
  

  

Abstract—We study the pricing of customized bundles, where 

a firm sets a bundle price that depends on the size of the bundle, 

not on its individual products. With the objective of maximizing 

the firm's profit, we formulate a nonlinear mixed-integer 

program based on a prior model from the literature. A linear 

mixed-integer formulation is developed which effectively 

enables an exact solution to the problem. 

 
Index Terms—Bundling, mixed-integer programming, 

pricing.  

 

I. INTRODUCTION 

Consider a multi-product firm having customers that are 

willing to buy one or more of its products. The firm faces the 

problem of pricing the products so that the overall profit is 

maximized. An example of such firm can be a software 

company with many modules that can be bundled in a 

software package, a cable television company, a digital music 

retailer or any other firm selling low marginal cost products. 

To solve this pricing problem, firms can choose from 

several pricing schemes. Some schemes are simple such as 

component pricing (CP) where products are priced 

individually, and pure bundling (PB) where only one bundle 

that includes all the products is offered and priced. Others are 

more complex, like mixed bundling (MB) which is 

theoretically the pricing scheme that guarantees the best 

pricing policy. MB investigates all the possible combinations 

of product bundles and chooses the optimal assortment of 

bundles that increases the profit [1]. This technique considers 

2J – 1 possible bundle prices for J products, and thus is 

complex to solve and to implement since it results in a large 

number of pricing options. That gives the motivation to study 

other bundle pricing techniques that offer less number of 

alternative prices. 

Customized bundle pricing (CBP) (also known in the 

literature as cardinality bundling or bundle-size pricing), 

involves setting one price for a given-size bundle, so that 

bundle price depends on the number of products in the bundle, 

not on the specific products included. 

For example, consider a firm selling three different 

products, CBP sets one price for the purchase of any single 

product, a second price for the purchase of any two products, 

and a third price for purchasing all three. Indeed, the optimal 

solution might choose not to offer all three bundles. It could 

be more profitable to offer two of them for instance, or even 

one. Thus, in addition to setting the optimal price for a bundle, 

the CBP approach finds the optimal assortment of bundles to 
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offer in order to maximize the firm's profit while increasing 

consumer welfare. 

Bundle pricing in general has been extensively studied in 

the literature. One of the earliest studies on bundling is that by 

Stigler in [2]. His model sets the basis over which most 

bundling studies are built on. The model captures customer 

demand through a vector of reservation prices for products, 

where customers choose the product that maximizes their 

surplus (difference between reservation price and product 

price). References [3], [4] build on the Stigler model and 

highlight the profitability of the mixed bundling approach. 

Reference [5] uses the Law of Large Numbers to show that 

bundling a large number of low cost information products can 

be profitable. Following them, many studies on bundle 

pricing evolved for different demand circumstances and 

various applications. The work in [6] for example, shows the 

benefits of MB compared to CP and PB as the authors 

formulate a nonlinear mixed-integer program to solve a 

pricing application in the wireless telecommunications 

industry. 

Although work in the customized bundle pricing area is 

relatively sparse, prior work has suggested that this bundling 

approach has attractive features when pricing low marginal 

cost products. Most relevant to our work is that in [7] where 

the authors formulate the CBP problem as a nonlinear 

mixed-integer program, then due to its non-convex nature,  

use Lagrangian relaxation and heuristics to derive bounds. 

Reference [8] analyzes the CBP mechanism analytically and 

identify circumstances under which it becomes particularly 

attractive than other pricing mechanisms. In [9] the authors 

use real data to argue that the profit from CBP is nearly the 

same as that of MB and is almost certainly more profitable 

than either CP or PB. One of the most recent works on CBP is 

that in [10] where the authors study both the discrete and 

continuous versions of the problem. They reformulate the 

discrete CBP model from [8] into a linear program that allows 

an efficient solution procedure.  

In this paper we first consider the model in [7] and extend it 

to include the notion of customer segments instead of 

individual customers. We reformulate the nonlinear model 

into a linear mixed-integer program where an exact solution to 

the CBP problem is obtained. 

This paper is organized as follows: In section II, we present 

a definition of the problem and its notations, formulate the 

original nonlinear mixed-integer model, and present the 

proposed linear mixed-integer formulation along with an 

example. A computational analysis is carried in section III for 

different size instances to demonstrate the efficiency of the 

proposed model. Section IV concludes with a discussion of 

our major findings and avenues for future research. 
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II. PROBLEM FORMULATION AND SOLUTION APPROACH 

A. Mixed-Integer Nonlinear Formulation 

The customized bundle pricing problem models a situation 

where a firm offers its customers a variety of products, and 

customers may choose a bundle out of any of those products 

as long as the number of products in the bundle matches the 

bundle size that the firm announced to offer for a given price. 

