

Abstract—In this paper, the hybrid moth-flame, and

salp-swarm algorithm is proposed to enhance the performance

of the original moth-flame algorithm. As a moth moves spirally

around a flame, the chance of investigating the distance between

the moth and the flame is reduced. In this study, a salp chain

was attached to each moth to investigate the distance. The

proposed algorithm was evaluated on benchmark functions and

compared with the original moth-flame optimization algorithm

and particle swarm optimization algorithm. Results show that

the proposed algorithm can generate a better minimum fitness

value up to almost 100% for most functions compared with

other algorithms. Moreover, the convergence rate of the

proposed algorithms converged to a global optimum faster for

most functions compared with other algorithms.

Index Terms—Moth-flame optimization, salp-swarm

algorithm, hybrid moth-flame, and salp-swarm algorithm.

I. INTRODUCTION

Optimization is a process of identifying values of variables

or configurations to support objectives. Objectives can be to

minimize the time of production in manufacturing or the cost

of server allocation. Meta-heuristic techniques are well

adapted to these optimization problems because of the

performance of techniques and flexibility to solve a wide area

of problems.

Swarm intelligence (SI) [1] is one of the categories of

optimization techniques. The basic concept of SI is to have

collective simple search agents follow basic rules to emerge

intelligent swarm capabilities. They are inspired by animals.

For example, particle swarm optimization (PSO) [2] was

inspired by a flock of birds that collaboratively fly to a food

source without crashing one another, and ant colony

optimization (ACO) [3] was inspired by an ant colony that

collaboratively find a food location without any leader.

The common process in SI is to have a set of feasible

solutions improved over time using the knowledge of other

solutions. The process should support exploration and

exploitation to get deep into a global optimum without being

trapped by any local optima.

The moth-flame optimization (MFO) [4] and salp-swarm

algorithm (SSA) [5] are other two remarkable meta-heuristic

optimization algorithms published recently. The researchers

showed that the performance of these algorithms can

outperform other algorithms in optimization problems. The

motivation of this research is to enhance the MFO algorithm

with SSA to get a better quality of solutions and faster

convergence. The rest of this paper is organized as follows.

Section II presents the adoption of SSA in the MFO

algorithm. Section III explains an experiment for the

performance evaluation using a variety of benchmark

functions. The results of the experiment and discussion are

also discussed in this section. Finally, Section IV summarizes

the work done in this paper, remarks, and future research.

II. METHODOLOGY

This section describes the processes of MFO, SSA, and the

proposed hybrid between both.

A. MFO Algorithm

The algorithm uses the position of each moth as a solution

representation and a matrix of flames to represent the best

solutions found so far. The dimensions of a position represent

each variable in an optimization problem.

At the beginning of the algorithm, a population of moths is

assigned to a random position based on the upper and lower

bounds. Their fitness value is calculated, and the flame

matrix is updated.

At each iteration, each moth will update its position with

respect to the corresponding flame. The spiral function used

to update the moth position is (1), where

Mi is the ith moth,

Fj is the jth flame,

Di,j is the distance between the ith moth and jth flame,

b is a constant to define the shape of the spiral function,

t is a random number between r and 1,

and r is a number linearly decreasing from −1 to −2.

,

(,) cos(2) [,1)
i j i j j

S M F D t F t r= + . (1)

The decrement value of r increases a chance of

exploitation after iterations.

After moths are updated, their fitness value is evaluated

again for the updated position. Then, the best solutions are

updated to the flame matrix.

This algorithm also decreases the number of flames over

iterations to ensure convergence. The number of flames in

each iteration can be calculated using (2), where

N is the maximum number of flames,

l is the current iteration number,

and T is the maximum number of iterations.

 (, ,) round((1) /)flames N l T N l N T= − − . (2)

Hybrid Moth-Flame and Salp-Swarm Optimization

Algorithm

Orachun Udomkasemsub, Khajonpong Akkarajitsakul, and Tiranee Achalakul

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

223DOI: 10.7763/IJMO.2019.V9.713

Manuscript received June 29, 2019; revised May 1, 2019. This work was

supported by the Thailand Research Fund through the Royal Golden Jubilee

Ph.D. Program (Grant No. PHD/0065/2554).

The authors are with the Computer Engineering Department, King

Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand

(e-mail: {orachun.udo, khajonpong.akk, tiranee.ach}@mail.kmutt.ac.th).

