
  

  

Abstract—This paper concerns a new approach of the 

optimization problem, intending to turn into profit the last 

evolutions from IT domain. On the base of this approach, both 

new concept (the holistic optimization), and method (“zoom & 

pick”) for its implementation it in manufacturing process 

optimization were developed. According to the new concept, the 

optimization problem gets a new structure, which includes not 

only the optimal solution finding, but also the optimal 

formalization of the problem as well as the tooling for assessing 

the position of potential solutions relative to the optimal one. 

The method for holistic optimization successively addresses the 

optimized object at different levels of its description. The main 

application domain is the manufacturing process from “Make 

to Order” environment, which is difficult to optimize because of 

dealing with a wide range of products. 

 
Index Terms—Holistic optimization, manufacturing process, 

comparative assessment, optimality assurance system.  

 

I. INTRODUCTION 

The request for optimization is of general interest in almost 

all fields of nowadays activities and manufacturing makes no 

exception. As consequence, a tremendous number of 

researches were already performed, aiming to find 

approaches and methods for solving a wide range of 

problems e.g. [1]-[5]. The most encountered formats of 

conventional optimization problem are mentioned below.  

• The standard optimization, which means the finding of 

the global minima or maxima of a function / set of 

functions on a given set. Given a function 

RRf n →: , the standard extremization problem 

can be defined as ( )xf
x
min



 or ( )xf
x

max


, that is finding 

f* and x* (the extreme value of f and its corresponding 

extremizer). Deterministic, stochastic, heuristic and 

metaheuristic methods for solving the problem can be 

noticed [6]-[8]. 

• The multi-objective optimization, which aims to 

extremize, at the same time, multiple objective functions. 

For example, in minimization problems this can be 

defined as ( ) ( ) ( ) xfxfxf n
Xx

21 ,min


, where X is the 

space of feasible solution-vectors. Multi-objective 

optimization methods can be grouped into four classes: 

no preference, a priori, a posteriori and interactive 

methods [9]-[14]. At the first class, no decision maker is 

expected to be available, but a neutral compromise 

solution is identified without preference information, 
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while the other three involve preference information 

from the decision maker, in different ways.  

• The multilevel optimization is more complicated and 

involves more problems, embedded one in another. For 

example, a bilevel minimization problem can be defined 

as ( )yxF
YyXx

,min
, 

, while ( )zxfy
Yz

,minarg


 , where 

yx
nn

RRfF :, , xn
RX   yn

RY  . Bilevel optimization 

problems are hard to solve. One solving method is to 

reformulate bilevel optimization problems to 

optimization problems for which robust solution 

algorithms are available [15]. Evolutionary methods [16], 

though computationally demanding, could be an 

alternative tool to offset some of these difficulties and 

lead to an approximate optimal solution. 

• The multistage (discrete) optimization generalizes 

standard optimization by modeling hierarchical decision 

problems, involving sequential/multi-stage decision 

processes. The canonical problem to be solved, in 

minimization case, is: 

• ( ) ( ) 
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,,,:min , where t means 

the time stage belonging to a set T of time stages, xt is the 

vector of state variables and yt – the local/stage vector of 

variables. This type of problem can be solved by Branch 

and Bound algorithm [17] or Benders’ technique [18]. 

The conventional optimization supposes, in general, to 

find the optimal solution of an imposed optimization problem 

described in one of the above-presented formats. Despite they 

were successfully applied in solving many problems, from 

the manufacturing domain also, there are at least two 

specificities for which their applicability in manufacturing 

process optimization is questionable: i) the specific structure 

of the manufacturing process, and ii) the specific definition of 

the optimization problem in its case. Issuing from here, this 

paper proposes a new concept, namely the holistic 

optimization, and an original method for manufacturing 

process optimization according to this concept. Both concept 

and method complies much better to the above-mentioned 

specificities. 

In what concerns the paper structure, next section states the 

approach of basic manufacturing concepts, according to our 

vision. The third section presents the holistic optimization 

concept. The fourth section describes the proposed method, 

while the fifth deals with an exercise of method application. 

Last section is for conclusion. 

