

Abstract—Computer simulations are being extensively used

in engineering design optimization to evaluate candidate

designs instead of real-world experiments. Often for some of the

candidate designs the simulation will fail for an unknown

reason, which leads to wasted computer resources and poor

final results. To handle this challenge both effectively and

efficiently this study presents an implementation in which

classifiers, borrowed from the domain of machine learning, are

integrated into the optimization process to predict if a candidate

design is valid or not prior to evaluating it with the simulation.

To further enhance the optimization effectiveness two different

search methods are used. Numerical experiments show the

merit of the proposed implementation.

Index Terms—Expensive black-box functions, machine

learning, classifiers, metamodels.

I. INTRODUCTION

The use of computer simulations in engineering design

continues to grow since they allow for a more efficient design

process. The use of such simulations transforms the design

process into an optimization problem with the following

unique features [1]:

The simulation acts as the objective function since it

assigns an output value to a candidate design, but its analytic

expression is unknown, namely, it is as a black-box function.

This is since it is often a legacy code or a commercial

software whose inner mechanics are inaccessible.

Each simulation run is often computationally expensive

which in turn severely limits the possible number of

evaluations.

Both the real-world physics being simulated and the

numerical approximations often result in an objective with a

complicated landscape and this further exacerbates the

optimization difficulty.

Such problems are appropriately termed as expensive

black-box optimization problems and due to their prevalence

they have received significant attention [1]. An additional

challenge which is often encountered is that for some

candidate designs the simulation will fail without providing

an output value. In this study such designs are termed as

simulator-infeasible (SI), while valid designs are termed

simulator-feasible (SF). The presence of SI designs in an

optimization process implies that: i) the objective function is

discontinuous since it does not have an objective value at

these vectors, and this discontinuity increases the

optimization difficulty, and ii) considerable computer

resources can be wasted by attempting to evaluate such

Manuscript received September 28, 2018; revised May 1, 2019.
Yoel Tenne is with School of Mechanical Engineering, Ariel University,

Israel (e-mail: y.tenne@ariel.ac.il).

designs without obtaining any beneficial information. In this

study it is assumed that the simulation evaluations are

deterministic, namely, a SF design will consistently succeed

and conversely a SI design will consistently fail.

While multiple studies have reported encountering SI

designs, for example [!], the common approaches to handle

them have significant shortcomings, for example they discard

such vectors all together or they assign such vectors a

fictitious penalized value, but both of these techniques can

degrade the effectiveness of the optimization search,

Accordingly, to handle such designs more effectively and

efficiently this study presents an implementation in which a

classifier is incorporated into the search to predict if

candidate designs are likely to be SI or not. These predictions

are then used by the optimization algorithm to deflect the

search to designs which are likely to be SF. The performance

of the proposed implementation was evaluated with an

engineering test problem and results the merit of the proposed

approach. The remainder of this paper is organized as follows:

Section II provides the pertinent background information,

Section III describes the proposed implementation, Section

IV then gives a performance analysis, and lastly Section V

concludes the paper.

II. BACKGROUND

Simulation-driven optimization problems are increasingly

common in engineering and accordingly several approaches

have been studied which are tailored for such problems. One

such established approach is that of using approximation

models, also termed in the literature as metamodels or

surrogates, which approximate the true expensive function

and provide predicted objective values at a lower

computational cost [1-3]. Metamodels variants include radial

basis functions (RBF) and Kriging which originated in

geostatistics, artificial neural networks from the domain of

machine learning, and polynomial approximations from

applied mathematics. During the optimization process the

metamodel provides predicted objective values instead of the

simulation thereby significantly reducing the overall

computational cost.

