjustment. 

 

Figures 5a and 5b show examples of producers with good 

and acceptable adjustment, whereas Fig. 6 shows examples 

of producers with poor adjustment. 

Eighty five percent of producers have a good or acceptable 

adjustment coincident with a good waterflooding response, 

and 15% of producers have a poorer adjustment showing 

poor response. 

C. Validation 

The validation objective is to analyze the model 

forecasting capacity, with emphasis on the oil production. 

To prove the model capacity to forecast a blind test with 

historical production was done. Four scenarios were chosen: 

12 months, 24 months, 36 months, and 48 months. The 

maximum time for prediction was limited to 48 months 

because the historical data for the producer’s interventions 

are noisy, i.e., events, such as injectors cleaning or 

producer/injector reparations, shut-in of producers, or 

injectors have uncertainty so model boundary conditions may 

change strongly. In each period of the forecast, these events 

are not present. The cumulative of these events are not 

enough to produce strong deviations. Also is a reasonable 

time to estimate forecast production oil curve for the 

economics analysis. 

The validation for each scenario is very simple using the 

historical match with production history for a given period 

and forecasting for the rest. For each scenario the model 

calibrates, the relevant parameters for the multilayer CRM 

and FFM will all the data up to 48 months before present time, 

for the 48 months case. Then model forecast the production 

for the last, uncalibrated, 48 months, and compare with actual, 

i.e., real production. The other scenarios, 36, 24, and 12 

months, were performed in a similar way. The 0 month 

scenario corresponds to matched model with all historical 

production up to present. 

 

 
Fig. 7. Comparison between months of validation in the oil production 

forecast. 

 

 
Fig. 8. Quality check of history match FFM. 

 

 
Fig. 9. Check of forecast from FFM. 

 

The results are presented in Figure 7 wherein an acceptable 

agreement between the model forecasting for the different 

time ranges (12, 24, 36, and 48 months) can be seen. 

The normalized mean square error (NMSE) for each 

producer is used as a measurement of the goodness of fit 

between the forecast and actual data and is given as: 

 

𝑁𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙 =
∑ (𝑄𝑗,ℎ𝑖𝑠𝑡 − 𝑄𝑗,𝑓𝑜𝑟)2

𝑗

(𝑄𝑗,ℎ𝑖𝑠𝑡 − �̅�𝑗,ℎ𝑖𝑠𝑡)2
                (9) 

 

where 𝑄𝑗,𝑎𝑐is the historical oil production,𝑄𝑗,𝑓𝑜𝑟  is the model 

forecast oil production, and �̅�𝑗,𝑎𝑐 is the historical mean oil 

production in all cases for the 𝑗 -th producer. The same 

criteria adopted at [7] are applied. If the NMSE of each 𝑗-th 

producer is <0.7, then the history matched, and model 

forecast oil production from FFM are considered valid or 

acceptable. The median of the NMSE of all 𝑗-th producer 
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represent the reported quality of adjustment. The results are 

presented in Figs. 8 and 9. 

Figures 8 and 9 show the ability of the FFM to predict oil 

production. Clearly, the ability for the Model in History 

Match is better than forecast. In the forecast, the percentage 

of 𝑗-th producer with the NMSE < 0.7 is always greater than 

50%, and these producers have more than 75% of the weight 

in the total oil production of the field. The best forecast 

quality agreement is for 12 months, but even 48 months is 

reasonable. Also, to verify the ability of the model to forecast 

production, the results are compared with those of traditional 

decline curve analysis (DCA). DCA is a common method of 

forecasting waterflooding projects and the most accepted 

way in the Oil Reserves Certification, which directly impacts 

the value of a company. 

 

𝑁𝑀𝑆𝐸𝐷𝐶𝐴 = ∑ (𝑄𝑗,𝑎𝑐 − 𝑄𝑗,𝐷𝐶𝐴)2
𝑗 /(𝑄𝑗,𝑎𝑐 − �̅�𝑗,𝑎𝑐)2  (10) 

 

To prove that CRM and FFM can forecast production, in 

the short term, better than traditional DCA method, the DCA 

NMSE is calculated using Equation (10). The results of the 

comparison between 𝑁𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙  and 𝑁𝑀𝑆𝐸𝐷𝐶𝐴  are 

presented in Fig. 10, for the 12 month, 24 month, 36 month, 

and 48 month scenarios. 