To summarize, the algorithm can be represented as

follows:

MFO (F, G, H)
1 flameCount ← N ← max number of flames

2 for i ←1 to n

3 for j ← 1 to d

4 Mothsij ← random between lbj and ubj

5 Fitsi ← F(Mi, G, H)

6 Flames ← sort(Moths, Fits, flameCount)

7 for l ← 1 to T

8 flameCount ← flames(N, l, T) from (2)

9 for i ← 1 to flameCount

10 for j ← 1 to d

11 Mothsij ← S(Mothsij, Fij) from (1)

12 Fitsi ← F(Mothsi, G, H)

13 Flames ← sort(Moths, Fits, flameCount)

14 return Flames0

B. SSA

This algorithm represents a solution through a salp

position where its dimensions are the problem variable,

similar with MFO.

At the beginning of the algorithm, each salp in the

population is assigned to a chain, and assigned to a random

position based on upper and lower bounds. Their fitness

value is calculated, and the best solution is set to the food

source.

During the iterations, leaders’ position will be updated to

move toward the food source using (3), where

x1, j is the position of the leader salp at the jth dimension,

Fj is the position of the food source at the jth dimension,

ubj is an upper bound of the variable in the jth dimension,

lbj is a lower bound of the variable in the jth dimension,

and c1, c2, and c3 are random numbers.

1 2 3

1,

1 2 3

(()) 0

(()) 0

j j j j

j

j j j j

F c ub lb c lb c
x

F c ub lb c lb c

+ − +
=

− − +

. (3)

While the leaders chase the food source, the followers

move toward the salp in front of them, which will, directly,

and indirectly, follow the leader. The followers’ position will

be updated by (4), where

x'i, j is the new position of the ith salp at the jth dimension,

and xi, j is the previous position of the ith salp at the jth

dimension.

, . 1,

() / 2
i j i j i j

x x x
−

 = + . (4)

The process of this algorithm can be summarized as

follows:

SALP-SWARM OPTIMIZATION (F, G, H)
1 cn ← a number of chains

2 cl ← chain length

3 for i ←1 to cn

4 for j ←1 to cl

5 for k ← 1 to d

6 Salpsijk ← random between lbj and ubj

7 Fitsij ← F(Salpsij, G, H)

8 foodSource ← Salpsij with minimum Fitsij

9 for l ← 1 to N

10 for i ←1 to cn

11 for j ←1 to cl

12 for k ← 1 to d

13 if j = 1 then

14 Salpsijk ← x1,j from (3)

15 else

16 Salpsijk ←
,i j

x from (4)

17 Fitsij ← F(Salpsij, G, H)

18 foodSource ← Salpsij with minimum Fitij

19 return foodSource

C. Proposed Hybrid Moth-Flame Salp-Swarm (MFSS)

Algorithm

This paper proposed a method to increase the exploration

and exploitation balance to the MFO by appending each moth

a chain of follower salps. In addition, the salp will explore,

and exploit the distance between the moth and the flame,

while the moth only examines the surrounding of the flame.

The proposed algorithm can be illustrated as follows.

HYBRID MFSS ALGORITHM (F, G, H)
1 flameCount ← N ← max number of flames

2 for i ←1 to n

3 for j ← 1 to d

4 Mothsij ← random between lbj and ubj

5 MothsFitsi ← F(Mothsi, G, H)

6 for j ←1 to cl

7 for k ← 1 to d

8 Salpsijk ← random between lbj and ubj

9 SalpsFitsij ← F(Salpsij, G, H)

10 Flames ← sort(Moths + Salps, MothsFits+SalpsFits,

flameCount)

11 for l ← 1 to T

12 flameCount ← flames(N, l, T) from (2)

13 for i ← 1 to flameCount

14 for j ← 1 to d

15 Mothsij ← S(Mothsij, Fij) from (1)

16 MothsFitsi ← F(Mothsi, G, H)

17 for j ← 1 to cl

18 for k ← 1 to d

19
 Salpsijk ←

,i j
x from (4)

20 SalpsFitsij ← F(Salpsij, G, H)

21 Flames ← sort(Moths + Salps, MothsFits+SalpsFits,

flameCount)

22 return Flames0

This paper has a hypothesis that the hybrid MFSS

algorithm can provide a better quality of solutions and faster

convergence. To support this hypothesis, an experiment was

designed, and executed. The details of the experiment, results,

and discussion of the results will be discussed in the next

section.