With respect to the simulation-failure, SI designs have

been mentioned repeatedly to in the literature, for example in

references [4-8]. Given their negative impact on the

optimization process several techniques have been examined

to handle them, for example by assigning them a penalized

value [4] or by discarding them altogether [5]. However, such

techniques exhibit several demerits, namely, using a

penalized vector during the metamodel training can severely

degrade its prediction accuracy, while simply discarding SI

vectors results in loss of valuable information. As an

Enhancing Simulation-Driven Optimization by

Machine-Learning

Yoel Tenne

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

230DOI: 10.7763/IJMO.2019.V9.714

example, Figure 1 shows two Kriging metamodels which

were used to approximate the Rosenbrock function: (a)

shows the resultant metamodel when 30 regular vectors were

used, while (b) shows the resultant metamodel when 20

penalized vectors were added to the previous training sample,

with a penalized value which taken as the worst objective

value from the 30 vector sample. Evidently the resultant

metamodel is severely deformed with many artificial optima,

and this would exacerbate the optimization difficulty.

Fig. 1. Metamodels of the Rosenbrock function: (a) Based on 30 valid

vectors, (b) the sample in (a) plus 20 vectors with a penalized value.

III. PROPOSED IMPLEMENTATION

To address the issues discussed above this section presents

an implementation in which vectors are screened prior to any

evaluation to predict if they are SF or SI. To further improve

the search effectiveness the framework uses multiple search

algorithms and dynamically uses the best predicted vector

throughout the search. Lastly, to ensure convergence in the

presence of inherent metamodel prediction errors the search

in performed based on the trust-region approach [9,10].

The proposed algorithm operates in four main steps, as

follows:

Step 1: A sample of vectors is generated by using the Latin

hypercube sampling (LHS) method [11] to obtain a

space-filling sample, as this improves the prediction accuracy

of the resultant metamodel. The sample vectors are evaluated

with the true expensive function and are cached in a memory

storage.

Step 2: The main optimization loop now begins and a

Kriging metamodel is trained by using only the SF vectors

stored in the memory cache. Next, a classifier is trained by

using all the cached vectors, namely, both the SF and SI ones.

A classifier is a mapping from ℝn → ℕ , namely, given a set

of n-dimensional real vectors which have been associated

with a set of groups or classes, then for a new vector the

classifier assigns the vector an integer index which indicates

to which class is this vector most likely to belong. In this

study the kNN (k nearest neighbours, k=3) classifier was

used [1,12].

Step 3: After training the metamodel and classifier an

optimization search step is performed. Due to the high

computational cost of simulation evaluations only a small

number of evaluated vectors will be available and therefore

the resultant metamodel will exhibit prediction inaccuracies.

The latter can severely hamper the search and may even lead

to convergence to a false optimum [13]. Therefore, to ensure

convergence to an optimum of the true expensive function the

search is performed based on the trust-region (TR) approach

[14], namely, the search is restricted to the predefined volume

𝜏: ‖𝑥 − 𝑥𝑏‖ ≤ 𝑟

where 𝑥𝑏 is the trust-region center and is the best vector

found so far and 𝑟 is the TR radius. To improve the

effectiveness of the TR search step two search algorithms are

used: a real-coded evolutionary algorithm (EA) [15] and a

simmulated-annealing (SA) optimizer [16], and their main

parameters are given in Table 1. Each of the latter is run in

turn which results in two predicted optima, and the one which

is predicted to have a better objective value is selected for

evaluation with the true objective function, namely, the

simulation.

TABLE I: MAIN PARAMETERS FOR THE SEARCH ALGORITHMS.