 

 
Fig. 10. Quality check of forecast from DCA. 

 

Figure 10 shows the ability of the DCA to predict oil 

production. The prediction of the DCA is always worse than 

that of FFM, considering the median of the NMSE of all 𝑗-th 

producers, which represent the reported quality of 

adjustment. 

D. Heuristic Consistency Check of the Solutions: Analysis 

of the Model Oil Production by Layer and Net Sand 

Interpreted 

The first step is to analyze the relationship between the 

production by sand for each producer from the FFM, to the 

well logging calculated ℎ𝑘 (net sand) value. 

This relationship implies the use of Darcy’s law that relates 

net sand to oil production among other variables. The other 

necessary variables, PVT properties, absolute permeability, 

relative permeability, oil saturation, skin, reservoir pressure, 

and bottom hole pressure, are not available for the CM-123-A 

project. Also, to properly understand the relationship (ℎ𝑘 and 

oil production by layer), the time dynamical events (i.e., 

shut-in of producers, lost in the injectivity of the injectors due 

to formation damage) of the waterflooding project evolution 

and the water injection design and strategy need to be 

considered. In fact, the detection of strong deviation from the 

relationship between ℎ𝑘  and oil production by layer (i.e., 

very low oil production by some layer𝛼 with many producers 

with good values of ℎ𝑘 ) could be related to a bad water 

injection strategy and could define possible optimization of 

the waterflooding project. This heuristic analysis can be used 

to compare model calculation of oil production by layer with 

ℎ𝑘 estimations and to detect anomalies in either one to 

improve the water injection strategy. Because a reduced 

physical model instead of a complete numerical simulation is 

used for this paper, and also because the only reliable data is 

ℎ𝑘for this paper, we will analyze the average performance in 

oil production by sand for the producers with respect to its 

ℎ𝑘. 

To represent the oil production performance by sand for 

each producer, it is calculated oil cumulative production from 

the FFM and divides by 𝑡, the total active production months 

that is called 𝑁𝑝𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 .Also, for each sand from project 

CM-123-A, considering all the wells that the sand is present 

and with water injection, the net sand values ℎ𝑘  can be 

divided into several intervals, from 0 m to maximum, i.e., 0–

2, 2–4, and 4–6 m. Then, grouping the wells that are in a 

given sand layer and range, the average, or median 

of  𝑁𝑝𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  can be calculated, i.e., 

[𝑁𝑝𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑]𝑎𝑣𝑒𝑟𝑎𝑔𝑒 .Table I presents the calculations for 

more productive layers. It can be used to verify that model 

calculates statistically best cumulative production for sands 

that have the best net sand ℎ𝑘. 

 
TABLE I: OIL PRODUCTION STATISTICAL ANALYSIS BY SAND AND 

ℎ𝑘(NET SAND) 

Layer 
Interval of 

ℎ𝑘(m) 

[Npweighted]av

erage 

(m3/month) 

 

N° of well 

producers 

in each 

interval 

mbCO-rB100 [0,2] 0  1 

mbCO-rB100 (2,4] 26.94  7 

mbCO-rB100 (4,6] 21.51  22 

mbCO-rB100 [6,8] 65.46  8 

mbCO-rB0 [0,2] 9.33  5 

mbCO-rB0 (2,4] 18.69  11 

mbCO-rB0 (4,6] 97.02  3 

mbCO-rB3-1 [0,2] 18.11  3 

mbCO-rB3-1 (2,4] 23.03  22 

mbCO-rB3-1 (4,6] 36.41  13 

mbCO-rB3-1 [6,8] 29.86  2 

 

 
Fig. 11. Example of correlation; layers are amalgamated in some wells, and 

separated in others. 
 

The static model was created from sand correlation 

between the wells at the CM-123-A project. The sands in the 

project are typically presented as sand packages with 
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considerable extent, similar to that presented in Fig. 11. 

