
  

  

Abstract—In this paper, the hybrid moth-flame, and 

salp-swarm algorithm is proposed to enhance the performance 

of the original moth-flame algorithm. As a moth moves spirally 

around a flame, the chance of investigating the distance between 

the moth and the flame is reduced. In this study, a salp chain 

was attached to each moth to investigate the distance. The 

proposed algorithm was evaluated on benchmark functions and 

compared with the original moth-flame optimization algorithm 

and particle swarm optimization algorithm. Results show that 

the proposed algorithm can generate a better minimum fitness 

value up to almost 100% for most functions compared with 

other algorithms. Moreover, the convergence rate of the 

proposed algorithms converged to a global optimum faster for 

most functions compared with other algorithms. 

 
Index Terms—Moth-flame optimization, salp-swarm 

algorithm, hybrid moth-flame, and salp-swarm algorithm. 

 

I. INTRODUCTION 

Optimization is a process of identifying values of variables 

or configurations to support objectives. Objectives can be to 

minimize the time of production in manufacturing or the cost 

of server allocation. Meta-heuristic techniques are well 

adapted to these optimization problems because of the 

performance of techniques and flexibility to solve a wide area 

of problems. 

Swarm intelligence (SI) [1] is one of the categories of 

optimization techniques. The basic concept of SI is to have 

collective simple search agents follow basic rules to emerge 

intelligent swarm capabilities. They are inspired by animals. 

For example, particle swarm optimization (PSO) [2] was 

inspired by a flock of birds that collaboratively fly to a food 

source without crashing one another, and ant colony 

optimization (ACO) [3] was inspired by an ant colony that 

collaboratively find a food location without any leader. 

The common process in SI is to have a set of feasible 

solutions improved over time using the knowledge of other 

solutions. The process should support exploration and 

exploitation to get deep into a global optimum without being 

trapped by any local optima. 

The moth-flame optimization (MFO) [4] and salp-swarm 

algorithm (SSA) [5] are other two remarkable meta-heuristic 

optimization algorithms published recently. The researchers 

showed that the performance of these algorithms can 

outperform other algorithms in optimization problems. The 

 
 

 

  

 

motivation of this research is to enhance the MFO algorithm 

with SSA to get a better quality of solutions and faster 

convergence. The rest of this paper is organized as follows. 

Section II presents the adoption of SSA in the MFO 

algorithm. Section III explains an experiment for the 

performance evaluation using a variety of benchmark 

functions. The results of the experiment and discussion are 

also discussed in this section. Finally, Section IV summarizes 

the work done in this paper, remarks, and future research. 

 

II. METHODOLOGY 

This section describes the processes of MFO, SSA, and the 

proposed hybrid between both. 

A. MFO Algorithm 

The algorithm uses the position of each moth as a solution 

representation and a matrix of flames to represent the best 

solutions found so far. The dimensions of a position represent 

each variable in an optimization problem. 

At the beginning of the algorithm, a population of moths is 

assigned to a random position based on the upper and lower 

bounds. Their fitness value is calculated, and the flame 

matrix is updated. 

At each iteration, each moth will update its position with 

respect to the corresponding flame. The spiral function used 

to update the moth position is (1), where 

Mi is the ith moth, 

Fj is the jth flame, 

Di,j is the distance between the ith moth and jth flame, 

b is a constant to define the shape of the spiral function, 

t is a random number between r and 1, 

and r is a number linearly decreasing from −1 to −2. 

 

  
,
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The decrement value of r increases a chance of 

exploitation after iterations. 

After moths are updated, their fitness value is evaluated 

again for the updated position. Then, the best solutions are 

updated to the flame matrix. 

This algorithm also decreases the number of flames over 

iterations to ensure convergence. The number of flames in 

each iteration can be calculated using (2), where 

N is the maximum number of flames, 

l is the current iteration number, 

and T is the maximum number of iterations. 

 

 ( , , ) round( ( 1) / )flames N l T N l N T= − − . (2) 
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To summarize, the algorithm can be represented as 

follows: 

 

MFO (F, G, H) 
1 flameCount ← N ← max number of flames 

2 for i ←1 to n 

3   for j ← 1 to d 

4   Mothsij ← random between lbj and ubj  

5   Fitsi ← F(Mi, G, H) 

6 Flames ← sort(Moths, Fits, flameCount) 

7 for l ← 1 to T 

8   flameCount ← flames(N, l, T) from (2) 

9   for i ← 1 to flameCount 

10   for j ← 1 to d 

11   Mothsij ← S(Mothsij, Fij) from (1) 

12   Fitsi ← F(Mothsi, G, H) 

13   Flames ← sort(Moths, Fits, flameCount) 

14 return Flames0 

 

B. SSA 

This algorithm represents a solution through a salp 

position where its dimensions are the problem variable, 

similar with MFO. 