III. RESULTS AND DISCUSSION

To evaluate the performance of the hybrid MFSS

algorithm, 12 benchmark functions for the optimization

algorithm from [6] were used as objective functions. That is,

the algorithm must find variable values to get the minimum

function value. These functions can be divided into two

groups: unimodal and multimodal.

The unimodal function contains only one global optimum

without any local optima, whereas the multimodal function

can have more than one local, and global optima. The list of

benchmark functions is described in Appendix B. First, the

unimodal functions were used to evaluate the exploitation

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

224

property of the algorithm. Second, the multimodal functions

were used to evaluate the capability to avoid the local optima.

The experiment compared the results with those from the

PSO algorithm, genetic algorithm (GA), MFO algorithm, and

SSA. The parameter settings of each experiment treatment

are described in Table I. The experiment also compared the

different numbers of salps and moths in the algorithm settings.

However, the total number of search agents was equal in all

settings to make a fair comparison. In addition, the constant

number of a spiral shape, b, was set to 0.1 for all runs. This

number was experimentally selected. For the PSO algorithm,

the number of particles, and value of each weight required in

the velocity updating function was specified.

In addition to the parameter settings of each algorithm, the

experiment setting in Appendix B also defines all the runs

used.

During the experiment, the average fitness value of the

best solution found so far was recorded. Table II and Fig. 1

show the solutions and their fitness value and convergence

from each algorithm setting, respectively. The bold number

in Table II is the lowest fitness value among all algorithm

settings. The results showed that MFSS has a potential to

obtain a better quality of solutions compared with the original

MFO (M500), SSA (S500), GA (GA500), and PSO (PSO500)

up to almost 100%. Specifically, 250 moths, and

2-salp-length chain can perform a bit better than 100 moths,

and 5-salp-length chain relatively from 19% up to almost

95%. The possible reason is that excessively reducing the

number of moths and increasing the number of salps may

reduce the algorithm’s exploration.

Fig. 1 shows a convergence of each algorithm setting for

each function at the first 500 iterations. The x-axis represents

the iteration number in the logarithmic scale with base 2, and

the y-axis represents the average normalized fitness value

using the maximum, and minimum values obtained for each

function. The plots support that both M250S2 and M100S5

(yellow lines with triangle marks and pink lines with start

marks) have the potential to move faster toward convergence

in most benchmark functions.

