
   

Abstract—Computer simulations are being extensively used 

in engineering design optimization to evaluate candidate 

designs instead of real-world experiments. Often for some of the 

candidate designs the simulation will fail for an unknown 

reason, which leads to wasted computer resources and poor 

final results. To handle this challenge both effectively and 

efficiently this study presents an implementation in which 

classifiers, borrowed from the domain of machine learning, are 

integrated into the optimization process to predict if a candidate 

design is valid or not prior to evaluating it with the simulation. 

To further enhance the optimization effectiveness two different 

search methods are used. Numerical experiments show the 

merit of the proposed implementation. 

 
Index Terms—Expensive black-box functions, machine 

learning, classifiers, metamodels.  

 

I. INTRODUCTION 

The use of computer simulations in engineering design 

continues to grow since they allow for a more efficient design 

process. The use of such simulations transforms the design 

process into an optimization problem with the following 

unique features [1]:  

The simulation acts as the objective function since it 

assigns an output value to a candidate design, but its analytic 

expression is unknown, namely, it is as a black-box function. 

This is since it is often a legacy code or a commercial 

software whose inner mechanics are inaccessible.  

Each simulation run is often computationally expensive 

which in turn severely limits the possible number of 

evaluations.  

Both the real-world physics being simulated and the 

numerical approximations often result in an objective with a 

complicated landscape and this further exacerbates the 

optimization difficulty. 

Such problems are appropriately termed as expensive 

black-box optimization problems and due to their prevalence 

they have received significant attention [1]. An additional 

challenge which is often encountered is that for some 

candidate designs the simulation will fail without providing 

an output value. In this study such designs are termed as 

simulator-infeasible (SI), while valid designs are termed 

simulator-feasible (SF). The presence of SI designs in an 

optimization process implies that: i) the objective function is 

discontinuous since it does not have an objective value at 

these vectors, and this discontinuity increases the 

optimization difficulty, and ii) considerable computer 

resources can be wasted by attempting to evaluate such 
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designs without obtaining any beneficial information. In this 

study it is assumed that the simulation evaluations are 

deterministic, namely, a SF design will consistently succeed 

and conversely a SI design will consistently fail. 

While multiple studies have reported encountering SI 

designs, for example [!], the common approaches to handle 

them have significant shortcomings, for example they discard 

such vectors all together or they assign such vectors a 

fictitious penalized value, but both of these techniques can 

degrade the effectiveness of the optimization search, 

Accordingly, to handle such designs more effectively and 

efficiently this study presents an implementation in which a 

classifier is incorporated into the search to predict if  

candidate designs are likely to be SI or not. These predictions 

are then used by the optimization algorithm to deflect the 

search to designs which are likely to be SF. The performance 

of the proposed implementation was evaluated with an 

engineering test problem and results the merit of the proposed 

approach. The remainder of this paper is organized as follows: 

Section II provides the pertinent background information, 

Section III describes the proposed implementation, Section 

IV then gives a performance analysis, and lastly Section V 

concludes the paper. 

 

II. BACKGROUND 

Simulation-driven optimization problems are increasingly 

common in engineering and accordingly several approaches 

have been studied which are tailored for such problems. One 

such established approach  is that of using approximation 

models, also termed in the literature as metamodels or 

surrogates, which approximate the true expensive function 

and provide predicted objective values at a lower 

computational cost [1-3]. Metamodels variants include radial 

basis functions (RBF) and Kriging which originated in 

geostatistics, artificial neural networks from the domain of 

machine learning, and polynomial approximations from 

applied mathematics. During the optimization process the 

metamodel provides predicted objective values instead of the 

simulation thereby significantly reducing the overall 

computational cost.  

With respect to the simulation-failure, SI designs have 

been mentioned repeatedly to in the literature, for example in 

references [4-8]. Given their negative impact on the 

optimization process several techniques have been examined 

to handle them, for example by assigning them a penalized 

value [4] or by discarding them altogether [5]. However, such 

techniques exhibit several demerits, namely, using a 

penalized vector during the metamodel training can severely 

degrade its prediction accuracy, while simply discarding SI 

vectors results in loss of valuable information.  As an 
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example, Figure 1 shows two Kriging metamodels which 

were used to approximate the Rosenbrock function: (a) 

shows the resultant metamodel when 30 regular vectors were 

used, while (b) shows the resultant metamodel when 20 

penalized vectors were added to the previous training sample, 

with a penalized value which taken as the worst objective 

value from the 30 vector sample. Evidently the resultant 

metamodel is severely deformed with many artificial optima, 

and this would exacerbate the optimization difficulty. 

 
Fig. 1. Metamodels of the Rosenbrock function: (a) Based on 30 valid 

vectors, (b) the sample in (a) plus 20 vectors with a penalized value. 

 

III. PROPOSED IMPLEMENTATION 

To address the issues discussed above this section presents 

an implementation in which vectors are screened prior to any 

evaluation to predict if they are SF or SI. To further improve 

the search effectiveness the framework uses multiple search  

algorithms and dynamically uses the best predicted vector  

throughout the search. Lastly, to ensure convergence in the 

presence of inherent metamodel prediction errors the search 

in performed based on the trust-region approach [9,10].  