At the beginning of the algorithm, each salp in the 

population is assigned to a chain, and assigned to a random 

position based on upper and lower bounds. Their fitness 

value is calculated, and the best solution is set to the food 

source. 

During the iterations, leaders’ position will be updated to 

move toward the food source using (3), where 

x1, j is the position of the leader salp at the jth dimension, 

Fj is the position of the food source at the jth dimension, 

ubj is an upper bound of the variable in the jth dimension, 

lbj is a lower bound of the variable in the jth dimension, 

and c1, c2, and c3 are random numbers. 
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While the leaders chase the food source, the followers 

move toward the salp in front of them, which will, directly, 

and indirectly, follow the leader. The followers’ position will 

be updated by (4), where 

x'i, j is the new position of the ith salp at the jth dimension, 

and xi, j is the previous position of the ith salp at the jth 

dimension. 
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The process of this algorithm can be summarized as 

follows: 

 

SALP-SWARM OPTIMIZATION (F, G, H) 
1 cn ← a number of chains 

2 cl ← chain length 

3 for i ←1 to cn 

4   for j ←1 to cl 

5   for k ← 1 to d 

6   Salpsijk ← random between lbj and ubj  

7   Fitsij ← F(Salpsij, G, H) 

8 foodSource ← Salpsij with minimum Fitsij 

9 for l ← 1 to N 

10   for i ←1 to cn 

11   for j ←1 to cl 

12   for k ← 1 to d 

13   if j = 1 then 

14   Salpsijk ← x1,j from (3) 

15   else  

16   Salpsijk ←
,i j

x from (4) 

17   Fitsij ← F(Salpsij, G, H) 

18   foodSource ← Salpsij with minimum Fitij 

19 return foodSource 

 

C. Proposed Hybrid Moth-Flame Salp-Swarm (MFSS) 

Algorithm 

This paper proposed a method to increase the exploration 

and exploitation balance to the MFO by appending each moth 

a chain of follower salps. In addition, the salp will explore, 

and exploit the distance between the moth and the flame, 

while the moth only examines the surrounding of the flame. 

The proposed algorithm can be illustrated as follows. 

 

HYBRID MFSS ALGORITHM (F, G, H) 
1 flameCount ← N ← max number of flames 

2 for i ←1 to n  

3   for j ← 1 to d  

4   Mothsij ← random between lbj and ubj  

5   MothsFitsi ← F(Mothsi, G, H) 

6   for j ←1 to cl  

7   for k ← 1 to d 

8   Salpsijk ← random between lbj and ubj  

9   SalpsFitsij ← F(Salpsij, G, H) 

10 Flames ← sort(Moths + Salps, MothsFits+SalpsFits, 

flameCount) 

11 for l ← 1 to T 

12   flameCount ← flames(N, l, T) from (2) 

13   for i ← 1 to flameCount 

14   for j ← 1 to d 

15   Mothsij ← S(Mothsij, Fij) from (1) 

16   MothsFitsi ← F(Mothsi, G, H) 

17   for j ← 1 to cl  

18   for k ← 1 to d 

19 
  Salpsijk ←

,i j
x from (4) 

20   SalpsFitsij ← F(Salpsij, G, H) 

21   Flames ← sort(Moths + Salps, MothsFits+SalpsFits, 

flameCount) 

22 return Flames0 

 

This paper has a hypothesis that the hybrid MFSS 

algorithm can provide a better quality of solutions and faster 

convergence. To support this hypothesis, an experiment was 

designed, and executed. The details of the experiment, results, 

and discussion of the results will be discussed in the next 

section. 

 

III. RESULTS AND DISCUSSION 

To evaluate the performance of the hybrid MFSS 

algorithm, 12 benchmark functions for the optimization 

algorithm from [6] were used as objective functions. That is, 

the algorithm must find variable values to get the minimum 

function value. These functions can be divided into two 

groups: unimodal and multimodal. 

The unimodal function contains only one global optimum 

without any local optima, whereas the multimodal function 

can have more than one local, and global optima. The list of 

benchmark functions is described in Appendix B. First, the 

unimodal functions were used to evaluate the exploitation 
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property of the algorithm. Second, the multimodal functions 

were used to evaluate the capability to avoid the local optima. 

