
  

Abstract—The goal of the robust optimization is to obtain the 

optimal solution while ensuring that the objective function 

value is not too sensitive to the uncertainties and the constraints 

are still feasible under the worst case of the variations of the 

uncertainty. The effectuation of engineering applications robust 

design optimization relies on the expensive simulation analysis, 

which is so time consuming that experimenters turned to 

mathematical models. In this work, a Co-Kriging multi-fidelity 

surrogate model assisted robust optimization approach is 

proposed to improve the efficiency of the robustness 

optimization. In the developed approach, the Co-Kriging 

multi-fidelity surrogate model is constructed to integrate the 

sample date from both low-fidelity (LF) and high-fidelity (HF) 

models. What is more, the concurrent treatment of the 

uncertainties from the multi-fidelity surrogate model, design 

variables, and noise parameters are investigated. The 

effectiveness and merits of the developed approach are 

illustrated on a benchmark numerical case. 

 

Index Terms—Co-kriging, multi-fidelity surrogate model, 

robust optimization, uncertainty quantification. 

 

I. INTRODUCTION 

The concept of robustness is first proposed by Genichi 

Taguchi in 1940s [1] by defining it as a state where “the 

performance is minimally sensitive to factors causing 

variability”. In engineering problems, since products are 

expected to be robust with high quality and low cost to satisfy 

the consumers, robust design seems a necessity [2], [3]. To 

determine statistic characteristics of the product response 

straight, a large quantity of simulations are required in the 

formulations of robust design, which leads to the prohibitive 

computational cost brought by the increasingly complex 

simulations ensuring accuracy. Considering the consumption 

of time and the cost, surrogate model is applied in these 

situations. Common choices of surrogate model are 

polynomial functions [4], Kriging models [5], [6], radial 

basis function networks [7] and so on. Recent years, the 

multi-fidelity [8] surrogate model has become the research 

hotspots in the current surrogate modeling methods field for 

combing the high-fidelity [9], [10] analysis model with the 

low-fidelity analysis model of low cost and providing both 

the prediction and the prediction error at the non-test points.  

Time-saving and cost-reducing it is, the drawback is also 

obvious. Simply replacing the true response surface with a 

surrogate model, the deviation (or “surrogate model 

uncertainty”) may be huge [11], which are supposed to be 
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taken into account. In practical engineering problems, there 

are varied uncertainties coming from different sources, 

including the uncertainties of design variables and noise 

parameters. The former is introduced during manufacturing 

and measurement process, and the latter originates from 

physical parameters, environmental conditions [12], etc. 

These uncertainties could lead to great deviations in the 

product response of the physical system or the 

simulation-based engineering analysis, in which case the 

multiple uncertainties should be quantified appropriately.  

While the existing works are either lack of a 

comprehensive quantification of all existing uncertainties 

including the design variable uncertainty, noise parameters 

uncertainty and the surrogate model uncertainty, nor limited 

to the selection of surrogate models. In this article, the whole 

situation has been expanded to the multi-fidelity model from 

the single fidelity, which made the application scope of the 

comprehensive uncertainty quantization method greatly 

expanded too. It also increased the efficiency of the 

robustness optimization assisted with multi-fidelity surrogate 

model. 

This paper is organized as follows. In section 2, the 

background knowledge of the multi-fidelity surrogate model 

is briefly presented. Section 3 gives the detailed process of 

the proposed approach. Then, to illustrate the proposed 

approach, a benchmark numerical case. is provided in 

Section 4 to illustrate the efficiency of the proposed approach. 

Section 5 gives the conclusion and discussion. 

 

II. REVIEW OF THE MULTI-FIDELITY SURROGATE MODEL 

A brief review of multi-fidelity surrogate model is briefly 

introduced in this section. More comprehensive knowledge 

could be acquired in [13]-[16]. Consider two design sets 

consisting of two level systems of high fidelity (HF) model 

and low fidelity (LF) model. The low fidelity input design set 

and the high fidelity design set are: 
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where n  and m  are the set sizes respectively. 

With these sample sets and the multiple models, the 

corresponding outputs is given as follow: 
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Based on the Markov property, an autoregressive model 

could be constructed, which assumes that: 
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 ˆ ˆ( ) ( ) ( )h ly y = +x x x   (3) 

where   is a regression parameter playing the role of data 

connection between the two levels, and ˆ ( )hy x , ˆ ( )ly x  are the 

prediction response of Kriging model constructed with the 

initial inputs and outputs. ( ) x indicates a discrepancy 

model. 

The following formula is used to describe the correlation 

between two design variables x  and x : 

 
1

R( ) exp[ ( )]=exp ( ) k

d
P

k k k

k

d x x
=

 
  = − − − 

 
x,x x,x   (4) 

where ( )1 2x= , , , dx x x , ( )1 2= , , , dx x x   x  with d  dimension. 

k  and kP  are the hyper-parameters associate with the 

dimension k . 

