
  

Abstract—The efficiency of solar cells is usually determined 

by the characteristic curve of voltage-current relationship. The 

objective function for the solar cell design is often nonlinear and 

multimodal. Accordingly, a global search algorithm is desired to 

solve the objective function. This study applies a lately 

developed metaheuristic algorithm, named whale optimization 

algorithm (WOA) which has good global search capability, to 

solve the objective function for estimating the undetermined 

parameters of solar cells. Furthermore, this paper proposed a 

rank-based WOA with a nonlinear rank-based selection 

pressure model to replace the random selection process used in 

the original WOA at the stage of searching for prey. A 

tournament selection based WOA is also presented for 

comparison in this work. The performance of the rank-based 

WOA is assessed by testing six benchmark functions. From the 

experiments, the present rank-based WOA outperforms the 

original and tournament selection based WOAs in optimizing 

benchmark functions. Moreover, the proposed Rank-based 

WOA is applied to the parameter optimization of solar cell 

problem. The optimal solutions and parameters obtained using 

the rank-based WOA will be compared with those of using the 

original and tournament selection based WOAs. 

 
Index Terms—Rank-based whale optimization algorithm; 

nonlinear rank-based selection pressure model; parameter 

optimization; solar cell problem.  

 

I. INTRODUCTION 

The greenhouse effect caused by a large amount of carbon 

dioxide, methane, nitrous oxide, ozone, chlorofluorocarbons 

and other gases is remarkable, resulting in sustained warming 

and extreme weather occurrence on the Earth. In July this year, 

countries in Europe suffered from unusual high-temperature 

heatwaves due to the polar heat vortex. The temperature in 

Nordic countries such as Norway, Sweden, the Netherlands 

and Germany were as high as 30 to 35 degrees Celsius, and 

the temperature difference reached as high as 20 degrees 

when compared with previous summers. In addition, tens of 

thousands of people fled their homes in California due to the 

forest fires caused by unusual high temperatures. The 

heatwaves have spurred wildfires that have claimed at least 80 

lives in Greece, burned many houses down and melted 

electrical wires in California, and forced Sweden to call for 
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emergent help from Swedish Air Force to drop 500-pound 

GBU-49 guided bombs in the burning forest to help fight the 

disaster. As a result, the issue of reducing the emissions of 

exhaust gas and saving energy has been highly valued and 

vigorously promoted by the governments of most countries in 

the world over the years. In addition to reducing energy waste, 

finding alternative energy is also an important policy for 

governments. Considering the cause of the current use of 

thermal power is one of the major causes of air pollution, so 

the power generation using clean energy such as wind power, 

hydroelectricity and solar energy is indispensable to reduce 

the emissions of exhaust gas. 

In clean energy, solar power is one of the most promising 

renewable energy sources because of the abundant sources of 

solar light. According to the assessment report of SolarPower 

Europe [1], the installed capacity of solar power systems 

worldwide has increased significantly every year. Global 

solar installations increased by 98.9 GW (or 29%) in 2017. 

China and India account for 63% of the total demand for solar 

energy in the year. In the solar power system, solar panels are 

composed by connecting series of solar cells, or named 

photovoltaic cells, to provide a variety of electricity demands. 

Considering the efficiency of solar cells is based on the 

current-voltage characteristic curve (i.e. I-V curve), the solar 

cell design requires accurate modeling to test. There are two 

steps to model the solar cells: mathematical model formula 

and accurate estimation of undetermined parameters. At 

present, two equivalent electronic circuit models, single diode 

(SD) and double diode (DD) [2], are commonly used to 

simulate the behavior of solar cells. Both models need to 

estimate all their parameters, such as the current generated by 

solar, the saturation current and ideal factor of the diode, the 

series resistance, etc. The SD model needs to estimate five 

parameters, while the DD model needs to estimate seven ones. 

The undetermined parameters of SD or DD model can be 

obtained by fitting experimental data. Therefore, the 

maximum power point of the solar cell can be obtained from 

the voltage-power curve after determining the parameters of 

the applied model. 