The experiment compared the results with those from the 

PSO algorithm, genetic algorithm (GA), MFO algorithm, and 

SSA. The parameter settings of each experiment treatment 

are described in Table I. The experiment also compared the 

different numbers of salps and moths in the algorithm settings. 

However, the total number of search agents was equal in all 

settings to make a fair comparison. In addition, the constant 

number of a spiral shape, b, was set to 0.1 for all runs. This 

number was experimentally selected. For the PSO algorithm, 

the number of particles, and value of each weight required in 

the velocity updating function was specified. 

In addition to the parameter settings of each algorithm, the 

experiment setting in Appendix B also defines all the runs 

used. 

During the experiment, the average fitness value of the 

best solution found so far was recorded. Table II and Fig. 1 

show the solutions and their fitness value and convergence 

from each algorithm setting, respectively. The bold number 

in Table II is the lowest fitness value among all algorithm 

settings. The results showed that MFSS has a potential to 

obtain a better quality of solutions compared with the original 

MFO (M500), SSA (S500), GA (GA500), and PSO (PSO500) 

up to almost 100%. Specifically, 250 moths, and 

2-salp-length chain can perform a bit better than 100 moths, 

and 5-salp-length chain relatively from 19% up to almost 

95%. The possible reason is that excessively reducing the 

number of moths and increasing the number of salps may 

reduce the algorithm’s exploration. 

Fig. 1 shows a convergence of each algorithm setting for 

each function at the first 500 iterations. The x-axis represents 

the iteration number in the logarithmic scale with base 2, and 

the y-axis represents the average normalized fitness value 

using the maximum, and minimum values obtained for each 

function. The plots support that both M250S2 and M100S5 

(yellow lines with triangle marks and pink lines with start 

marks) have the potential to move faster toward convergence 

in most benchmark functions. 

 
TABLE I: ALGORITHMS' PARAMETER SETTINGS 

Setting Name Parameter Value 

M500   Algorithm   MFO  

   Number of moths  500 

   Number of salps in a chain  0 

   b  0.7 

M250S2  Algorithm   MFSS  

   Number of moths  250 

   Number of salps in a chain  2 

   b  0.7 

M100S5   Algorithm   MFSS  

   Number of moths  100 

   Number of salps in a chain  5 

   b  0.7 

PSO500   Algorithm   PSO  

   Number of particles  500 

   Inertia weight  0.5 

   Weight of particle best  2 

   Weight of global best  2 

GA500  Algorithm GA 

  Number of Individuals 500 

  Mutation rate 0.01 

  Cross-over rate 0.9 

  Reproduction rate 0.9 

S500 Algorithm SSA 

 Number of Salps 500 

 
TABLE II: OPTIMIZATION SOLUTIONS FROM EACH ALGORITHM SETTING 

Unimodal Functions  Multimodal Functions 

Fn Setting Solution  Fn Setting Solution 

f01 GA500 3.77E+00  f07 GA500 −4.87E+03 

f01 M500 3.56E−05  f07 M500 −1.06E+04 

f01 PSO500 0  f07 PSO500 −9.28E+03 

f01 S500 0  f07 S500 −5.49E+03 

f01 M100S5 0  f07 M100S5 −9.13E+03 

f01 M250S2 0  f07 M250S2 −1.09E+04 

       

f02 GA500 4.57E−01  f08 GA500 1.96E+00 

f02 M500 4.82E−04  f08 M500 3.78E+00 

f02 PSO500 1.10E+01  f08 PSO500 4.21E+01 

f02 S500 1.15E−05  f08 S500 1.04E+02 

f02 M100S5 0  f08 M100S5 0 

f02 M250S2 0  f08 M250S2 0 

       

f03 GA500 4.22E+02  f09 GA500 6.87E−01 

f03 M500 4.05E−05  f09 M500 1.20E+01 

f03 PSO500 3.09E+05  f09 PSO500 0 

f03 S500 0  f09 S500 1.13E−05 

f03 M100S5 0  f09 M100S5 0 

f03 M250S2 0  f09 M250S2 0 

       

f04 GA500 9.92E−01  f10 GA500 8.25E−01 

f04 M500 2.99E−04  f10 M500 3.44E−05 

f04 PSO500 0  f10 PSO500 3.70E−03 

f04 S500 1.64E−05  f10 S500 1.33E−01 

f04 M100S5 0  f10 M100S5 0 

f04 M250S2 0  f10 M250S2 0 

       