 
 

II. THE APPROACH 

Manufacturing comprises the chain of actions through 

which the product subjected by a certain market request is 

realized. Five segments can be distinguished in the 
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manufacturing chain, namely: ordering preparing, design, 

planning, programming and processing, (Fig. 1). Inside each 

segment, ideas, information and materials are processed, this 

leading to the metamorphosis of manufactured object. 

 
Fig. 1. The manufacturing chain. 

 

The manufacturing system is an ensemble of facilities and 

assets, selected such as they are appropriate for supporting 

the manufacturing chain.  

The operating of manufacturing system in order to obtain 

the requested products means manufacturing process. The 

process that the manufacturing system has performed up to 

the current moment means the manufacturing activity. 

The constitutive items of the manufacturing activity are the 

manufacturing jobs. Such a job is defined as the 

accomplishment of a given manufacturing task, according to 

a given procedure and using a given component of the 

system. 

The accomplishment of a job can be described through the 

values of some variables, which are of two types: 

independent (description-variables), and dependent 

(effect-variables). A set of particular values for the 

description- and effect-variables for a given job is obtained 

by monitoring and means an instance. 

The manufacturing process is defined as the current flow 

of jobs accomplished by the manufacturing system. 

According to our approach, the optimization means to ensure 

the manufacturing process optimality in each moment. This 

can be done by optimizing the flow of decisions through 

which the manufacturing process ongoing is controlled. 

During this control, the optimization desiderate should be 

considered as reference, while the decision means the control 

variable. In concrete terms, the process optimization has to be 

supported by an optimality assurance system, embedded in 

the currently existing quality assurance system. 

 

III. HOLISTIC OPTIMIZATION CONCEPT 

In our vision, the “holistic optimization” defining is that: 

• The optimization area covers the entire life-cycle of 

optimization object. When this object is the 

manufacturing process, the life-cycle is comprised 

between product ordering (by the client) and product 

delivering (to the client). 

• The optimization goal is to satisfy all optimization aspects, 

namely the best formalization of the optimization request, 

the best tooling for assessing the position of a potential 

solution relative to optimization goal, and the best 

solution for the optimization problem. 

• The optimization action consists in providing the 

permanent optimization of decisions flow through which 

the manufacturing process ongoing is controlled. 

We have developed the holistic optimization concept in 

direct connection to the requirements of manufacturing 

process optimization. Because the conventional optimization 

concept is well known, it is much easier to describe the 

holistic optimization by referring it to conventional 

optimization (see Table I). 

 
TABLE I: THE KEY FEATURES DESCRIBING HOLISTIC VS. CONVENTIONAL 

OPTIMIZATION 

Issue 
Conventional  

optimization 

Holistic  

optimization 

Optimization  

area 

Life-cycle segment  

of the object submitted  
to optimization 

Entire life-cycle  

of the object submitted  
to optimization 

Optimization  
goal 

The best solution 

for a given request of 
optimization 

The best formulation,  

best assessment, and best 
solution for a given request 

of optimization 

Optimization  

action 

Occasional action 

of optimum finding 

Continuous activity 

of optimality assurance 

Optimization  
space 

The Rn Euclidian space, 

formed by n real 

variables 

The Vm causal space, 
formed by m causal 

variables and the 

dependence relations 
between them 

Optimization 

variables 

Independent Dependent 

Numerical Logical 

Optimization 
request format 

Already formalized 
problem 

Goals following to be  
subsequently formalized 

Optimization 
problem format 

Standard or 

Multi-objective or 
Multilevel or Multistage 

Standard and/or 

Multi-objective and/or 
Multilevel and/or 

Multistage 

Optimized 

object modeling 
Analytical Causal 

Optimized 
object evaluation 

Absolute Comparative 

 
Fig. 2. Causal space of the optimized object. 

 

Unlike the conventional optimization, acting in a Euclidian 

space, the holistic optimization is performed inside a 

so-called causal space (Fig. 2). The causality variables are 

decisions concerning both optimized object and optimization 

problem. These variables are interdependent, because the 

decision at a given moment depends on the previous 

Market   

Ordering 
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decisions and determines the following decisions. The value 

of such a variable is an action to be accomplished. 