Generally, the estimation methods for undetermined 

parameters of solar cell can be divided into two categories: 

deterministic and heuristic methods. Deterministic methods, 

such as Least Square Method [3], Lambert W-functions [4], 

and Iterative Curve Fitting [5] are fast in estimation, but they 

are very sensitive to the initial solutions. Namely, these 

techniques are often trapped in the local optimum. In recent 

years, many heuristic algorithms have been proposed to solve 

the optimization problem of solar cell for parameter 

estimation because of their global searching ability. In the 

relevant literature, several heuristic methods have been 
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applied to the optimization of solar cell parameter estimation, 

including Genetic Algorithm (GA) [6], Particle Swarm 

Optimization (PSO) [7], Artificial Bee Colony (ABC) [8], 

Whale Optimization Algorithm (WOA) [9] and so on. The 

results obtained using these heuristic algorithms are usually 

better than those obtained using the deterministic ones. 

Among these heuristic algorithms, WOA is the latest 

metaheuristic algorithm which is inspired by the observation 

of whales’ hunting behavior. Although the WOA has been 

successfully applied to many kinds of optimization problems 

[10], but like other basic heuristic algorithms, it tends to 

converge to the local optimal solution early. Therefore, this 

paper proposes an improved version of WOA and then 

applies it to the parameter estimation of solar cells.  

The remainder of this paper is organized as follows. 

Section II describes the double diode model of solar cell. 

Section III presents the principles and formulations of the 

original WOA, tournament selection based WOA, and 

rank-based WOAs. Section IV reports the computational 

results of benchmark functions and parameter optimization of 

double diode model of solar cell. Finally the main conclusions 

are given in Section V. 

 

II. DOUBLE DIODE MODEL OF SOLAR CELL 

Generally, single diode (SD) model is the most commonly 

used for simulating the electronic circuits of solar cells. The 

equivalent circuit of SD model is displayed in Fig.1. The 

formulations for simulating this model are relatively simple.  

As shown in Fig. 1, the model uses a diode to shunt the 

photogenerated current (Iph) and a resistor in series with the 

diode. In addition, the actual diode has a non-ideal factor that 

affects the voltage-current relationship of the element. 

 

 
Fig. 1. Single diode model of solar cell. 

 

where Iph is the current source (or photogenerated current); It 

and Vt are the net current and voltage, respectively; Id is 

saturation current; Ish is leakage current caused by shunt 

resistance Rsh. To further consider the accuracy of the I-V 

curve, this study uses a double diode (DD) model. This model 

is more complex than SD, but it can present the internal 

phenomena of parameters related to solar cells. The 

configuration of the equivalent circuit for DD model is 

displayed in Fig. 2. The equivalent circuit of DD model for 

the solar cell system has designed with a current source in 

parallel with two diodes. Also, there are series resistance and 

shunt resistance in the DD model. The net current (It) of the 

solar cell system for DD model can be expressed as follows: 

 

shddpht IIIII −−−= 21                        
(1) 

 

 
Fig. 2. Double diode model of solar cell. 

 

where Iph is the current source (or photogenerated current); It 

and Vt are the net current and voltage, respectively; Id1 and Id2 

are diffusion and saturation currents, respectively; Ish is 

leakage current caused by shunt resistance Rsh. In order to 

properly model the solar cell, Shockley’s diode equation [11] 

is applied in this work. The formulations of currents Id1 and Id2 

related to net voltage Vt  can be expressed as  
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Therefore, (1) can be rewritten as 
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where electronic quantity of electricity is 
1910602.1 −=q (coulombs); Boltzmann constant is 

2310380.1 −=k  (J / K); T is the cell temperature. Therefore, 

there are seven undetermined parameters in the DD model: (1) 

the current of light generation (Iph), (2) the reverse saturation 

current of diffusion (Isd1), (3) the reverse saturation current of 

recombination (Isd2), (4) the ideal factor of diffused diode (n1), 

(5) the ideal factor of recombined diode (n2), (6) the series 

resistance (Rser), and (7) shunt resistance (Rsh). The above 

parameters can be estimated from the I-V curve of solar cells. 

To determine the parameters of DD model, the WOAs are 

applied.  The optimization process is performed by 

minimizing the objective function devised by the root mean 

square error (RMSE) of net current between the computed 

values of (It)comp and experimental data of (It)exp at N different 

conditions of Vt. Therefore, the objective function (f) used in 

this work is defined as  
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III. ORIGINAL AND PROPOSED WOAS 