Our basic model extends the main model in [7] as we add the 

notion of customer segments and their sizes. Customers are 

grouped into I customer segments based on similar purchase 

behavior characteristics. The firm offers a variety of J low 

marginal cost products. Our model is developed from the 

firm's perspective seeking to decide which bundles to offer 

and how to price them so that it maximizes the profit while 

consumer welfare is also maximized. 

One of the general assumptions of this setting involves that 

demand is captured through reservation prices of the products, 

which estimates the maximum price this customer segment is 

willing to pay for each bundle size. 

The following notation is introduced to model the problem: 

Input Parameters 

- I: There are I customer segments in the market. 

- J: The firm offers a variety of J products. 

- i: Index for customer segments, where i ∈ [1, ..., I]. 

- j: Index for products, where j ∈ [1, ..., J]. 

- Si: The size of customer segment i. 

- M: Marginal menu cost of adding one more bundle 

choice to the menu. 

- Cj: The cost of creating a bundle of j products. 

- Rij: Total reservation price of customer segment i's top 

j favorite products. 

Decision Variables 

- Pj: The price of a bundle of j products. A price of 0 

implies that the firm is not offering, thus not pricing, 

bundle j. 

- Xij: A binary variable that is 1 if customer segment i 

chooses to buy a bundle of j products, and is 0 

otherwise. 

- Yj: A binary variable that is 1 if the bundle of j 

products is offered in the menu, and is 0 otherwise. 

The problem is then to determine the optimal assortment of 

bundles and their optimal prices. The following formulation is 

a non-linear mixed-integer program for solving the 

customized bundle pricing problem, denoted by CBPP. 

CBPP: Maximize  
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The objective function (1) maximizes the firm's total profit, 

which is the profit obtained from each customer segment's 

purchase minus the cost of adding the chosen bundle(s) to the 

menu. Constraints (2) define consumer surplus as the 

difference between the customer segment's reservation price 

of the bundle and the market price, and ensure that each 

customer segment chooses a bundle that maximizes its surplus 

(incentive compatibility constraints). Constraints (3) ensure 

that the customer segment chooses a bundle only if its price is 

not higher than the reservation price of this bundle. 

Constraints (4) ensure that each customer segment can 

purchase at most one bundle. Constraints (5) ensure that a 

customer segment can purchase a bundle only if it is offered 

by the firm. Constraints (6) enforce upper bounds on prices 

based on the highest reservation price across all customer 

segments. In addition, these constraints logically relate the 

pricing and the assortment variables so that bundles that are 

not offered are not priced. Constraints (7) enforce binary 

restrictions for both consumer purchases and bundle offerings 

decisions, and non-negativity constraints for bundle prices 

decisions. 

Model CBPP is clearly nonlinear as shown in (1), (2) and (3) 

through the two nonlinear terms: Pj Xij and Pj Yj. In order to 

solve CBPP, a mixed-integer nonlinear program (MINLP) 

solver can be used. We use BARON to solve the problem to 

optimality. BARON guarantees termination with a global 

optimal solution. It can find a solution to small size problems 

in seconds. However, real-life instances of medium and large 

sizes will require the solver to run for extensive amounts of 

time before converging and thus, it is not practical to use. 

Before we proceed to our efficient approach for solving the 

problem, we demonstrate the current non-linear model using 

an example. 

Example 1. Consider a scenario with I = 3 customer 

segments having 10 customers each, thus Si =10 for all i. 

There are 4 products and thus J = 4. Marginal menu cost M = 

10 and bundle costs Cj = 0 for all j. The reservation prices of 

customer segments for each bundle size are given in Table I. 

 
TABLE I: RESERVATION PRICES FOR EXAMPLE 1 

Bundle Size I1 I2 I3 

1 16 36 40 

2 30 50 56 

3 45 66 85 

4 51 80 100 

 

The optimal solution is found in 0.2 seconds using the 

solver BARON under AMPL. Bundles 3 and 4 are offered with 

P3 = 45 and P4 = 59. Customer segments 1, 2, and 3 buy 

bundles 3, 4 and 4 respectively. The optimal profit is 1610. 

Note that in this example, the optimal assortment of bundles 

is composed of only two bundles out of four possible bundle 

options. Pricing schemes with less number of pricing options 

are more attractive to the industry in general due to its ease of 

implementation. 

A pure bundling strategy for this problem will offer only one 

bundle of all the products. For the data in Example 1, the PB 
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approach finds an optimal profit of 1590. The optimal 

solution in that case offers bundle 4 with P4 = 80. Customer 

segments 2 and 3 buy bundle 4, while customer segment 1 is 

excluded from the market since its reservation price is less 

than the market price. 

B. Mixed-Integer Linear Formulation 

In this subsection, a linear formulation of the problem is 

proposed which allows an efficient solution for real-life size 

instances. 