f05 GA500 6.28E+01  f11 GA500 9.71E−02 

f05 M500 1.44E+01  f11 M500 −1.02E+00 

f05 PSO500 1.84E+04  f11 PSO500 −1.02E+00 

f05 S500 2.86E+01  f11 S500 −6.55E−01 

f05 M100S5 2.20E−01  f11 M100S5 −1.02E+00 

f05 M250S2 1.03E−02  f11 M250S2 −1.02E+00 
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f06 GA500 9.60E+00  f12 GA500 3.92E+00 

f06 M500 3.66E−05  f12 M500 4.12E−05 

f06 PSO500 0  f12 PSO500 0 

f06 S500 2.05E−01  f12 S500 1.75E−01 

f06 M100S5 0  f12 M100S5 0 

f06 M250S2 0  f12 M250S2 0 

 

 
Fig. 1. Convergence plot of each algorithm setting. 

 

IV. CONCLUSIONS 

Optimization problem solving has been a very popular 

research area in the previous decades. Researchers have come 

up with new algorithms and techniques to address many 

challenges. The MFO algorithm and salp-swarm 

optimization algorithm are nature-inspired algorithms with 

high-performance from balanced exploration and 

exploitation. This research combined these algorithms and 

expected the better performance and quality of solutions. The 

experiment results support that the hybrid MFSS 

optimization algorithm with the linear movement of salps can 

outperform the original MFO algorithm and the SI and PSO 

algorithms. 

However, the results from the proposed algorithm depend 

on the appropriate parameter settings, and the characteristic 

of the search space and problem. Adjusting parameter 

settings for the better balance of exploration and exploitation 

can produce a better quality of the solutions and vice versa. In 

addition, a different hybrid approach can be further 

investigated, for example, the flame selection method for a 

moth and the position update function for a salp. 

In future works, the hybrid MFSS algorithm can be 

experimented with a variety of real optimization problems, 

including job-shop scheduling, vehicle routing problem, and 

workflow scheduling. 

APPENDIX 

A. Related Works 

This section reviews the optimization problem. There are 

some challenges that require algorithms to tackle. 

Optimization algorithms are categorized and described. 

Some of the high-performance collective-based optimization 

algorithms are reviewed. 

1) Optimization problem 

An optimization problem is a problem to minimize or 

maximize one or more objectives subject to a set of equality 

and/or inequality constraints. An optimization problem can 

be represented in (5), where 

x  is a solution candidate, 

( )xF  is an objective function, 

n  is a number of objectives, 

( )
i

g x  is an unequal constraint, 

m  is a number of unequal constraints, 
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( )
i

h x  is an equal constraint, 

p  is a number of equal constraints, 

i
lb is a lower bound for ix , 

i
ub is an upper bound for ix , and 

d  is a number of dimensions. 

 

 

 

 

Minimize: ( ) { ( ), ( ), , ( )}
1 2

| ( ) 0
1, 2,...,Subject to:

| ( ) 0 1, 2,...,

1, 2,...,

 

F x f x f x f x
n

G g g x
i i i m

H h h x i p
i i

i dlb x ub
i i i

=

= 
=

= = =

= 

 (5) 

There are many challenges in solving the optimization 

problem. First, constraints create areas of infeasible solutions 

in the search space and potentially cause an optimization 

algorithm ineffective, while having a good performance in 

the search space without constraints. Moreover, a significant 

obstacle of solving the practical optimization problem is the 

local optima existence. An algorithm to solve this kind of 

problem should have techniques to avoid local optima and 

incorrectly taking it as the global optimum. However, having 

a more intensive exploration process to avoid local optima 

may not lead to convergence and, in consequence, may not be 

able to obtain the global optimum. 

2) Optimization algorithms 

Optimization algorithms are designed to solve 

optimization problems and their challenges. There are two 

main groups of optimization algorithms: deterministic, which 

always obtain the same solution for a specific problem, and 

stochastic, which can obtain the different solutions due to the 

randomness component. With randomness, stochastic 

algorithms can avoid local optima but cause less reliability. 

However, they can be improved by balancing exploration, 

and exploitation, and increasing the number of runs. 

Stochastic optimization algorithms also can be divided into 

two more groups: individual based and collective-based. The 

collective-based algorithm generates multiple random 

solutions and improves them over iterations, whereas the 

individual based algorithm works with only a single solution. 

The collection can increase a chance to get a true global 

optimum, but it generates more computational cost because 

there are more solutions to evaluate their fitness. However, 

the collective-based algorithms are very popular because of 

the high potential to avoid local optima, and their drawback 

can be relieved by computers with higher performance or 

concurrent computing. Their advantages also include 

simplicity of algorithms and flexibility work in different 

types of problems. 