A. Original Whale Optimization Algorithm 

A mentioned in Section I, Whale Optimization Algorithm 

(WOA) is a new swarm intelligence algorithm proposed by 

Marjalili and Lewis in 2016. Whales are highly intelligent 

mammals in the ocean. Bubble-net attacking method is often 

used when whales are in group hunting. As a flock of krill or 

small fishes is found, the whales will first dive about 10-15 

meters below the surface of the ocean and then swim around 

the fish in a circle or 9-shaped path below the flock. The 

whales will eventually hunt in a spiral direction toward the sea 

level. Based on this peculiar hunting behavior of humpback 

whales, three stages of whale swarm algorithm are inspired as 

follows: encircling around prey, searching for prey, and 

bubble-net attacking by shrinking around prey and swimming 

with spiral path for hunting. In order to capture prey 

effectively, the hunting pattern of the WOA includes two 

important mechanisms: exploitation and exploration. The 

basic whale swarm algorithm is described as below. 

1) Stage of encircling around prey 

First, whales observe and memorize the locations of the 

prey, and then encircle around them.  When encircling the 

prey, whales update their location towards the best location 

obtained so far. Therefore, the model in the stage of encircling 

prey can be formulated as follows [10]: 
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where )(tX


 represents position vector and )(* tX


represents 

the best solution found so far; t is the index of current iteration; 

A


 
and

 
D


 are coefficient vectors; () denotes an 

element-by-element multiplication and | | denotes the absolute 

value. The vectors A


 
and

 
C


 are generated based on random 

functions as follows: 
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Since the coefficient r


 is a random vector in [0, 1], then 

the ranges of vectors A


 and C


are in the intervals [− a


, a


] 

and [0, 2], respectively. The value of a


 is specified to 

decrease linearly from 2 to 0 from the start to the end of 

iteration. 

2) Stage of searching for prey 

The vector A


 
shown in (6) also can be applied to the stage 

of search for prey when whales explore the possible position 

of prey. In the basic WOA, the position of a whale is updated 

by selecting a whale randomly from the population [10].  
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where randX


 
represents a position vector of whale selected 

by randomness. The value of A


, represented by A


 
exists 

two cases: greater than 1 or less than 1. When 1A


,  the 

search agent will move far away from a reference whale and 

the search emphasizes exploration to allow the WOA 

performing a global search; When 1A


,  the search agent 

will update the position according to the current best solution 

and the search emphasizes exploitation to allow the WOA 

performing a local search. 

3) Stage of bubble-net attacking 

In the stage of bubble-net attacking, whales swim around 

the prey within shrinking circle as well as simultaneously 

move along a spiral-shaped path to form distinctive bubbles 

along a 9-shaped path [10]. Two types of behavior in the stage 

of bubble-net attacking include shrinking around prey and 

spiral path swimming for hunting  

Shrinking Around Prey: As mentioned above, the value of 

a


 decreases linearly from 2 to 0. Since the range of vectors 

A


 is in [− a


, a


], so the value of A


 decreases over the course 

of iterations. Therefore, the shrinking encircling mechanism 

can be achieved by using (6). 

Spiral Path Swimming for Hunting: In this phase, each 

whale updates its position according to a spiral-shaped path. 

The spiral-shaped equation between the positions of whale 

and prey can be expressed as follows:  
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where b is a constant for defining the logarithmic shape and l 

is a random number in [-1, 1]; D


 represents the distance 

between positions of  prey (i.e. the best solution found so far, 

denoted by )(* tX


) and whale (denoted by )(tX


).  

To model this simultaneous behavior at the stage of 

bubble-net attacking, Mirjalili and Lewis assumed that there 

is a probability of selection with 0.5 to choose either carrying 

out the shrinking encircling mechanism or the spiral-shaped 

movement to update the position of whale during iterations. 

The simultaneous behavior in the stage of bubble-net 

attacking is modeled as follows: 
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B. Tournament Selection Based WOA 

As shown in (8), the selection of randX


 
in the original 

WOA is used based on random numbers. However, the 

random selection may slow down the convergence rate of 

WOA. Therefore, Mafarja and Mirjalili proposed the 

tournament selection instead of random selection for randX


 

to improve the performance of WOA. The tournament 

selection is a simple and effective approach to give a selection 

pressure when picking solutions from the population. These 

solutions are compared against each other. The solution with 

high fitness value will be selected. The fitness value for a 

solution i, ,i fitness can be obtained from the value of the 

objective function as follows. 
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As shown in (8), the exploration in the original WOA 

depends on changing the position of each search agent 

according to a randomly selected solution. The selection of 

randX


 is modified by the tournament selection as follows: 
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C. Proposed Rank-Based WOA 