TABLE I: ALGORITHMS' PARAMETER SETTINGS

Setting Name Parameter Value

M500 Algorithm MFO

 Number of moths 500

 Number of salps in a chain 0

 b 0.7

M250S2 Algorithm MFSS

 Number of moths 250

 Number of salps in a chain 2

 b 0.7

M100S5 Algorithm MFSS

 Number of moths 100

 Number of salps in a chain 5

 b 0.7

PSO500 Algorithm PSO

 Number of particles 500

 Inertia weight 0.5

 Weight of particle best 2

 Weight of global best 2

GA500 Algorithm GA

 Number of Individuals 500

 Mutation rate 0.01

 Cross-over rate 0.9

 Reproduction rate 0.9

S500 Algorithm SSA

 Number of Salps 500

TABLE II: OPTIMIZATION SOLUTIONS FROM EACH ALGORITHM SETTING

Unimodal Functions Multimodal Functions

Fn Setting Solution Fn Setting Solution

f01 GA500 3.77E+00 f07 GA500 −4.87E+03

f01 M500 3.56E−05 f07 M500 −1.06E+04

f01 PSO500 0 f07 PSO500 −9.28E+03

f01 S500 0 f07 S500 −5.49E+03

f01 M100S5 0 f07 M100S5 −9.13E+03

f01 M250S2 0 f07 M250S2 −1.09E+04

f02 GA500 4.57E−01 f08 GA500 1.96E+00

f02 M500 4.82E−04 f08 M500 3.78E+00

f02 PSO500 1.10E+01 f08 PSO500 4.21E+01

f02 S500 1.15E−05 f08 S500 1.04E+02

f02 M100S5 0 f08 M100S5 0

f02 M250S2 0 f08 M250S2 0

f03 GA500 4.22E+02 f09 GA500 6.87E−01

f03 M500 4.05E−05 f09 M500 1.20E+01

f03 PSO500 3.09E+05 f09 PSO500 0

f03 S500 0 f09 S500 1.13E−05

f03 M100S5 0 f09 M100S5 0

f03 M250S2 0 f09 M250S2 0

f04 GA500 9.92E−01 f10 GA500 8.25E−01

f04 M500 2.99E−04 f10 M500 3.44E−05

f04 PSO500 0 f10 PSO500 3.70E−03

f04 S500 1.64E−05 f10 S500 1.33E−01

f04 M100S5 0 f10 M100S5 0

f04 M250S2 0 f10 M250S2 0

f05 GA500 6.28E+01 f11 GA500 9.71E−02

f05 M500 1.44E+01 f11 M500 −1.02E+00

f05 PSO500 1.84E+04 f11 PSO500 −1.02E+00

f05 S500 2.86E+01 f11 S500 −6.55E−01

f05 M100S5 2.20E−01 f11 M100S5 −1.02E+00

f05 M250S2 1.03E−02 f11 M250S2 −1.02E+00

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

225

f06 GA500 9.60E+00 f12 GA500 3.92E+00

f06 M500 3.66E−05 f12 M500 4.12E−05

f06 PSO500 0 f12 PSO500 0

f06 S500 2.05E−01 f12 S500 1.75E−01

f06 M100S5 0 f12 M100S5 0

f06 M250S2 0 f12 M250S2 0

Fig. 1. Convergence plot of each algorithm setting.

IV. CONCLUSIONS

Optimization problem solving has been a very popular

research area in the previous decades. Researchers have come

up with new algorithms and techniques to address many

challenges. The MFO algorithm and salp-swarm

optimization algorithm are nature-inspired algorithms with

high-performance from balanced exploration and

exploitation. This research combined these algorithms and

expected the better performance and quality of solutions. The

experiment results support that the hybrid MFSS

optimization algorithm with the linear movement of salps can

outperform the original MFO algorithm and the SI and PSO

algorithms.

However, the results from the proposed algorithm depend

on the appropriate parameter settings, and the characteristic

of the search space and problem. Adjusting parameter

settings for the better balance of exploration and exploitation

can produce a better quality of the solutions and vice versa. In

addition, a different hybrid approach can be further

investigated, for example, the flame selection method for a

moth and the position update function for a salp.

In future works, the hybrid MFSS algorithm can be

experimented with a variety of real optimization problems,

including job-shop scheduling, vehicle routing problem, and

workflow scheduling.

APPENDIX

A. Related Works

This section reviews the optimization problem. There are

some challenges that require algorithms to tackle.

Optimization algorithms are categorized and described.

Some of the high-performance collective-based optimization

algorithms are reviewed.

1) Optimization problem

An optimization problem is a problem to minimize or

maximize one or more objectives subject to a set of equality

and/or inequality constraints. An optimization problem can

be represented in (5), where

x is a solution candidate,

()xF is an objective function,

n is a number of objectives,

()
i

g x is an unequal constraint,

m is a number of unequal constraints,

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

226

()
i

h x is an equal constraint,

p is a number of equal constraints,

i
lb is a lower bound for ix ,

i
ub is an upper bound for ix , and

d is a number of dimensions.

Minimize: () { (), (), , ()}
1 2

| () 0
1, 2,...,Subject to:

| () 0 1, 2,...,

1, 2,...,

F x f x f x f x
n

G g g x
i i i m

H h h x i p
i i

i dlb x ub
i i i

=

=
=

= = =

=

 (5)

There are many challenges in solving the optimization

problem. First, constraints create areas of infeasible solutions

in the search space and potentially cause an optimization

algorithm ineffective, while having a good performance in

the search space without constraints. Moreover, a significant

obstacle of solving the practical optimization problem is the

local optima existence. An algorithm to solve this kind of

problem should have techniques to avoid local optima and

incorrectly taking it as the global optimum. However, having

a more intensive exploration process to avoid local optima

may not lead to convergence and, in consequence, may not be

able to obtain the global optimum.

2) Optimization algorithms

Optimization algorithms are designed to solve

optimization problems and their challenges. There are two

main groups of optimization algorithms: deterministic, which

always obtain the same solution for a specific problem, and

stochastic, which can obtain the different solutions due to the

randomness component. With randomness, stochastic

algorithms can avoid local optima but cause less reliability.

However, they can be improved by balancing exploration,

and exploitation, and increasing the number of runs.