The prediction response of a non-sample point *x  is 

formed as: 
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The data covariance matrix C is formed as: 
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where ( )f x  and F  are the regression model based on the 

sampled points and prediction points respectively, 2

l  and 

2

d  are the process variances of the LF model and the 

discrepancy model respectively. 

The mean square error (MSE) of prediction is: 

 2 1 1 1( ) ( )T T Ts c u F C F u c C c− − −= + −x   (9) 

where 1Tu F C c f−= −  and 2 2 2

l dc    = + . It should be noted 

that since the Co-kriging model is also a kind of interpolation 

method based on high fidelity data, it is obvious that the mean 

square error at the high fidelity points is 0. 

 

III. QUANTIFYING THE COMPOUND EFFECT OF MULTIPLE 

UNCERTAINTIES 

Define a design variable as 1 2[ , , , ]dx x x=x , to represent 

the uncertainty of it, the design variables could be formed as: 
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x

x x d
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where the vector  1 2d , , , dd d d=  obeys a multivariate 

normal distribution with mean of 0 and a covariance matrix 

x , which means the vector x follows a multivariate normal 

distribution ( )2

xx~ x,N  . It should be noted that the 

deterministic part  1 2x= x ,x , ,xd  is the design input value 

designers set. For the noise parameter, 1 2[ , , , ]nw w w=W  

obeying the multivariate normal distribution ( )2~ ,N  WW W  

is defined. Notice that the difference between x  and W  is 

that the latter one is not designable but uncontrollable instead. 

Let ( )x,y W  denote the true response of a computationally 

expensive simulator as a function of x  and W . 

The robust design objective [17] in this section is to find 

the optimal solution ( )*

x

x arg max xf=  or ( )*

x

x arg min xf= . 

The robust design objective function is formed as: 

 ( ) ( ) ( )x cf  = x x   (11) 

where ( ) x  and ( ) x  are the mean and standard deviation 

of the response value ( )x,y W . A specific constant value c  

reflects the risk attitude. What is more, if the response ( )xf  

follows a normal distribution, the value of c (usually selected 

as 1, 2, 3, etc.) could represent the different confidence levels 

of prediction intervals. The choice of “  ” is associated with 

the robust design objective. For example, to maximize the 

objective function, “ − ” is selected for robust consideration. 

If the true response value could be got easily, only two 

kinds of uncertainties are considered in this scenario, that is 

the design variable uncertainty and the noise parameter 

uncertainty. Then, the close form solutions of the response 

mean and variance are shown below. 
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where ( )dp  and ( )Wp  are the probability density 

distribution function of  1 2d , , , dd d d=  , 1 2[ , , , ]nw w w=W . 

It is typical that the calculating of (12) and (13) seems too 

computationally expensive for needing many evaluations of 

( )xy ,W . In order to simplify the calculation, a multi-fidelity 

surrogate model is applied. Based on multi-fidelity 

simulation, the sample sets with different fidelity levels are 

acquired to construct a CK model, which greatly reduces the 

time cost and other expense. Another benefit is that the CK 

model provides a prediction and the mean squared error 

(MSE) at every un-sampled points. The CK model prediction 

response is written as ŷ( )x,W  to distinguish it from the true 

response value, and ( )2 xCK ,W  is the MSE of the CK model. 

The error function is formed as follow: 

 ( ) ( ) ( )ˆx = x xy y y −,W ,W ,W   (14) 

where  

 ( ) ( )( )2x 0, xy CKN ,W ,W   (15) 

If ignoring the surrogate model uncertainty, y( )x,W  

would be simply replaced by ŷ( )x,W  in (13) and (14), but it 
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is obviously not proper. In this case, the robust design 

objective function should be recalculated, as the surrogate 

model brought the interpolation uncertainty into 

consideration. The mean and the variance of the prediction 

response value with the affection of multiple uncertainties are 

formed as follow: 
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Both (16) and (17) are close form solutions, and CK model 

could give the values of ( )2

CK x + d,W  and ( )ŷ x + d,W  

directly. Adaptive Simpson method or Monto Carlo method 

could help the calculation.  

 

IV. AN ILLUSTRATIVE BENCHMARK NUMERICAL CASE 

To validate the benefits of our method considering the 

uncertainties of surrogate model, design variables and noise 

parameters, the one-dimensional mathematical example is 

illustrated. In this case, we consider two mathematical 

functions as the high fidelity system and the low fidelity 

system respectively, and the high fidelity function derives 

from the beak function. 
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The feasible design interval is  2,2x − . As a matter of 

fact, the design variable x  is formed as x x= + d , in which 

x  is the variable, and ( )2d 0,0.009N  is used to show the 

uncertainty. We consider the uncertainty of noise parameter 

w  the same way as ( )2= 1 , 0,0.5w ww N − + , so the 

feasible interval of w  is:  

    1 3 , 1+3 = 2.5 0.5w ww   − −  −  − ,   (19) 

The response value surface of the beak function is 

presented in Fig. 1. 