The proposed algorithm operates in four main steps, as 

follows: 

Step 1: A sample of vectors is generated by using the Latin 

hypercube sampling (LHS) method [11] to obtain a 

space-filling sample, as this improves the prediction accuracy 

of the resultant metamodel. The sample vectors are evaluated 

with the true expensive function and are cached in a memory 

storage. 

Step 2: The main optimization loop now begins and a 

Kriging metamodel is trained by using only the SF vectors 

stored in the memory cache. Next, a classifier is trained by 

using all the cached vectors, namely, both the SF and SI ones. 

A classifier is a mapping from ℝn → ℕ , namely, given a set 

of n-dimensional real vectors which have been associated 

with a set of groups or classes, then for a new vector the 

classifier assigns the vector an integer index which indicates 

to which class is this vector most likely to belong. In this 

study the kNN (k nearest neighbours, k=3) classifier was 

used [1,12]. 

Step 3: After training the metamodel and classifier an 

optimization search step is performed. Due to the high 

computational cost of simulation evaluations only a small 

number of evaluated vectors will be available and therefore 

the resultant metamodel will exhibit prediction inaccuracies. 

The latter can severely hamper the search and may even lead 

to convergence to a false optimum [13]. Therefore, to ensure 

convergence to an optimum of the true expensive function the 

search is performed based on the trust-region (TR) approach 

[14], namely, the search is restricted to the predefined volume  

𝜏: ‖𝑥 − 𝑥𝑏‖ ≤ 𝑟 

where 𝑥𝑏  is the trust-region center and is the best vector 

found so far and 𝑟  is the TR radius. To improve the 

effectiveness of the TR search step two search algorithms are 

used: a real-coded evolutionary algorithm (EA) [15] and a 

simmulated-annealing (SA) optimizer [16], and their main 

parameters are given in Table 1. Each of the latter is run in 

turn which results in two predicted optima, and the one which 

is predicted to have a better objective value is selected for 

evaluation with the true objective function, namely, the 

simulation.  

 
TABLE I: MAIN PARAMETERS FOR THE SEARCH ALGORITHMS. 

EA: 

Population size: 100 

Max generations: 100 

Selection: Stochastic Universal Selection (SUS) 

Recombination:  Intermediate, probability=0.6 

Mutation: Breeder Genetic Algorithm, probability=0.1 

Elitism: 10% 

Simulated annealing: 

Initial Temperature: 𝑇𝑖 = 1000 𝑑, 𝑑 = 𝑑𝑖𝑚𝑛𝑒𝑠𝑖𝑜𝑛 

Final Temperature: 𝑇𝑓 = 10−8 

Temperature profile: 𝑇(𝑡) = 0.95 𝑇(𝑡 − 1) 

Acceptance function: 𝑝(𝑇) = exp ( −
𝑓(𝑥𝑛)−𝑓(𝑥𝑐)

𝑇(𝑡)
) 

 

Step 4: The best solution vector found  during the search, 

𝑥∗, is evaluated with the true expensive function, namely, the 

simulation, and based on the obtained value the following 

updates are performed, assuming a minimization problem: 

If 𝑥∗ < 𝑥𝑏   then the metamodel is considered accurate 

since the trial step was successful, and therefore the 

trust-region radius is doubled. 

If 𝑥∗ ≥ 𝑥𝑏  and the number of training vectors in the TR is 

below a preset threshold then the metamodel is deemed as 

inaccurate since the trial-step failed, but this failure is 

attributed to having too few training vectors in the TR. 

Accordingly, a new vector is sampled in TR and is added to 

the memory cache.  

If 𝑥∗ ≥ 𝑥𝑏  and the number of training vectors in the TR is 

above the preset threshold then the metamodel is again 

deemed as inaccurate but now the failure is attributed to the 

TR being too large, namely, the prediction was made at a 

point which is too far from the training vectors and there the 

prediction was inevitably of low accuracy. Accordingly, the 

TR radius is halved. 

As the last step in the optimization loop, the new vectors 

which have been evaluated in the current iteration are added 

to the memory cache and another loop is performed. The 

process repeats until a convergence criterion is reached or if 

the maximum allowed number of simulation calls is reached. 

 

IV. PERFORMANCE EVALUATION 

For its evaluation the proposed framework was applied to 

an engineering problem of airfoil shape optimization. In this 

problem the goal is to find an airfoil shape which minimizes 

the drag (aerodynamic friction) while maximizing the 

aerodynamic lift force,  To ensure structural integrity a 

constraint was added such that the airfoil thickness (𝑡) 

between 20% to 80% of its chord line had to be larger than a 
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critical value 𝑡∗ = 0.1 . The combined objective function 

used was  

𝑓 =  −
𝑐𝐿

𝑐𝐷

+  Ω 

Ω =  
  𝑡∗

𝑡
∙ |

𝑐𝐿

𝑐𝐷

|  𝑖𝑓 𝑡 < 𝑡∗ 

           0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    

where 𝑐𝐿 , 𝑐𝐷  are the lift and drag coefficients, respectively, 

and Ω is a penalty term which added for violation of the 

thickness constraint. Candidate airfoils were generated by 

using the Hicks-Henne method [17], namely: 