The conventional optimization is performed on a fixed 

optimization area, namely the area comprised between the 

beginning and the end of a unique problem, according to a 

fixed problem format (be it standard, multi-objective or 

other), which, once established, does not change until the 

optimal solution finding. Unlike this, the holistic 

optimization supposes, in general, to retake the optimization 

action at successive levels, any time this is necessary, namely, 

when new decisions should be taken. This means, in fact, to 

generate new optimization problems, to which new 

optimization areas are assigned by setting new beginning 

points (though, the ending points remain the same). The 

criteria for object evaluation may also change, as well as the 

problem format (e.g. from standard to multi-objective). Thus, 

in Fig. 2, according to the current level of optimization, after 

completing the actions ongoing when this level is reached 

(namely the actions 5, 6 and 7) the decision points x6, x7 and 

x8 become beginning points for new optimization problems. 

In conventional optimization, the evaluation of the 

effect-variables is absolute. Unlike this, in holistic 

optimization the effect-variables evaluation is comparative. 

 

IV. THE “ZOOM AND PICK” METHOD FOR HOLISTIC 

OPTIMIZATION OF THE MANUFACTURING PROCESS 

Let us consider a manufacturing process aiming to deliver 

a certain product. The process main specificities, to which the 

conventional optimization fails to answer in satisfactory 

manner, are: 

• The process must be optimized in its wholeness, but often 

this is not feasible from the beginning. Successive 

decisions should be taken during the process, while the 

decision from a given level cannot be taken before 

establishing the job from previous level. 

• The jobs performed during the process have different 

natures. At the same time, their exigencies are diverse (e.g. 

the existence of bottleneck points or of unused available 

resources). 

• The description-variables of a certain job, which should 

be used for evaluating a given effect from the process end, 

are not precisely known. Moreover, they must be selected 

from a set of measurable variables specific to the job, 

which are not necessarily independent. 

• The causal relations either between the description- 

variables or between the description-variables and the 

effect-variables are not a priori known. 

• The possible existence of a high number of jobs needed 

for obtaining the product involves a too large number of 

variables to be managed – the dimensionality of the 

optimization problem to be solved is too large for the 

existing computational resources. 

The holistic optimization concept and the here introduced 

method have been developed as optimization tools intended 

for the manufacturing process, hence they are answering 

much better to the specificities from above. The method is 

applied on three stages, namely the past activity “zoom & 

pick”, the assessment tooling “zoom & pick”, and the current 

process “zoom & pick”. 

A. Past Activity “Zoom and Pick” 

The objective of this stage is to describe the past activity in 

a format appropriate to holistic optimization. In this purpose, 

the activity structure is analyzed in order to reveal the 

potential zoom levels, meaning levels of the activity where 

specific actions determining the activity course take part. The 

ensemble of jobs following to be accomplished starting from 

such a zoom level up to the process final forms a typical job. 

More potential typical jobs can be identified, then, at each 

zoom level. New zoom levels can be found along a given 

typical job, while new typical jobs (of lower complexity) start 

from these new levels, and so on. Hereby, each typical job 

involves, in general, the accomplishment of a succession of 

other typical jobs (having smaller and smaller levels, in 

accordance with zoom levels). 

An instances dataset, resulted by recording the past 

instances concerning a given typical job, should be associated 

to this job. Causal models of the typical job should be 

identified by processing the information from such instances 

dataset. 

At this stage, the method application result consists in 

identifying the zoom levels, the potential typical jobs, and, 

for each such job, the corresponding instances dataset and the 

identified causal models. 

B. Assessment Tooling “Zoom and Pick” 

In holistic optimization, the optimization request format it 

is not predefined. In fact, the desiderate formalization is part 

of the optimization problem solving.  

In manufacturing, the managerial policy imposes the 

desiderate concerning the process. This can be different for 

different products. More than that, the desiderate may change 

in time even for the same product. At the same time, the 

desiderate reaching can be assessed after diverse criteria, 

specific objective functions (effect-variables) can be assigned 

for each criterion, and for evaluating such a function different 

sets of arguments (independent description-variables) can be 

used. For this reason, the presented method requires this stage 

for identifying the potential goals, criteria, functions and 

arguments, among which the most suitable ones will be 

selected, according to method algorithm presented below. 