Due to these advantages and relievable drawback, 

collective-based stochastic optimization algorithms can 

definitely interest researchers to solve optimization 

problems. 

3) PSO algorithm 

The PSO algorithm [2] is one of the collective stochastic 

optimization algorithms proposed by Kennedy and Eberhart. 

It was inspired by the movement of a flock of birds. [7] shows 

that this algorithm has the highest number of publications 

among several swarm-intelligence-based optimization 

algorithms, such as artificial bee colony [8] and ACO [3]. 

The PSO algorithm solves the optimization problem by 

having collaborated particles move to a better position by 

knowledge of each particle and the swarm. Each particle’s 

velocity and position are iteratively updated based on its 

inertia, its best position, and the swarm’s best position. The 

weights for each component are used to balance the 

exploration and exploitation of the algorithm. 

4) MFO algorithm 

The MFO algorithm was proposed by Mirjalili [4]. It was 

inspired by the movement of a moth toward a flame. 

Normally, in a night, a moth moves to a path and constantly 

keep the angle with respect to the very faraway moon. This 

method makes the moth move at an almost-straight path. 

However, the flame or artificial lights confuse a moth 

because they are very close to the moth compared with the 

moon. The moth will fly spirally around the light to preserve 

the angle and eventually hit the light [9]. 

The MFO algorithm solves the optimization problem by 

having a swarm of moths spirally move around the flames 

represented by a specified number of best positions found so 

far. 

Similar to the PSO, the position of each moth represents a 

solution. A logarithmic spiral function used to update the 

position of each moth allows the moth to not only move 

between the current position and the targeted flame but also 

move around the flame to establish exploration on a search 

space. However, the convergence parameter is defined to 

reduce the distance between the result from the logarithmic 

spiral function and the flame, so exploration, and exploitation 

can be balanced. That is, exploration is high, but exploitation 

is low at the beginning, whereas exploration is slightly 

reduced but exploitation is slightly decreased over iterations. 

In addition, the number of flames is reduced over iterations 

until there is only one flame for all moths to follow. This also 

increases exploitation and guarantees algorithm convergence. 

5) SSA 

SSA was proposed by Mirajalili et al. [5]. A salp is a 

barrel-shaped planktonic tunicate. It was inspired by how a 

swarm of salps forms salp chains for believably better 

foraging. For each salp chain, salps can be divided into a 

leader and followers. SSA solves the optimization problem 

by having a leader of each chain move toward a food source, 

and followers follow their leader directly and indirectly. The 

position of each salp represents a solution. As the food source 

in the real optimization problem is unknown, the best 

solution found so far will be used as a food source to be 

chased. 

The exploration process is fulfilled by the followers that 

move toward the leader, not only the food source. However, 

followers move closer to their leader over iterations. The 

process reduces exploration and increases exploitation. 

In addition, the exploitation process is fulfilled by the 

leaders, which always move toward the best solutions found 

so far. 

From the survey, MFO and SSA both have the potential to 

solve optimization problems, and challenges because of their 
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strong exploration and exploitation process. This paper 

combines MFO and SSA for the better quality of solutions 

and faster convergence. The next section discusses the MFO 

algorithm and SSA and how to combine them into the 

proposed hybrid algorithm. 

B. Benchmark Functions And The Experiment’s 

Parameter Settings 

Tables III and IV present a list of benchmark functions and 

environment parameters used in the experiment, respectively. 

 

TABLE III: BENCHMARK FUNCTIONS 

Function Range fmin 

Unimodal Functions 

 
2

01 1( ) n

i iF X x==   [−100, 100] 0 

 
02 1 1( ) n n

i i i iF X x x= == +   [−10, 10] 0 
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03 1 0( ) ( )n i

i j jF X x= ==    [−100, 100] 0 

 ( )04 ( ) max 1iF X x i n=    [−100, 100] 0 

 
2 2 2

05 1 1( ) 100( ) ( 1)n

i i i iF X x x x q= +
 = − + −   [−30, 30] 0 

 
2

06 1( ) ( 0.5)n

i iF X x== +  [−100, 100] 0 

Multimodal Functions 

 ( )07 1( ) sinn

i i iF X x x== −  [−500, 500]  −418.9829 *n  

 ( )( )2

08 1( ) 10cos 2 10n
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1
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=
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2 2
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=
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TABLE IV: EXPERIMENT’S PARAMETER SETTINGS 

Parameter Value 

Number of iterations (stopping criteria) 10000 
Number of runs 10 

Dimensions of benchmark functions 30 
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