 

 
Fig. 1. The HF model. 

 

Based on 6 high fidelity samples and 8 low fidelity 

samples acquired by Optimal Latin Hypercube technique, the 

CK (Co-Kriging) model is constructed, the prediction 

response surface of which is presented in Fig. 2. The robust 

design objective is to find the maximization of ( )f x , so the 

robust design objective function is: 

 ( ) ( ) ( )x cf  = −x x   (20) 

where 3c = , represent the probability of 0.9987. 

 

 
Fig. 2. The CK model based on 6 LF samples and 8 HF samples. 

 

Fig. 3 gives a comparison of two different kinds of the 

objective response PIs. The mean   and the standard 

deviation   in Fig. 3(a) is calculated using (12), (13). MF+  

and MF+  is given by (16), (17). From the comparison results, 

it is obvious that under the same confidence level, the PI of 

the proposed method (b) is much wider than that of the 

conventional method (a). 

 

 
Fig. 3. The 99.87% prediction interval. 

 

For the robust design objective is to find the maximum of 

the function, the lower boundary of the PI is used for the 
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point searching. The result is presented in Fig. 4. The robust 

design objected function constructed with the conventional 

method only considered the design variable uncertainty and 

the noise parameter uncertainty, and the optimal solution is 

presented at point B (
* 0.7184x = ), point A (

* -1.1787x = ) is 

the optimal solution of the robust design objected function 

constructed with the proposed method considering the 

uncertainties of surrogate model, design variables and noise 

parameters. It can be seen clearly that these two optimal 

solutions under different scenarios are very much different. 

 

 
Fig. 4. Robust objective functions considering different kinds of 

uncertainties. 

 

It is obvious that the two points are much different. The 

robust objective function of true mathematical function HF is 

tested in Fig. 5 for better validating the benefits of our 

method.  

 

 
Fig. 5. The true robust objective function. 

 

The true robust objective function is constructed with the 

true mathematical function, here the high fidelity system 

function (HF) is chosen. Since we used the true response 

value instead of the surrogate model value, there is no need to 

consider the surrogate model uncertainty. The function in Fig. 

4 considers only the design variable uncertainty and the noise 

parameter uncertainty. It is obvious that point C ( * -1.0213x = ) 

is the true optimal solution and the point A ( * -1.1787x = ) of 

the proposed method is much closer to the true point than the 

point B ( * 0.7184x = ). More detailed information is presented 

in Table I. 

 
TABLE I: THE ARRANGEMENT OF CHANNELS 

 
*x  ( )*

w x  ( )*

w x  ( ) ( )* *-3w wx x   

Point A -1.1787 0.6229 0.9928 -2.3554 

Point B 0.7184 -0.7319 1.1390 -4.1489 

Point C -1.0213 1.2304 0.9634 -1.6598 

For a better explanation of why point B deviates from the 

true optimal solution so much, a close look at the difference 

between the two STD functions is shown in Fig. 6(a). 

 

 

Fig. 6. STDs of (a) the response under different uncertainty situations (b) 
Mean of the prediction variance. 

 

Our proposed method quantifies the STD larger than that 

using the conventional way at the same point 
* 0.7184x = , in 

other words, the conventional way tended to estimate the 

STD. It would be clearer with the help of a comparison to the 

mean of the prediction error  E MSE  presented in Fig. 6(b), 

and the mean of the prediction error could be treated as the 

surrogate model uncertainty assisted with the design variable 

uncertainty and the noise parameter uncertainty. It is 

interesting to note that the STD constructed with the 

proposed method rises sharply, in line with the mean of the 

prediction variance, which means the surrogate uncertainty 

has a great influence on the optimal solution finding 

procedure. The effectiveness of our proposed method can be 

confirmed.  

 

V. CONCLUSION AND DISCUSSION 

In this paper, a new robust optimization approach assisted 

with Co-Kriging multi-fidelity surrogate model is developed. 

To improve the efficiency of the robustness optimization, the 

multi-fidelity surrogate model is constructed to integrate the 

sample date from both low-fidelity (LF) and high-fidelity 

(HF) models. Besides, the quantification of the all three kinds 

of uncertainties (the surrogate model uncertainty, design 

variables uncertainty, and noise parameters uncertainty), 

which greatly complicated the existing formulations of robust 

design model. A numerical case has validated the 

effectiveness of the proposed method. The comparison 

results showed that the proposed Co-Kriging multi-fidelity 

surrogate model assisted robust optimization approach 

considers the compound affection of different kinds of 

uncertainties is more accurate and effective to find the robust 

optimal solution than the conventional methods. 

As the future work, how to improve the “one shot” model 

constructing process will be investigated. 
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