EA:

Population size: 100

Max generations: 100

Selection: Stochastic Universal Selection (SUS)

Recombination: Intermediate, probability=0.6

Mutation: Breeder Genetic Algorithm, probability=0.1

Elitism: 10%

Simulated annealing:

Initial Temperature: 𝑇𝑖 = 1000 𝑑, 𝑑 = 𝑑𝑖𝑚𝑛𝑒𝑠𝑖𝑜𝑛

Final Temperature: 𝑇𝑓 = 10−8

Temperature profile: 𝑇(𝑡) = 0.95 𝑇(𝑡 − 1)

Acceptance function: 𝑝(𝑇) = exp (−
𝑓(𝑥𝑛)−𝑓(𝑥𝑐)

𝑇(𝑡)
)

Step 4: The best solution vector found during the search,

𝑥∗, is evaluated with the true expensive function, namely, the

simulation, and based on the obtained value the following

updates are performed, assuming a minimization problem:

If 𝑥∗ < 𝑥𝑏 then the metamodel is considered accurate

since the trial step was successful, and therefore the

trust-region radius is doubled.

If 𝑥∗ ≥ 𝑥𝑏 and the number of training vectors in the TR is

below a preset threshold then the metamodel is deemed as

inaccurate since the trial-step failed, but this failure is

attributed to having too few training vectors in the TR.

Accordingly, a new vector is sampled in TR and is added to

the memory cache.

If 𝑥∗ ≥ 𝑥𝑏 and the number of training vectors in the TR is

above the preset threshold then the metamodel is again

deemed as inaccurate but now the failure is attributed to the

TR being too large, namely, the prediction was made at a

point which is too far from the training vectors and there the

prediction was inevitably of low accuracy. Accordingly, the

TR radius is halved.

As the last step in the optimization loop, the new vectors

which have been evaluated in the current iteration are added

to the memory cache and another loop is performed. The

process repeats until a convergence criterion is reached or if

the maximum allowed number of simulation calls is reached.

IV. PERFORMANCE EVALUATION

For its evaluation the proposed framework was applied to

an engineering problem of airfoil shape optimization. In this

problem the goal is to find an airfoil shape which minimizes

the drag (aerodynamic friction) while maximizing the

aerodynamic lift force, To ensure structural integrity a

constraint was added such that the airfoil thickness (𝑡)

between 20% to 80% of its chord line had to be larger than a

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

231

critical value 𝑡∗ = 0.1 . The combined objective function

used was

𝑓 = −
𝑐𝐿

𝑐𝐷

+ Ω

Ω =
 𝑡∗

𝑡
∙ |

𝑐𝐿

𝑐𝐷

| 𝑖𝑓 𝑡 < 𝑡∗

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑐𝐿 , 𝑐𝐷 are the lift and drag coefficients, respectively,

and Ω is a penalty term which added for violation of the

thickness constraint. Candidate airfoils were generated by

using the Hicks-Henne method [17], namely:

𝑦 = 𝑦𝑏 + ∑ 𝜃𝑖𝜎𝑖

𝑛

𝑖=1

𝜎𝑖 = sin (𝜋𝑥(log (0.5)/log (
𝑖

𝑘+1
)) , 𝑖 = 1 … 𝑘

where 𝑦𝑏 is a baseline airfoil shape, taken here as the

NACA0012 airfoil, 𝜃𝑖 ∈ [0,1] are coefficients, and 𝜎𝑖(𝑥) are

the shape basis functions, where 𝑘 is the user-prescribed

number of basis to use. The goal is then to find the values of

the coefficients 𝜃𝑖 which would define the optimal airfoil

shape. The lift and drag coefficient of each candidate airfoil

were calculated with the aerodynamic simulation code XFoil

for subsonic airfoils [18]. Each evaluation required between 5

to 30 seconds on a desktop computer, thereby allowing a

realistic simulation-driven optimization process to be

completed in a manageable time period. Figure 2 gives the

layout of the airfoil problem formulation.

Fig. 2. The layout of the airfoil problem.

The airfoil problem has been used since it is both

simulation-driven and since it contains SI vectors, namely,

the Xfoil code will crash for some of the candidate airfoil

designs. Particularly, the extent of SI vectors strongly

depends on the angle-of-attack (AOA) parameter which is the

angle between the airfoil chord line and aircraft velocity,

since as the AOA increases the flow becomes more turbulent

and therefore more difficult to model numerically.