C. Current Process “Zoom and Pick” 

Let us consider an activity with five potential zoom levels 

(A, B, C, D and E), Fig. 3. The job(s) comprised between two 

consecutive zoom levels will be referred as way. The ways 

are represented by thick arrows and denoted by letters 

according to their starting level (e.g. the ways from B to C 

level are B1, B2, etc.). Because the manufactured object may 

retrieve itself in different forms to a certain level, due to 

arriving here on different ways, each such a form must be 

separately represented. Obviously, the ways issuing from 

different forms of the object belonging to the same level are 

also different. Despite in practice they can exist several ways 

for bringing the object from a level to the next one, for 

simplicity we considered maximum two ways for this. 

A path results between any state of the object, from any 

level, and a process ending point. The process-accomplishing 

path is the path between process beginning and any of 

process ending points. For defining a path, at a given level a 

single way can be selected, after passing by a decision point. 

It should be noticed that for actually accomplishing the 

process, it is enough to follow a single path only. The 
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ensemble of all potential paths that can be used for obtaining 

the product forms the product graph (Fig. 3). 

 

 
Fig. 3. Generic product graph. 

 

  The transition between two successive levels by a given 

way supposes that either the entire object or components 

resulted by its decomposition are submitted to different basic 

jobs issued from the accomplishment of a certain typical job. 

A component from a certain level may further decompose in 

subcomponents (further referred, generically, also as 

components) at the next level(s). In other situations, more 

components may join in a single ensemble.  

 

 
Fig. 4. The jobs chains for a hypothetical process-accomplishing path. 

 

The Fig. 4-a presents a hypothetic process-accomplishing 

path, extracted from the product graph shown in Fig. 3. In Fig. 

4-b, all the jobs needed in order to obtain the product by 

following this path are presented. The jobs concerning the 

entire object are denoted by simple numbers (e.g. 1), while 

the ones concerning its components include the ”.” separator 

(e.g. 2.1, 2.2 ..., where the numbers before and after the dot 

refer to job and to component, respectively). An arrow 

symbolizes each job, the effect issued by it being specified 

under the corresponding arrow. A determined set of jobs 

(hence arrows), starting from process beginning point, 

corresponds to each component, no matter of component 

level. This set means the jobs chain of the considered 

component. 

The accomplishment of each job is characterized by a 

resulting effect (be it cost, timespan, consumed energy etc.). 

The cumulated effect of all jobs corresponding to the ways 

composing a path (when all jobs effects are of the same type) 

means the process effect corresponding to this path. More 

types of effect can be measured for the same path, by values 

of the corresponding effect-variables. 

The problem addressed in this paper can be formulated 

now as the selection, from product graph, of the optimal 

process-accomplishing path, according to a flexible criterion 

/ set of criteria. 

As it can be easily observed, the product graph may be 

very complex. Frequently, the structure of jobs needing to be 

performed in order to cover the process-accomplishing path 

is also complicated. Moreover, the evaluation of path effect 

by decomposing the typical jobs in basic nominal jobs, 

finding the effect for each of them and, finally, cumulating 

these effects is also a difficult task. For these reasons, the 

application of the combinatorial optimization method is not 

feasible for solving the problem, neither the application of 

other methods selecting the optimal path on the base of path 

effects direct evaluation. 

The proposed optimization method avoids the mentioned 

difficulties. According to the method, current process “zoom 

& pick” consists in successively performing the following 

loop of actions: 

• Go forward until meeting the next zoom level. 

• Identify the optimization variables (decisions to be taken) 

and their values (potential typical jobs). 

• Adopt the goal according to optimization desiderate and, 

corresponding to it, the optimization criteria (see stage B). 

• Formalize the criteria by selecting the function (job 

effect-variable) of interest and the most suitable 

arguments (job description-variables), the imposed 

restrictions and the appropriate format of the current 

optimization problem (also see stage B). 

• Make the comparative assessment of selected typical 

jobs. 

• Discard the uncompetitive typical jobs. 

• Assess the optimization uncertainty vs. optimization 

accuracy (which must be set at optimization beginning), 

for each remaining job. If an acceptable result shows for 

at least one of the remaining jobs, then this is considered 

optimal and the optimization is stopped. Otherwise, 

retake the succession of steps from the beginning. 