In the presented rank-based WOA, The selection of randX


 

is based on a probability (prank) which is designed based on the 

rank of fitness of solutions. The rank equaling to 1 means that 

the fitness value is maximum for all agents, whereas the rank 

equaling to N means the value of fitness is minimum. Here N 

is the number of agents (i.e. whales). The nonlinear 

rank-based selective pressure model is formulated as 
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with satisfying the constraint: 
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1 . The index k 

denotes the assigned number of an agent after sorting fitness 

values for all agents. The value of parameter q is a positive 

real in [0, 1]. The larger value of q implies a stronger selective 

pressure for the value of probability.  In the present 

rank-based WOA, the value of q is 0.5. It means that the best 

agent has 50% chances to be selected as the reference agent. 

The accumulated probability for an agent k can be calculated 

as follows: 
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Since all agents are sorted according to their values of fitness. 

The agent randX


 can be determined by (15). 
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IV. RESULTS AND DISCUSSION 

A. Experiments on Benchmark Functions Using Whale 

Optimization Algorithms 

In this work, six standard benchmark functions for 

minimization were evaluated to assess the performance of the 

prosed WOA. The six benchmark functions were Sphere, 

Rosenbrock, Griewank, Rastrigin, Ackley, and Schwefel 2.26, 

as listed in Table I. The optimal solutions for Functions 1-6 all 

listed in Table I. In this work, the population size of agents 

was 30. Three scales of space size with D=30, D=50, and 

D=100 were studied. In addition, the maximum number of 

generations and independent runs were 500 and 30 for all 

experiments, respectively. Table II compares the best mean 

solutions (Mean), standard deviation (Std), and best (Best) 

solutions obtained using the original, tournament selection 

based, and rank-based WOAs for the six benchmark functions. 

The better solution was marked with bold font in the table. As 

listed in Table II(a), the solutions obtained using the 

rank-based WOA were significant better than those obtained 

using the original and tournament selection based WOAs for 

medium-scale problems for the cases of D=30. Except for 

Function 2, the proposed rank-based WOA can all achieve 

optimal solutions effectively. In generally, the present 

rank-based WOA outperforms the original and tournament 

selection based WOAs in terms of Mean, Std, and Best. 

Similarly, the solutions obtained using the rank-based WOA 

were better than those obtained using the original and 

tournament selection based WOAs for large-scale problems 

for the cases of D=50 and D=100, listed in Tables II(b) and 

(c). Experimental results revealed that the rank-based WOA 

significantly outperforms the original and tournament 

selection based WOAs for solving the medium- and 

large-scale problems. 

 
TABLE I: SIX BENCHMARK FUNCTIONS USED FOR THE EVALUATION OF 

WOAS 

No. Objective Function Optimum 
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Figs. 3(a)-(f) plot the convergence histories of solutions 

evaluated using the three WOAs for the cases of D=50.  

Clearly, the rank-based WOA had the best convergence rate. 

The convergence histories of solutions were plotted using a 

logarithmic y-axis for Functions 1-5 to reveal the variations 
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among the convergence rate and optimal solutions. Similarly, 

the rank-based WOA got the best performance for the all 

cases of D=30 and D=100 in terms of convergence rate. From 

the computational results, the rank-based WOA effectively 

found the global optima with fast convergence, and is a 

promising algorithm for solving complex optimization 

problems of engineering. 

 
TABLE II: COMPARISONS OF SOLUTION FOR THE CASES OF (A) D=30, (B) 

D=50, AND D=100 

(a) D=30 

Fun. Sol. Original WOA 
Tournament 

WOA 

Rank-based 

WOA 

)(1 xf


 

Mean  

(Std) 

Best 

1.2079e-075 

(4.014e-075) 

1.3277e-083 

4.1873e-082 

(1.510e-081) 

2.6051e-092 

8.9531e-094 

(4.628e-093) 

5.7836e-106 

)(2 xf


 

Mean  

(Std) 

Best 

2.7945e+001 

(5.120e-001) 

2.6944e+001 

2.7902e+001 

(5.434e-001) 

2.7072e+001 

2.8726e+001 

(6.399e-002) 

2.8486e+001 

)(3 xf


 

Mean  

(Std) 

Best 

1.9491e-002 

(5.890e-002) 

0.0000e+000 

4.6756e-003 

(2.517e-002) 

0.0000e+000 

0.0000e+000 

(0.000e+000) 