Stochastic optimization algorithms also can be divided into

two more groups: individual based and collective-based. The

collective-based algorithm generates multiple random

solutions and improves them over iterations, whereas the

individual based algorithm works with only a single solution.

The collection can increase a chance to get a true global

optimum, but it generates more computational cost because

there are more solutions to evaluate their fitness. However,

the collective-based algorithms are very popular because of

the high potential to avoid local optima, and their drawback

can be relieved by computers with higher performance or

concurrent computing. Their advantages also include

simplicity of algorithms and flexibility work in different

types of problems.

Due to these advantages and relievable drawback,

collective-based stochastic optimization algorithms can

definitely interest researchers to solve optimization

problems.

3) PSO algorithm

The PSO algorithm [2] is one of the collective stochastic

optimization algorithms proposed by Kennedy and Eberhart.

It was inspired by the movement of a flock of birds. [7] shows

that this algorithm has the highest number of publications

among several swarm-intelligence-based optimization

algorithms, such as artificial bee colony [8] and ACO [3].

The PSO algorithm solves the optimization problem by

having collaborated particles move to a better position by

knowledge of each particle and the swarm. Each particle’s

velocity and position are iteratively updated based on its

inertia, its best position, and the swarm’s best position. The

weights for each component are used to balance the

exploration and exploitation of the algorithm.

4) MFO algorithm

The MFO algorithm was proposed by Mirjalili [4]. It was

inspired by the movement of a moth toward a flame.

Normally, in a night, a moth moves to a path and constantly

keep the angle with respect to the very faraway moon. This

method makes the moth move at an almost-straight path.

However, the flame or artificial lights confuse a moth

because they are very close to the moth compared with the

moon. The moth will fly spirally around the light to preserve

the angle and eventually hit the light [9].

The MFO algorithm solves the optimization problem by

having a swarm of moths spirally move around the flames

represented by a specified number of best positions found so

far.

Similar to the PSO, the position of each moth represents a

solution. A logarithmic spiral function used to update the

position of each moth allows the moth to not only move

between the current position and the targeted flame but also

move around the flame to establish exploration on a search

space. However, the convergence parameter is defined to

reduce the distance between the result from the logarithmic

spiral function and the flame, so exploration, and exploitation

can be balanced. That is, exploration is high, but exploitation

is low at the beginning, whereas exploration is slightly

reduced but exploitation is slightly decreased over iterations.

In addition, the number of flames is reduced over iterations

until there is only one flame for all moths to follow. This also

increases exploitation and guarantees algorithm convergence.

5) SSA

SSA was proposed by Mirajalili et al. [5]. A salp is a

barrel-shaped planktonic tunicate. It was inspired by how a

swarm of salps forms salp chains for believably better

foraging. For each salp chain, salps can be divided into a

leader and followers. SSA solves the optimization problem

by having a leader of each chain move toward a food source,

and followers follow their leader directly and indirectly. The

position of each salp represents a solution. As the food source

in the real optimization problem is unknown, the best

solution found so far will be used as a food source to be

chased.

The exploration process is fulfilled by the followers that

move toward the leader, not only the food source. However,

followers move closer to their leader over iterations. The

process reduces exploration and increases exploitation.

In addition, the exploitation process is fulfilled by the

leaders, which always move toward the best solutions found

so far.

From the survey, MFO and SSA both have the potential to

solve optimization problems, and challenges because of their

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

227

strong exploration and exploitation process. This paper

combines MFO and SSA for the better quality of solutions

and faster convergence. The next section discusses the MFO

algorithm and SSA and how to combine them into the

proposed hybrid algorithm.

B. Benchmark Functions And The Experiment’s

Parameter Settings

Tables III and IV present a list of benchmark functions and

environment parameters used in the experiment, respectively.