The computational intractability of Model CBPP can be 

greatly alleviated by developing an equivalent mixed-integer 

linear reformulation. To this end, the following proposition 

shows that the nonlinear term Pj Yj can be replaced by simply 

Pj: 

Proposition 1.  It is valid to substitute Pj Yj ≡ Pj in model 

CBPP.  

Proof.  

- If Yj = 0, then Pj Yj = 0 and Pj = 0 by Constraint (6), 

and thus Pj Yj = Pj. 

- If Yj = 1, then Pj Yj = Pj. □ 

The result established in Proposition 1 is intuitive in that a 

bundle of j products that is not selected in the assortment will 

not be priced by the firm. Note, however, that a similar result 

does not necessarily hold for Pj Xij, i.e., Xij = 0 does not 

necessarily imply that Pj = 0. In fact, a bundle that is not 

selected by one customer segment i can be purchased by 

another segment and ought to be priced by the retailer. Thus, 

we introduce a new variable Gij = Pj Xij. 

The results from Proposition 1 and the introduction of the 

auxiliary nonnegative continuous variable Gij, in lieu of the 

nonlinear term Pj Xij along with the linearizing constraints in 

(13) and (14), enable the following linear reformulation of 

CBPP, denoted by LCBPP. 
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For completeness, the following proposition establishes the 

validity of LCBPP: 

Proposition 2.  Model LCBPP is a valid reformulation of 

Model CBPP. 

Proof.  

Consider the substitution relationships Gij ≡ Pj Xij, for all i 

and j, and note that: 

• If Xij = 0, then Pj Xij = 0 and we need to verify that Gij 

= 0. From (9) and the non-negativity restriction on 

the G-variables in (15), we have that Gij = 0. Under 

this condition, constraints (13) and (14) hold true, 

and Gij = Pj Xij. 

• If Xij = 1, we need to verify that Gij = Pj, which is 

jointly enforced by constraints (13) and (14). □ 

Constraints (13) above impose a lower bound to the new 

variable Gij using reservation prices and conditioned with 

whether the bundle was selected or not. Constraints (14) limit 

Gij to take at most the value of bundle j’s price. 

We use LCBPP to solve the scenario in Example 1 above. 

Using the linear solver Gurobi, the optimal solution is found 

in 0.14 seconds. The power of our exact solution approach 

can be demonstrated by solving large instances that the 

nonlinear model was unable to solve in a reasonable amount 

of time.  Thus next, we solve medium and large size instances 

to demonstrate the efficiency of LCBPP. 

 

III. COMPUTATIONAL ANALYSIS AND RESULTS 

In this section, two computational experiments are 

discussed. The first demonstrates the efficiency of the linear 

formulation approach, and the second compares it to an 

existing bundle pricing approach from the literature. 

In the first experiment, the linear model LCBPP is solved 

for different data instances. We measure the average time it 

took the computer to solve the problem to optimality as we 

increase the number of customer segments I and the number 

of offered products J. This captures the performance limits of 

the proposed model. The average number of bundles selected 

by the model will also be displayed with each run. For each 

observation, three different instances of the same size are 

solved and averaged. Table II shows results of the numerical 

analysis. 

The given parameters of the model are generated randomly 

within certain predetermined data ranges. Solutions are 

obtained using the solver Gurobi under AMPL. All runs took 

place on a PC with Intel(R) Core(TM) i7-4790 CPU, 3.60 

GHz, having 16 GB of RAM and running Windows 7 

operating system. 

 
TABLE II: COMPUTATIONAL ANALYSIS OF LCBPP 

Observation Size (I,J) 
Avg. no. 

of bundles 

Avg. CPU 

time (sec) 

1 (5,10) 3 0.03 

2 (5,50) 2 0.21 

3 (5,100) 2 0.32 

4 (5,500) 2 6.90 

5 (10,10) 3 0.23 

6 (10,50) 4 1.12 

7 (10,100) 3 4.32 

8 (10,500) 2 32.87 

 

As shown in Table II, on average, problems of up to 500 

products can be solved to optimality in seconds. An 

interesting behavior of the model is that the average number 

of bundles does not necessarily increase with the increase in 

the number of products. For example, Table II shows that a 

firm with 500 products will offer two bundle sizes only. This 

behavior could be of much interest to firms that are limited 

with a small number of price offerings for their products. 
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In the second experiment, we compare the performance of 

our customized bundle pricing approach against pure 

bundling. We solve the same instances of the first experiment 

using the pure bundling approach and compare profits as 

shown in Table III. 

 
TABLE III: CUSTOMIZED BUNDLE PRICING COMPARED TO PURE BUNDLING 

Observation Size (I,J) 
PB Avg. 

Profit 

CBP Avg. 