In what concerns the choice of the most suitable arguments 

(job description-variables), this can be done by instance- 

based causal identification of the manufacturing system [19], 

while the comparative assessment between two or more 

typical jobs can be realized after the values of their 

effect-variables, according to the method presented in [20]. 

 

V. ILLUSTRATIVE EXERCISE 

We further present an exercise in order to facilitate the 

understanding of both concept and method, above proposed. 

Let us consider the case of a manufacturing system for 

mechanical products, whose manager intends, at a given 
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moment, to optimize the manufacturing process in holistic 

manner. The targeted optimization accuracy is set at 10%. 

Hypothetical results of the past activity “zoom & pick” 

stage are sampled in Table II, while the ones of the 

assessment tooling “zoom & pick” stage – in Table III. It 

should be noticed that there, the potential sets of arguments 

(causal models) corresponding to a given function Rk are 

denoted by (Sk.1, Sk.2, ... Sk.n). 

According to current process “zoom & pick”, the loop of 

actions includes the following (Table 4): 

• The first zoom level, A, is order acceptance. 

• Three potential typical jobs are picked, namely A1, A2 

and A4 from Table 2. 

• For assessment tooling, the following actions are 

performed (see Table 3): zoom to level P and pick the 

goal P1 is picked, and corresponding to it, zoom to level 

Q and pick the assessment criterion Q1. Then zoom to 

level R and pick function R1 and, finally, zoom to level S 

and pick the causal model S1.2.  

• The picked jobs A1, A2 and A4 are comparatively 

assessed. 

• The jobs A1 and A4 are discarded because their evaluated 

results are significantly weaker. 

• The job A2 is picked as optimal solution (having 35% 

optimization uncertainty, denoted by Delta, in Table 4), 

so the order for reduction gears is the accepted one. 

Because the uncertainty of optimization at first level is 

higher than the targeted accuracy level, the loop of actions 

from above must be successively retaken, as it follows:  

- At the second zoom level, B, corresponding to assembly 

design, three potential jobs are picked: B1, B2 and B3. 

Passing to 4.2 stage, P2, Q3, R2 and S2.1 are picked for 

assessment tooling. Finally, after performing C stage, B2 

typical job (namely to produce a worm reduction gear) is 

picked as optimal, with 30% uncertainty. 

- At the third zoom level (C, subassembly design), three 

subassemblies are identified as the most significant. Because 

there are available singular potential jobs for each of them, 

these jobs are automatically picked as optimal. After 

reevaluation, the level of uncertainty for worm subassembly 

reaches the level of 10% previously set for optimization 

accuracy, hence, in its case, the optimization is stopped, 

while for the other two subassemblies, it continues. 

- At the fourth zoom level (D, part design), three parts are 

considered as having the higher optimization potential: the 

case itself (from case subassembly), the wheel shaft and the 

worm wheel (both from worm wheel subassembly). Two 

potential typical jobs, D1 and D2 are identified for case 

manufacturing, while singular ones are available for other 

parts. After the comparative assessment, D1 is picked as 

optimal (with 17% uncertainty). As consequence, the 

optimization is continued for the case and for the worm wheel, 

while for the wheel shaft it is stopped (only 8% uncertainty). 

- At the fifth zoom level (E, process planning), there are 

available two alternatives of process plan for the case (among 

which E2 is picked as optimal) and a single one, E3, for the 

worm wheel. 

- At the sixth zoom level (F, operation programming), there 

are identified two alternatives for worm wheel machining F2 

and F3, and a single one for case machining. After picking F2 

as optimal, the entire optimization process is stopped, 

because in all cases the reevaluated uncertainty level drops 

under 10%. Hereby the last potential zoom level (G, phase 

accomplishing) is ignored and the manufacturing process 

optimization is considered as accomplished. 