TABLE III: BENCHMARK FUNCTIONS

Function Range fmin

Unimodal Functions

2

01 1() n

i iF X x== [−100, 100] 0

02 1 1() n n

i i i iF X x x= == + [−10, 10] 0

2

03 1 0() ()n i

i j jF X x= == [−100, 100] 0

 ()04 () max 1iF X x i n= [−100, 100] 0

2 2 2

05 1 1() 100() (1)n

i i i iF X x x x q= +
 = − + − [−30, 30] 0

2

06 1() (0.5)n

i iF X x== + [−100, 100] 0

Multimodal Functions

 ()07 1() sinn

i i iF X x x== − [−500, 500] −418.9829 *n

 ()()2

08 1() 10cos 2 10n

i i iF X x x== − + [−2π, 2π] 0

()()
()()

2

09 1 1

1

() 20exp 0.2 /

 exp cos 2 / 20

n n

i i i

n

i i

F X nx n

x n e

= =

=

= − −

 − + +

 [−32, 32] 0

 () ()2

10 1 1() 1/ 4000 cos / 1n n

i i i iF X x x i= =
 = − +

() ()

()

()
()

11 1

21 2

1 1

2

1

() / 10sin

 1 1 10sin (

 1

 ,10,1000,4

n

i i i

n

n

i i

F X n y

y y

y

u x

−

= +

=

=

 + − +

+ +

+

 ()1 1 / 4i iy x= + +

()

(, , ,) 0

()

m

i i

i i

m
ii

k x a x a

u x a k m a x a

x ak x a

 −

= −
 − −

[−600, 600] 0

[−50, 50] 0

2

12

2 2

1

2 2

() 0.1 0.1sin (3)

 (1) 1 sin (3 1)

 (1) 1 sin (2)

i

n

i i i

n n

F X x

x x

x x

=

=

 + − + +

 + − +

 [−50, 50] 0

TABLE IV: EXPERIMENT’S PARAMETER SETTINGS

Parameter Value

Number of iterations (stopping criteria) 10000
Number of runs 10

Dimensions of benchmark functions 30

REFERENCES

[1] C. Blum and X. Li, “Swarm intelligence in optimization,” in Swarm

Intelligence, C. Blum, D. Merkle, Springer, 2008, pp. 43-85.
[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.

ICNN’95 - Int. Conf. Neural Networks, Nov. 1995, pp. 1942-1948.

[3] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,”
Theor. Comput. Sci., vol. 344, pp. 243-278, Nov. 2005.

[4] S. Mirjalili, “Moth-flame optimization algorithm: A novel
nature-inspired heuristic paradigm,” Knowledge-Based Syst., vol. 89,

pp. 228-249, Jul. 2015.
[5] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S.

M. Mirjalili, “Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163-191,
2017.

[6] M. Molga and C. Smutnicki. Test functions for optimization needs.
[Online]. Available: https://www.robertmarks.org/Classes

/ENGR5358/Papers/functions.pdf

[7] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle
swarm optimization algorithm and its applications,” Math. Probl. Eng.,

vol. 2015, pp. 1-38, Oct. 2015.

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

228

[8] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for

numerical function optimization: Artificial bee colony (ABC)
algorithm,” J. Glob. Optim., vol. 39, pp. 459-471, Apr. 2007.

[9] K. D. Frank, “Effects of artificial night lighting on moths,” in

Ecological Consequences of Artificial Night Lighting, C. Rich and T.

Longcore, Island Press, 2013, ch. 13, pp. 305-344.

 Orachun Udomkasemsub was born in Thailand.

He obtained his

bachelor’s degree in computer

engineering from King Mongkut’s University of

Technology Thonburi (KMUTT), Thailand,

in
2011.

He is currently a Ph.D. student of the computer
engineering department of KMUTT. His

research

interests include

area optimization and cloud

computing.

Khajonpong Akkarajitsakul

was born in Thailand.
He obtained his philosophy

degree in electrical and

computer engineering from the University of

Manitoba, Canada,

in 2013.

He is currently a lecturer at the Department of

Computer Engineering, Faculty of Engineering,
KMUTT, Thailand. He

has also been a data scientist at

the Big Data Experience (BX) Center

for several
projects. His research interests include

computational

modeling, communications, and

networking, distributed and mobile

computing, and data analytics.

Tiranee Achalakul

was born in Thailand. She
obtained her philosophy

degree in computer

engineering from Syracuse University, New

York,

in 2000.

She has worked

in the fields of data analytics,

high-performance computing,

and software
development since 2000. She has extended

experiences working in

the

IT industry and

academia in both the United States and Thailand with two published
textbooks and multiple journal and conference papers. During the past 14

years, she has been participating in many data analytics,

and software
development projects in both private and public sectors. She has also served

as a committee of the National e-Science Infrastructure Consortium of

Thailand. Her research interests include

data analytics, high-performance
computing, and software

development.

International Journal of Modeling and Optimization, Vol. 9, No. 4, August 2019

229