Profit 

Avg. Profit % 

Increase 

1  (5,10) 19392 21864 12.7% 

2 (5,50) 126226 128472 1.8% 

3 (5,100) 179587 180653 0.6% 

4 (5,500) 1222513 1228251 0.5% 

5 (10,10) 54700 59527 8.8% 

6 (10,50) 239149 243667 1.9% 

7 (10,100) 460849 472340 2.5% 

8 (10,500) 2379698 2384250 0.2% 

 

Table III shows that under the same circumstances, our 

proposed customized bundle pricing approach offers better 

assortments, and thus better average profits, than pure 

bundling. The overall average profit increase for all instances 

in our experiment is 3.6%.  

  

IV. DISCUSSION AND CONCLUSIONS 

Customized bundle pricing is a flexible pricing scheme 

adopted by the industry due to its practicality in offering a 

small number of pricing options. Yet, that scheme is not 

widely studied in the literature. This paper provides an exact 

solution approach to the customized bundle pricing problem. 

A linear mixed-integer program that solves the problem to 

optimality is successfully developed and formulated. Due to 

the complexity of the original nonlinear mixed-integer 

formulation, previous literature reverted to approximation 

methods and heuristics to solve the problem. To the best of 

our knowledge, our formulation is the first to utilize 

linearization techniques to obtain a linear formulation of the 

problem. Our numerical computations demonstrate the 

feasibility and efficiency of using this bundle pricing 

approach. Our linear formulation solves the problem to 

optimality for large bundle sizes (up to 10 customer segments 

and 500 bundle sizes) in seconds. The exact solution is 

obtained using Gurobi optimization solver running on AMPL. 

Many instance of the problem are solved to optimality within 

fractions of a second, including instances with fairly high 

number of products. 

This research adds to the literature of bundle pricing and 

guides multiproduct firms on how to optimally offer bundles 

under a practical and simple price structure. We show the 

gains of customized bundling over pure bundling in terms of 

increased profits. 

Our approach assumes low marginal cost products. For 

future work, it might be worth investigating how the results 

change if this assumption is relaxed. It might also be useful to 

expand our generic model to more specific industries. 

REFERENCES 

[1] W. Hanson and K. R. Martin, “Optimal bundle pricing,” Management 

Science, vol. 36, no, 2, pp. 155–174, 1990. 

[2] G. J. Stigler, “United states v. loew’s Inc.: A note on block- booking,” 

The Supreme Court Review, 1963, pp. 152–157, 1963.  

[3] W. J. Adams and J. L. Yellen, “Commodity bundling and the burden of 

monopoly,” The Quarterly Journal of Economics, vol. 90, no. 3, pp. 

475–498, 1976. 

[4] R. Schmalensee, “Gaussian demand and commodity bundling,” The 

Journal of Business, vol. 57, no. 1, pp. S211–S230, 1984.  

[5] Y. Bakos and E. Brynjolfsson, “Bundling information goods: Pricing, 

profits, and efficiency,” Management Science, vol. 45, no. 12, pp. 

1613–1630, 1999.  

[6] B. Yang, C. Ng, “Pricing problem in wireless telecommunication 

product and service bundling,” European Journal of Operational 

Research, vol. 207, no. 1, pp. 473–480, 2010.  

[7] S. Wu, L. M. Hitt, P. Chen, and G. Anandalingam, “Customized 

bundle pricing for information goods: A nonlinear mixed-integer 

programming approach,” Management Science, vol. 54, no. 3, pp. 

608–622, 2008.  

[8] L. M. Hitt, P. Chen, “Bundling with customer self-selection: A simple 

approach to bundling low-marginal-cost goods,” Management Science, 

vol. 51, no. 10, pp. 1481–1493, 2005.  

[9] C. S. Chu, P. Leslie, and A. Sorensen, “Bundle-size pricing as an 

approximation to mixed bundling,” American Economic Review, vol. 

101, no. 1, pp. 263–303, 2011. 

[10] J. F. Wu, M. Tawarmalani, and K. N. Kannan, “Cardinality bundling 

with spence-mirrlees reservation prices,” Management Science, vol. 65, 

no. 4, pp.1455–1947, 2018. 

 

 

Ameera Ibrahim received her Ph.D. in management 

science and optimization from the 

University of Massachusetts Amherst with focus on 

Prescriptive Analytics and Mixed Integer 

Programming. She earned her M.S. in Computer 

Science from the University of Nantes in France, and 

her B.S. in Computer Science from Ain Shams 

University in Egypt. 

She is currently an assistant professor of Business 

Analytics at the School of Economics and Business Administration, Saint 

Mary’s College of California. Her current research interests include retail 

analytics, healthcare analytics and optimization-based heuristic approaches. 

 

 

 

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

237