0.0000e+000 

)(4 xf


 

Mean  

(Std) 

Best 

3.7895e-015 

(2.040e-014) 

0.0000e+000 

1.8947e-015 

(1.020e-014) 

0.0000e+000 

0.0000e+000 

(0.000e+000) 

0.0000e+000 

)(5 xf


 

Mean  

(Std) 

Best 

4.0856e-015 

(2.311e-015) 

8.8817e-016 

3.3750e-015 

(2.452e-015) 

8.8817e-016 

2.6645e-015 

(1.999e-015) 

8.8817e-016 

)(6 xf


 

Mean  

(Std) 

Best 

-1.0043.5771 

(1.570e+003) 

-1.2569.4866 

-10955.2143 

(1.636e+003) 

-1.2569.4866 

-12535.7906 

(1.040e+002) 

-12569.4866 

(b) D=50 

Fun. Sol. Original WOA 
Tournament 

WOA 

Rank-based 

WOA 

)(1 xf


 

Mean  

(Std) 

Best 

2.2870e-073 

(1.070e-072) 

8.4991e-088 

5.9029e-080 

(2.125e-079) 

8.8804e-091 

4.1095e-091 

(1.924e-090) 

3.8291e-106 

)(2 xf


 

Mean  

(Std) 

Best 

4.8256e+001 

(4.101e-001) 

4.7004e+001 

4.8196e+001 

(4.321e-001) 

4.7121e+001 

4.8592e+001 

(4.984e-002) 

4.8412e+001 

)(3 xf


 

Mean  

(Std) 

Best 

0.0000e+000 

(0.000e+000) 

0.0000e+000 

8.6386e-003 

(3.241e-002) 

0.0000e+000 

0.0000e+000 

(0.000e+000) 

0.0000e+000 

)(4 xf


 

Mean  

(Std) 

Best 

0.0000e+000 

(0.000e+000) 
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Fig. 3. Comparisons of convergence histories obtained using the original, 

tournament selection based and rank-based WOAs for the cases of D=50. 

 

B. Parameters Estimation of Double Diode Model  

As described in Section II, the net current (It) in the DD 

model of solar cell can be obtained by solving (4). Therefore, 

the undetermined parameters in (4) can be acquired by using 

the original, tournament selection based, and rank-based 

WOAs. The search ranges for the seven parameters applied in 

the WOAs were listed as in Table III.  

 
TABLE III: THE SEARCH RANGES FOR THE SEVEN PARAMETERS 

Parameter  Range 

Rser () [0, 0.5] 

Rsh () [0, 100] 

Iph (A) [0, 1] 

Isd1 (A) [0, 1] 

Isd2 (A) [0, 1] 

n1 [1, 2] 

n2 [1, 2] 

 

The cell temperature was set to be 33C. The number of 

agents was 50, and the number of iteration for a run was 200. 

Independent runs are performed 30 times to analyze the 
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robustness of the algorithm. Fig. 4 shows the I-V 

characteristic curves of the experimental data and 

computational results obtained using the three WOAs. Clearly, 

the computed values using the three algorithms are quite close 

to the experimental ones. Fig. 5 depicts the comparison of 

power-V characteristic curves of the experimental data and 

computational results obtained using the three WOAs. The 

results also showed that the calculated values using the three 

WOAs are also quite close to the experimental values. From 

the solution displayed in Fig. 5, the maximum power was 

0.3100545 (W) when the net voltage was 0.459 (V). Fig. 6 

demonstrated that the convergence rate and solution accuracy 

obtained using the rank-based WOA is better than those of the 

original and tournament WOAS. 

Furthermore, Table IV lists the comparisons of net currents 

between calculated and experimental data. The comparisons 

revealed that the calculated values obtained using the three 

WOAs were all agree well with the experimental data. Table 

V is the optimal values of parameter and objective function 

calculated by using the three WOAs. From the comparison of 

RSME, the order of optimal objective function values 

obtained using the three WOAs was represented by 

rank-based WOA>original WOA>tournament selection 

based WOA. The comparison revealed show that the 

proposed WOA outperformed the other two kinds of WOAs. 

 

 
 Fig. 4. Comparison of I-V curves for computation and experiment. 

 

 
Fig. 5. Comparison of Power-V curves for computation and experiment. 