Accordingly, three AOA settings were used in the tests: 20,

30, and 40 degrees, to assess the performance in search

spaces with an increasing density of SI vectors. Additional

problem settings used were a flight speed of Mach=0.75, and

a flight altitude of 32 Kft. For comparison the proposed

implementation was benchmarked against two reference

algorithms from the literature: i) KEAS which is an

evolutionary algorithm which uses periodic sampling of new

vectors to refresh a Kriging metamodel [19,20], and the

EICMAES algorithm which combines the Expected

Improvement approach with a covariance matrix adaption

evolutionary strategies search [6]. The KEAS algorithm

discarded SI vectors without incorporating them into the

training set while the EICMAES algorithm in this study used

the penalty approach, namely, in case a SI vector was

encountered it was assigned a penalized objective value

which was set to 10 times the worst objective value from the

initial sample in Step 1. The number of calls to the Xfoil

simulation was a limited to 200 to represent a real-world

computationally expensive scenario and the size of the initial

sample was 20, namely 10% of the total simulation calls. To

ensure a valid statistical analysis 30 runs were repeated with

each algorithm in each AOA setting, and Table 2 gives the

resultant test statistics.

It follows from the test results that the proposed algorithm

consistently outperformed the reference algorithms as

evident from the mean and median statistics. These results

are attributed mainly to the integration of the classifier into

the process which diverted the search away from SI vectors,

instead of using penalized vectors or simply discarding the SI

thereby losing valuable information. Overall the analysis

shows the merit of the proposed implementation of

incorporating a machine learning component into the

optimization search to handle SI vectors.

TABLE II: TEST STATISTICS

AOA

[degrees]

Statistic Proposed KEAS EICMAES

20 Mean -1.01E+1 -0.81E+0 -0.92E+1

 Median -1.05E+1 -0.78E+0 -0.84E+1

30 Mean -3.32E+0 -3.02E+0 -2.89E+0

 Median -3.16E+0 -2.95E+0 -2.77E+0

40 Mean -2.91E+0 -2.68E+0 -2.78E+0

 Median -2.78E+0 -2.54E+0 -2.71E+0

AOA: Angle of attack.

In each line the best statistic is emphasized.

V. CONCLUSION

In modern engineering it is common to use computer

simulations for evaluation of candidate designs, and this

setup defines an optimization problem of an expensive

black-box function. In such problems there will often exist

vectors for which the simulation fails without providing an

output value. This in turn can degrade the search

effectiveness and lead to a poor final result. To effectively

and efficiently address this issue this study has presented an

implementation in which a classifier is incorporated into the

optimization search. The classifier’s role is to predict prior to

any evaluation if a candidate vector is expected to cause the

simulation to fail and this prediction is then used to bias the

search towards vectors for which the simulation is expected

to succeed. To further improve the search effectiveness the

proposed implementation used two search algorithms, a

real-coded evolutionary algorithm and a simulated annealing

search, such that the best vector found out of the two was

used. Performance analysis based on an airfoil shape

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

232

optimization problem showed the effectiveness of the

implementation presented and highlights the merit of

integrating a classifier into the simulation-driven

optimization search.

REFERENCES

[1] Y. Tenne and C. K. Goh, “Computational intelligence in expensive
optimization problems,” vol. 2 of Evolutionary Learning and

Optimization, Berlin: Springer, 2010.

[2] F. A. C. Viana, R. T. Haftka, and L. T. Watson, “Efficient global
optimization algorithm assisted by multiple surrogate technique,”

Journal of Global Optimization, vol. 56, no. 2, pp. 669–689, 2013.

[3] T. Wortmann, A. Costa, G. Nannicini, and T. Schroepfer, “Advantages
of surrogate models for architectural design optimization,” Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, vol.

