
 
 Abstract—In this paper, we propose an efficient 

modification of the variation iteration method called the 

fractional interpolated variation iteration method, which uses 

a radial basis functions to find an approximate solution to a 

fractional differential equation. We used the fractional-order 

epidemic problem as a case study. Numerical results show that 

the proposed method is very efficient, accurate, applicable, and 

more accurate than some existing methods in the literature. 

 
Index Terms—Differential equations, mathematical 

modelling, numerical analysis, variation iterative method. 

 

I. INTRODUCTION 

Fractional differential equations appear in various areas 

of engineering, science, finance, applied mathematics, and 

bioengineering [1]-[4]. For example, we consider the simple 

Susceptible, Infected, and Recovered (SIR ) model, [5]-[8]. 

Let S: denotes the Susceptible which refers to hosts that 

are not exposed to the disease, I: denotes the Infected which 

refers to hosts that are exposed and not recovered, and R: 

denotes the  

Recovered which refers to those individuals that cleared 

the infection. In the SIR model there are only two 

transitions; S ➝ I and I ➝ R. However, other transitions are 

possible with more complex models. The dynamics of the 

above groups with respect to time are summarized in the 

following system of fractional differential equations:  
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where 0< <1. The parameter β is a rate that encompasses 

both the contact and transmission rates between the S and I 

groups. The   term indicates the recovery rate. It is 

obvious that as  decreases, we will have more and 

individuals in the I group which is inversely proportional to 

the average infectious period (i.e. 1/  ). With the 

assumption of a closed system, we have an additional 

constraint on the system S+I+R=NT , where NT is the size of 

the population. 

Many researchers proposed and developed numerical 

approaches to find an approximate solutions to the fractional 
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SIR model problem [9]-[12].   

The paper organized as follows: in section two we 

introduce the proposed method, the Fractional Interpolated 

Variation Iteration Method (FIVIM). In section three we 

give numerical experiments to illustrate the efficiency, 

validity, and applicability of our proposed technique. We 

conclude the paper in section four. 

 

II. THE PROPOSED FRACTIONAL INTERPOLATED VIM 

(FIVIM) 

In this section, first we present the basic idea of the VIM 

and the fractional VIM (FVIM), then we introduce our 

proposed modification of the FVIM method. The proposed 

method uses a set of radial basis functions to simplify the 

evaluation of the correctional FVIM formula.  

A. The VIM  

In this section, we illustrate the basic idea of the VIM 

using the following IVP:   
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Then, the differential equation solution is calculated 

iteratively by turning the solution into a sequence of 

approximate functions whose limit, if it exists, is the 

equation's solution. So, the VIM correctional formula is 

given by 
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Integrate the integral term in (3) by parts, we get 
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See [13] for the existence of the solution and the 

convergence of the VIM to the exact solution. 

Now, we will illustrate the FVIM method by considering 

the following IVP: 
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where 

tD is the fractional differential operator in t, xD is 

some differential operator in x, and p(x,t) is some 

continuous function. 

In general the operator (.)
tD follows the fractional 

Riemann-Liuoville definition [2]: 
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Referring to (5), the FVIM uses the following correction 

formula: 
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From (6) and (7) we obtain:  
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One of the drawbacks of the FVIM is its high 

computational complexity, especially when the problem is 

nonlinear. To overcome this problem, we propose the 

Interpolated FVIM (FIVIM) Using a radial basis functions 

(RBF). 

The IVIM proceeds by dividing the interval [a, T], where 

T is the end point, into n subintervals each of length h = (T-

a)/n. Thus, we have n grid nodal points on the t-axis, dented 

by ti = a +ih,i = 0, 1, …, n. In the IVIM, nodal points used 

in conjunction with a set of K radial basis functions (RBFs), 

[14]. (In particular, in the FIVIM we use either the Gaussian 
2)( re −

or the multiquadric 
2)(1 r+ functions). The 

RBF value at the point s is given by  
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where kc is the center of the kth basis function. 

Now, let Xk = span )(ti , i =1, 2, …, n, then every 
kv in 

kX is a piecewise linear function of the form 
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Then, we obtain the following interpolating formula: 
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And the piecewise linear function of ),( im tsH in kX is 

given by: 
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Replacing ),( im tsH by ),( i

k

m tsH in equation (4), we 

get 
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From (9) and (10), we obtain 
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Now, we summarize the process of the FIVIM in the 

following algorithm: 

Algorithm 1 for the FIVIM 

 

- Using the points 
n

iit 1}{ =
and center points 

K

kkc 1}{ =
to 

calculate matrix ψ and its inverse  
1−ψ . 

- For m = 1 : M % number of sequence calculations 

For i = 1 : n 

    For j = 1 : n 

      Compute the entries ),( jim ttH  of matrix mH . 