𝑦 = 𝑦𝑏 +  ∑ 𝜃𝑖𝜎𝑖 

𝑛

𝑖=1

 

𝜎𝑖 = sin ( 𝜋𝑥(log (0.5)/log (
𝑖

𝑘+1
)) , 𝑖 = 1 … 𝑘 

where 𝑦𝑏 is a baseline airfoil shape, taken here as the 

NACA0012 airfoil, 𝜃𝑖 ∈ [0,1] are coefficients, and 𝜎𝑖(𝑥) are 

the shape basis functions, where 𝑘 is the user-prescribed 

number of basis to use. The goal is then to find the values of 

the coefficients 𝜃𝑖  which would define the optimal airfoil 

shape. The lift and drag coefficient of each candidate airfoil 

were calculated with the aerodynamic simulation code XFoil 

for subsonic airfoils [18]. Each evaluation required between 5 

to 30 seconds on a desktop computer, thereby allowing a 

realistic simulation-driven optimization process to be 

completed in a manageable time period. Figure 2 gives the 

layout of the airfoil problem formulation. 

 

 
Fig. 2. The layout of the airfoil problem. 

 

The airfoil problem has been used since it is both 

simulation-driven and since it contains SI vectors, namely, 

the Xfoil code will crash for some of the candidate airfoil 

designs. Particularly, the extent of SI vectors strongly 

depends on the angle-of-attack (AOA) parameter which is the 

angle between the airfoil chord line and aircraft velocity, 

since as the AOA increases the flow becomes more turbulent 

and therefore more difficult to model numerically. 

Accordingly, three AOA settings were used in the tests: 20, 

30, and 40 degrees, to assess the performance in search 

spaces with an increasing density of SI vectors. Additional 

problem settings used were a flight speed of Mach=0.75, and 

a flight altitude of 32 Kft. For comparison the proposed 

implementation was benchmarked against two reference 

algorithms from the literature: i) KEAS which is an 

evolutionary algorithm which uses periodic sampling of new 

vectors to refresh a Kriging metamodel [19,20], and the 

EICMAES algorithm which combines the Expected 

Improvement approach  with a covariance matrix adaption 

evolutionary strategies search [6]. The KEAS algorithm 

discarded SI vectors without incorporating them into the 

training set while the EICMAES algorithm in this study used 

the penalty approach, namely, in case a SI vector was 

encountered it was assigned a penalized objective value 

which was set to 10 times the worst objective value from the 

initial sample in Step 1. The number of calls to the Xfoil 

simulation was a limited to 200 to represent a real-world 

computationally expensive scenario and the size of the initial 

sample was 20, namely 10% of the total simulation calls. To 

ensure a valid statistical analysis 30 runs were repeated with 

each algorithm in each AOA setting, and Table 2 gives the 

resultant test statistics.  

It follows from the test results that the proposed algorithm 

consistently outperformed the reference algorithms as 

evident from the mean and median statistics. These results 

are attributed mainly to the integration of the classifier into 

the process which diverted the search away from SI vectors, 

instead of using penalized vectors or simply discarding the SI 

thereby losing valuable information. Overall the analysis 

shows the merit of the proposed implementation of 

incorporating a machine learning component into the 

optimization search to handle SI vectors. 

 
TABLE II: TEST STATISTICS 

AOA 

[degrees] 

Statistic Proposed KEAS EICMAES 

20 Mean -1.01E+1 -0.81E+0 -0.92E+1 

 Median -1.05E+1 -0.78E+0 -0.84E+1 

30 Mean -3.32E+0 -3.02E+0 -2.89E+0 

 Median -3.16E+0 -2.95E+0 -2.77E+0 

40 Mean -2.91E+0 -2.68E+0 -2.78E+0 

 Median -2.78E+0 -2.54E+0 -2.71E+0 

AOA: Angle of attack. 

In each line the best statistic is emphasized. 

 

V. CONCLUSION 

In modern engineering it is common to use computer 

simulations for evaluation of candidate designs, and this 

setup defines an optimization problem of an expensive 

black-box function. In such problems there will often exist 

vectors for which the simulation fails without providing an 

output value. This in turn can degrade the search 

effectiveness and lead to a poor final result. To effectively 

and efficiently address this issue this study has presented an 

implementation in which a classifier is incorporated into the 

optimization search. The classifier’s role is to predict prior to 

any evaluation if a candidate vector is expected to cause the 

simulation to fail and this prediction is then used to bias the 

search towards vectors for which the simulation is expected 

to succeed. To further improve the search effectiveness the 

proposed implementation used two search algorithms, a 

real-coded evolutionary algorithm  and a simulated annealing 

search, such that the best vector found out of the two was 

used. Performance analysis based on an airfoil shape 
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optimization problem showed the effectiveness of the 

implementation presented and highlights the merit of 

integrating a classifier into the simulation-driven 

optimization search. 
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