29, no. 4, pp. 471–481, 2015.
[4] K. Rasheed, H. Hirsh, and A. Gelsey, “A genetic algorithm for

continuous design space search,” Artificial Intelligence in Engineering,

vol. 11, pp. 295–305, 1997.
[5] D. Büche, N. N. Schraudolph, and P. Koumoutsakos, “Accelerating

evolutionary algorithms with Gaussian process fitness function

models,” IEEE Transactions on Systems, Man, and Cybernetics–Part
C, vol. 35, no. 2, pp. 183–194, 2005.

[6] M. T. M. Emmerich, A. Giotis, M. Özedmir, T. Bäck, and K. C.

Giannakoglou, “Metamodel-assisted evolution strategies,” in Proc. the
7th International Conference on Parallel Problem Solving from

Nature–PPSN VII (J. J. Merelo Guervós, ed.), no. 2439, pp. 361–370,

Springer, 2002.
[7] R. G. Regis and C. A. Shoemaker, “A quasi-multistart framework for

global optimization of expensive functions using response surface

models,” Journal of Global Optimization, vol. 56, pp. 1719—1753,
2013.

[8] Y. Tenne, K. Izui, and S. Nishiwaki, “A computational intelligence

algorithm for expensive engineering optimization problems,”
Engineering Applications of Artificial Intelligence, vol. 25, no. 5, pp.

1009–1, 2012.

[9] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Introduction to
derivative-free optimization MPS-siam series on optimization,

philadelphia,” Pennsylvania: SIAM, 2009.
[10] R. G. and Regis and C. A. Shoemaker, “ORBIT: Optimization by radial

basis function interpolation in trust-regions,” vol. 30, no. 6, pp. 3197–

3219, 2008.

[11] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of

three methods for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–

245, 1979.

[12] S. Handoko, C. K. Kwoh, and Y.-S. Ong, “Using classification for
constrained memetic algorithm: A new paradigm,” in Proc. the 2008

IEEE International Conference on Systems, Man, and Cybernetics, pp.

547–552, Elsevier, 2008.
[13] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary

optimization with approximate fitness functions,” IEEE Transactions

on Evolutionary Computation, vol. 6, no. 5, pp. 481–494, 2002.
[14] S. Grarton and L. N. Vicente, “A surrogate management framework

using rigorous trust-region steps,” Optimization Methods and Software,

vol. 29, no. 1, pp. 10–23, 2014.
[15] A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fonseca, “Genetic

algorithm toolbox for use with MATLAB, version 1.2,” Department of

Automatic Control and Systems Engineering, University of Sheffield,
Sheffield, 1994.

[16] A. Belloni, H. Liang, T. Narayanan, and A. Rakhlin, “Escaping the

local minima via simulated annealing: Optimization of approximately
convex functions,” The Journal of Machine Learning Research,

40:240–265, 2015.

[17] R. M. Hicks and P. A. Henne, “Wing design by numerical

optimization,” Journal of Aircraft, vol. 15, no. 7, pp. 407–412, 1978.

[18] M. Drela and H. Youngren, XFOIL 6.9 User Primer, Department of

Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, MA, 2001.

[19] A. Ratle, “Optimal sampling strategies for learning a fitness model,” in

Proc. the 1999 IEEE Congress on Evolutionary Computation–CEC
1999, pp. 2078–2085, IEEE, 1999.

[20] J. D. Martin and T. W. Simpson, “Use of kriging models to

approximate deterministic computer models,” AIAA Journal, vol. 43,
no 4, pp.853-863, 2005.

Yoel Tenne received his PhD in mechanical engineering at Sydney
University, Australia. Afterwards he was an australian endeavour fellow at

the Korea Advanced Institute of Science and Technology (KAIST) and a

Japan Society for Promotion of Science (JSPS) Fellow at Kyoto University,
Japan. He currently a senior lecturer at Ariel University, Israel. His fields of

research include applied optimization, computational intelligence, and
systems engineering. In these respective fields he has authored over 50

publications,

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

233