    End j loop 

End i loop 

For i = 1 : n 

    Compute the weights 
i

m associated with the it points 

    
i

m

i

m H1−= , where the 
i

mH is the i- the column of 

matrix mH  

    For k = 1 : K 
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Compute )(1 im tu + using (11) 

         End i loop  

   End m loop. 

 

III. NUMERICAL EXPERIMENTS 

In this section, we examine the accuracy of the solution 

provided by the proposed RBF-based FIVIM method. As a 

case study, we investigate the solution of the SIR model. 

We compare our proposed technique with the FVIM with B-

spline functions because it is being shown in [7] that using 

six iterations of the VIM produced a comparable result to 

both the Adomian Decomposition Method and Homotopy 
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Perturbation Method. 

In order to compare our work with other techniques 

appeared in the literature, the same parameters and values of 

the SIR model, (1), used in [5], [7]-[8] are employed. Let 

N1=20, N2=15, N3 =10 and β = 0.01, γ = 0.02.We assume the 

following initial values: S0 = N1=20, I0 = N2=15, and R0 = 

N3 =10.                               

In the following experiments, we first compare the error 

of the approximate solution of different methods for α = 0.5. 

Next, we investigate the effect of the number K of RBF 

functions used on the accuracy of the solution. In the third 

experiment, we examine the shape parameter (ε) range that 

can be used to provide a good approximate solution. Finally, 

we examine the convergence of the solution provided by the 

proposed RBF-based FIVIM.  

A. Comparison for α = 0.5  

In this experiment, we compare the error performance of 

the approximate solutions of S, I and R components of the 

SIR problem. Fig. 1 shows the relative error on using the 

FVIM with B-spline functions, and the proposed MQ and 

Gaussian RBF’s- FIVIM solutions of the SIR problem with 

α = 0.5. Note that the proposed method gives better solution 

than the FVIM with B-spline functions.  

 

 
Fig. 1. Relative error using FVIM with B-spline functions vs. FIVIM with 

MQ and Gaussian RBF with α = 0.5. 

 
Fig. 2. Relative error of Spline-FVIM vs. Time for different values of K 

B. Effect of Number (K) of RBF Functions  

In this section, we examine the effect of the number K of 

RBF interpolating functions on the solution's accuracy for 

the B-Spline , MQ and Gaussian FIVIM. Results in Figs. 2, 

3, and 4 indicate that both the B-Spline and the Gaussian 

RBF-based method are sensitive to changes in K. As K is 

reduced, we notice significant degradation in the solution 

accuracy. On the other hand, the Multiquadric-FIVIM 

shows robustness (i.e., less sensitive) to variations in the 

value of K, see Fig. 3.  

 

Fig. 3. Relative error of MQ-FIVIM vs. Time for different values of K 

 
Fig. 4. Relative error of gaussian-FIVIM vs. time for different values of K. 

 

C. Effect of the Shape Parameter ε 

The problem of setting the value of the shape parameter ε 

remains in question within the RBF interpolation. In this 

section we investigate the performance of the MQ and 

Gaussian RBF-FIVIM as we vary the shape parameter. Fig. 

5 shows that the Multiquadric-based FIVIM displays more 

robustness with respect to ε. Varying ε from 0.5 to 30 does 

not have a significant effect on the solution accuracy. This 

in contrast to the Gaussian-based FIVIM which is sensitive 

to the value of ε. We note that changing ε from 0.5 to 2.5 as 

in Fig. 6 results in a significant degradation of the error 

performance of the FIVIM. 
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Fig. 5. Relative error vs. Time for different values of ε in the multiquadric 

RBF. 

 

Fig. 6. Relative error vs. Time for different values of ε in the gaussian RBF. 

 

 
Fig. 7. Relative error vs. Time for different values of M in the multiquadric 

RBF. 

 

D. Convergence of the RBF-FIVIM 

In this experiment, we investigate the convergence of 

both the MQ and Gaussian-RBF FIVIM with respect to the 

number of iterations (m) (see Figs. 7 and 8). We notice that 

both of the proposed RBF methods converge rapidly as the 

number of iterations increases from m=2 to 6. In fact, our 

results indicate that little improvement can be achieved after 

5 iterations.  

 

 
Fig. 8. Relative error vs. Time for different values of M in the Gaussian 

RBF 

 

IV.   CONCLUSION  

In this paper, we proposed a RBF-based fractional 

interpolated variation iteration method (FIVIM) with the 

goal of reducing the computational complexity of the FVIM. 

In particular, we used the multiquadric (MQ) and Gaussian 

functions as radial basis functions. The proposed methods 

were used to solve both the integer and fractional SIR 

epidemic problems. The numerical results indicate the 

effectiveness, validity and the applicability of the proposed 

method. Both the MQ and Gaussian RBF showed a superior 

performance in comparison with the B-Spline VIM 

proposed in the literature. However, the MQ showed more 

robustness with respect to several factors (e.g., number of 

RBF functions and shape parameter). 
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