 
Fig. 6. Comparison of convergence histories obtained using the three WOAs 

 
TABLE IV: COMPARISONS OF NET CURRENTS FOR COMPUTATION AND 

EXPERIMENT 

Experimental Data (Vt-It) Basic WOA 
Tournament 

WOA 

Rank-based 

WOA 

Vt (V) It (A) Computed It (A) 

-0.2057 0.7640 0.7626 0.7607 0.7621 

-0.1291 0.7620 0.7616 0.7599 0.7611 

-0.0588 0.7605 0.7608 0.7592 0.7601 

0.0057 0.7605 0.7599 0.7585 0.7592 

0.0646 0.7600 0.7592 0.7579 0.7584 

0.1185 0.7590 0.7585 0.7573 0.7577 

0.1678 0.7570 0.7578 0.7568 0.7569 

0.2132 0.7570 0.7571 0.7562 0.7562 

0.2545 0.7555 0.7563 0.7554 0.7553 

0.2924 0.7540 0.755 0.7543 0.7540 

0.3269 0.7505 0.7528 0.7523 0.7518 

0.3585 0.7465 0.7488 0.7484 0.7477 

0.3873 0.7385 0.7415 0.7413 0.7403 

0.4137 0.7280 0.7286 0.7286 0.7273 

0.4373 0.7065 0.708 0.7081 0.7066 

0.4590 0.6755 0.6761 0.6762 0.6746 

0.4784 0.6320 0.6313 0.6314 0.6298 

0.4960 0.5730 0.5723 0.5721 0.5709 

0.5119 0.4990 0.4998 0.4993 0.4987 

0.5265 0.4130 0.4137 0.4130 0.4130 

0.5398 0.3165 0.3176 0.3167 0.3173 

0.5521 0.2120 0.2123 0.2115 0.2125 

0.5633 0.1035 0.1025 0.1020 0.1030 

0.5736 -0.010 -0.0084 -0.0082 -0.0076 

0.5833 -0.123 -0.1250 -0.1239 -0.1242 

0.5900 -0.210 -0.2079 -0.2058 -0.2073 

 
TABLE V: COMPARISON OF OPTIMAL PARAMETERS OBTAINED USING THE 

THREE WOAS 

Parameter Original WOA 
Tournament 

WOA 

Rank-based 

WOA 

Rser() 0.0364 0.0369 0.0357 

Rsh() 78.6195 94.7249 72.6882 

Iph(A) 0.7604 0.7589 0.7597 

Isd1(A) 0.2940 0.1870 0.3635 

Isd2(A) 0.4944 0.1455 0.0455 

n1 1.4762 1.4682 1.5100 

n2 1.9984 1.5129 1.4834 

RMSE 1.23846e-003 1.43755e-003 1.18173e-003 

 

C. Temperature Effect Analysis of Solar Cells 

From (4), since the net current (It) is strongly related to the 

cell temperature (T) with nonlinear relationship, the effect of 

cell temperature on the I-V and Power-V characteristic curves 

was further analyzed in this work. The cell temperatures were 

set to be 25C, 33C, 50C, and 75C. The algorithm used for 

this study was the proposed rank-based WOA. Fig. 7 shows 

that the net current in the I-V curve increases significantly 

when the cell temperature increases. Also Fig. 8 shows that 

the power-voltage curve increases significantly when the cell 
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temperature increases. 

 

 
Fig. 7. Effect of cell temperature on I-V curve. 

 

 
Fig. 8. Effect of cell temperature on Power-V curve. 

 

V. CONCLUSION 

In this paper, an improved whale swarm algorithm named 

rank-based WOA was proposed. The nonlinear rank-based 

selection pressure model was applied to select the agent at the 

stage of searching for prey in the proposed WOA, rather than 

random selection approach in the original WOA. The search 

efficiency and the accuracy of optimal solution using the 

proposed rank-based WOA were improved through the 

evaluations of six benchmark functions in the medium- and 

large-scale sizes of space. Furthermore, the original, 

tournament selection based, and rank-based WOAs were 

applied to the parameter estimation of the solar cells. Double 

diode model was used for simulating the electronic circuits of 

solar cells. The results showed that the net currents computed 

by the three WOAs were quite close to the experimental data. 

The rank-based WOA was superior to the original and 

tournament WOAs in terms of convergence rate and solution 

accuracy. Further analysis of the cell temperature effect 

showed that when the operating temperature of the solar cell 

increases, the efficiency of the I-V and Power-V characteristic 

curves of the solar cell will be improved. 
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