Sometimes, the sands appear as amalgamated and can then be 

presented separately. Sands presenting as large packages in 

this area, which is a typical characteristic, has the advantage 

of easy correlation between wells. However, when individual 

sands from these packages are correlated with the 

amalgamation in some wells and separation in others offers 

an important difficulty. Then, defining each net sand 

thickness along the area, in which they develop requires a 

detailed analysis. 

Since the wells in the area are mostly from the 60s or 70s 

and no porosity logs were available, an alternative procedure 

to determine the net sand thickness was used. The procedure 

consisted on the direct observation of the spontaneous 

potential (SP) curve at the 1: 200 scale logs, between sand top 

and bottom, and select net sand thickness when SP is fully 

developed Fig. 12. 

 

 
Fig. 12. Example of a layer with clay intercalation; the sand top and bottom 

are marked. The gray marks are the clay intervals that are discounted from 

the total sand thickness. 

 

The direct observation method has proven to have very 

good results when the calculated net sand thicknesses were 

compared with the well production data, providing 

consistency with recovery factors related to sand pore 

volume. The information obtained from the net sand 

calculations for each layer was used to make the thickness 

map grid that later was used to heuristically check the CRM 

and FFM. 

E. Heuristic Consistency Check of the Solutions: Well 

Connectivity 

There are other heuristic checks that can be done to verify 

the model parameter calculations. The model calculates well 

connectivity, along project evolution. If for a given time net 

map sand is superposed with vectors that show the 

connection between an injector and a producer and looking at 

the wells production and injection history to verify that well 

connectivity is possible and matches with net sand ℎ𝑘. That 

means that if there is a good net sand ℎ𝑘, the connectivity is 

possible, and the model parameters are properly connected. 

Figure 13 presents the connection between producers and 

injectors for a given sand. The best connection, dark vectors, 

are calculated for the best net sand ℎ𝑘 and when injection if 

from the base of the reservoir to the top. Poor, lighter vector, 

o no connectivity is calculated by the model for those wells 

that have poorer net sand ℎ𝑘 or when injection is from the 

reservoir top to the reservoir bottom. The figure shows the 

same cases wherein the model calculates connectivity 

between the injector and the second line producers. 

 

 

Fig. 13. Connections between injectors and producers for a layer net sand 

thickness map are shown. 

 

These consistency checks inspect the coherence between 

the data and the model results, but there are many cases 

wherein the areal distribution of ℎ𝑘  is not related to the 

connectivity due to areal barriers or discontinuities. Due to 

these complexities, this work reports the use of multilayer 

CRM and multilayer FFM. 

 

IV. CONCLUSIONS 

The waterflooding project CM-123-A is a real case to 

applies the methodology descript in this work and has an 

extensive production history and. Even the complexity, from 

the waterflooding project history matched has a median of the 

NMSE of all 𝑗-th producers, minor than 0.46, with more than 

90% of the 𝑗-th producer with the NMSE < 0.7. Also, the 

model was used to forecast production, based on the history 

matched, in a simple cross validation. For the four periods of 

forecast ranging from 12 to 48 months, blind test was 

conducted forecast oil production. The median of the NMSE 

of all 𝑗-th producers in the forecast is always minor than 0.65. 

This is a reasonable accuracy considering the limited amount 

of data and the complexity of the phenomena. The prediction 

of the FFM shows better performance than that of the DCA 

methodology. Clearly, the ability of the methodology, 

presented in this paper, in history matching is always better 

than forecasting. In each period of the forecast, there are 

events that could change the connectivity between producers 

and injectors (i.e., producer/injector reparations or shut-in) 

by layer, and the cumulative of these events could be enough 

to produce strong deviations. Due to this, the maximum time 

for prediction was limited to 48 months. 

The times to build and solve the nonlinear optimization 

problems with GAMS (CONOPT3/4) are in agreement with 

the times of management of the project. The methodology is 

effective in guiding different optimization strategies for the 

waterflooding project. 
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The model was able to detect producer/injector connectivity 

up to the second line from injector, with a clear response in 

the field. 

Finally, a heuristic methodology was presented to assess if 

the quality of the solutions of the models are compatible with 

the available single production test data and net sand maps. 

This is important for the reliability of the methodology and 

for support for future decisions. 
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