TABLE II: PAST ACTIVITY ZOOM & PICK 

Zoom  

level 

Optimization  

object 
Typical jobs 

A Order 
A1 – Clutch; A2 – Reduction gear;  

A3 – Door closing mechanism; A4 – Brake 

B Assembly 
B1 – Planetary reduction gear; B2 – Worm 

reduction gear; B3 – Cycloidal reduction gear 

C Subassembly 
C1 – Case subassembly; C2 – Worm wheel 

subassembly; C3 – Worm subassembly 

D Part 
D1 – Cast case; D2 – Welded case;  

D2 – Wheel shaft; D4 – Worm wheel 

E Plan 
E1 – Case plan I, E2 – Case plan II,  

E3 – Worm wheel plan 

F Operation F1 – Milling; F2 – Hobbing; F3 – Turning 

G Phase - 

TABLE III: ASSESSMENT TOOLING “ZOOM AND PICK” 

Zoom 

level 

Optimization 

object 
Typical features 

P Goal 
P1- Efficiency; P2 - Productivity; P3 - Ecologicity;  

P4 - Quality; P5 - Throughout; P6 - Assets using degree 

Q Criterion 
Q1 - Cost/product; Q2 - Cost/quantity; Q3 - Timespan;  
Q4 - Time/quantity; Q5 - Profit/product; Q6 - Profit rate; 

Q7 - Energy/product; Q8 - Energy class; Q9 - Quality class 

R Function 
R1 - Cost [Euro/dm3]; R2 - Time [min/ dm3];  

R3 - Energy [KWh/ dm3] 

S Arguments 
(S1.1, S1.2, S1.3); (S2.1, S2.2); … according to job 

causal model 

TABLE IV: CURRENT PROCESS “ZOOM AND PICK” 

Problem  

formalizing by 

Assessment  

tooling by 

Solution 

finding by 

 

“zoom” “pick” 

“zoom”  

“zoom & pick” P Q R S 

“pick” 

Levels Variables Values Goals Criteria Functions Arguments Results Delta Go to 

A xA A1, A2, A4 P1 Q1 R1 S1.2 A2  35% B-level 

B xB B1, B2, B3 P2 Q3 R2 S2.1 B2  30% C-level 

 

C 

xC1 C1 P1 Q2 R1 S1.2 C1  22% D-level 

xC2 C2 P1 Q2 R1 S1.1 C2  20% D-level 

xC3 C3 P1 Q2 R1 S1.3 C3  10% Stop 

 

D 

xD1 D1, D2 P3 Q7 R3 S3.1 D1 17% E-level 

xD2 D3 P2 Q4 R2 S2.1 D3 8% Stop 

xD3 D4 P2 Q4 R2 S2.2 D4 15% E-level 

E xE1 E1, E2 P1 Q1 R1 S1.1 E2 11% F-level 

xE2 E3 P1 Q1 R1 S1.2 E3 12% F-level 

F xF1 F1 P1 Q2 R1 S1.2 F1 9% Stop 

xF2 F2, F3 P2 Q3 R2 S2.1 F2 7% Stop 

G xG - - - - - - - - 
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VI.  CONCLUSION 

Frequent, the conventional optimization fails to give 

satisfactory results in the case of the manufacturing process 

due to its specificities, such as the need for optimization in its 

wholeness, (often this being not feasible from the beginning), 

or the different natures of the jobs performed during the 

process (their exigencies being also diverse). 

The challenge faced by this paper has been to deliver a 

concept and an optimization method more adequate to 

manufacturing process optimization. The result consists in 

the development of the holistic optimization concept together 

with the “zoom & pick” method for performing this type of 

optimization. 

The defining elements of the holistic optimization are the 

coverage of entire life-cycle of the manufacturing process, 

the completeness in addressing the optimization aspects, and 

the providing of the permanent optimization of decisions 

flow through which the process ongoing is controlled. 

The proposed optimization method works in three 

successive stages, namely two preparatory stages, dedicated 

to the analysis of the past activity performed by the 

manufacturing system and to the identification of potential 

assessment tooling, and one operational stage for actually 

optimizing the current process, by comparative assessment. 

Both the here introduced concept and method may ground, 

at conceptual level, the development of a system for 

optimality assurance in manufacturing, included in the 

currently existing system for quality assurance. In this 

manner, the manufacturing process optimization might 

become a current activity, while the optimization benefits 

could be more completely fructified than in the case of the 

conventional approach case. 
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