
  

  

Abstract—Markov games and reinforcement learning 

algorithms are applied successfully in multi-agent learning 

systems such as Minimax-Q. Because of the interdependence 

between agents, it’s time consuming to find the optimal policy 

when agents learning concurrently. Some algorithms accelerate 

convergences through spatial or action generalization, which 

requires domain-dependent prior knowledge. In order to 

improve learning efficiency directly, the opponent modelling 

Q(λ) algorithm is proposed which combines fictitious play in 

game theory and eligibility trace in reinforcement learning. A 

series of empirical evaluations were conducted in the classical 

soccer domain. Compared with several other algorithms, it is 

proved that the algorithm contributed in this paper significantly 

enhances the learning performance of multi-agent systems. 

 
Index Terms—Opponent modelling, markov Games, 

multi-agent, reinforcement learning.  

 

I. INTRODUCTION 

In classical reinforcement learning (RL), single-agent 

learns through trial-and-error interactions with its 

environment directly, without relying on exemplary 

supervision or complete models of the environment [1]. 

Markov decision process (MDP) is the underlying of 

single-agent RL. It is an environment that the current state 

contains all the historical information. A finite MDP is a tuple 

M = <S, A, P, R, γ>, where S is a finite set of states, A is a 

finite set of actions, P is the transition probability matrix, 

p(sʹ|s,a)≐Pr{St+1=sʹ|St=s,At=a}, R is a reward function r(s,a)

≐[Rt+1|St=s,At=a], γ is a discount factor. The target of 

solving MDPs is to find the optimal policy (a|s) to maximize 

the total expected discounted future rewards [Gt] from 

time-step t, where (a|s)≐Pr{At=a|St=s} is the probability 

take action a at state s, k

t t kk
G R



+ +=
=  10

 is the discounted 

accumulated rewards. 

In multi-agent systems, agents are located in a 

non-stationary scenario, where an agent’s rewards from the 

environment depend on other agents’ actions. Multi-agent RL 

tasks are not MDP, and classical RL algorithms may not 

applicable. Littman combined matrix games and Q-learning 

algorithm [2] and proposed Minimax-Q learning [3] to solve 

zero-sum game RL tasks. Trying to enhance the convergence 

rate, several improved algorithms were proposed based on 

Minimax-Q, such as Minimax-QS [4], Minimax-Q(λ) [5], 
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Minimax-SARSA [5], HAMMQ [6], [7], etc. The Core ideas 

of these algorithms are illustrated in Section II. 

Minimax-Q learning is a conservative algorithm, assuming 

that the opponent always chooses the best action. However, 

the opponent doesn’t always follow an optimal policy. 

Therefore, it’s a good idea to choose actions by evaluating the 

opponent’s policy. Fictitious play [8] in game theory is 

consistent with this idea and was applied to opponent 

modelling (OM) [9]. In this paper, we present the opponent 

modelling Q(λ) (OMQ(λ)) algorithm, which combines 

fictitious play and eligibility trace [1] together to further 

improve the performance of the agent. 

The remaining parts of this paper are organized as follows. 

Section II reviews the core ideas of several representative 

multi-agent RL algorithms and illustrates their contribution to 

accelerating convergence. Section III shows how to embed 

eligibility trace into opponent modelling and proposes the 

OMQ(λ) algorithm. Section IV conducts a series of empirical 

evaluations in Littman’s classical soccer domain [3] and 

presents the superiority of our algorithm. Section V draws the 

conclusion of our research. 

 

II. MARKOV GAMES AND MULTI-AGENT RL ALGORITHMS 

A. Markov Games Framework 

Markov game is a combination of MDP and matrix games. 

It’s presented as a tuple MG = <n, S, A1…n, P, R1…n, γ>. In 

zero-sum Markov games (ZSMG), it is defined as ZSMG = 

<S, A, O, P, R, γ>, where S is a finite set of states, A is a 

finite set of actions for the agent, O is a finite set of actions for 

the opponent, P is the transition probability matrix, p(sʹ|s,a,o)

≐Pr{St+1=sʹ|St=s,At=a, Ot=o}, R is a reward function r(s,a,o)

≐[Rt+1|St=s,At=a,Ot=o], γ is a discount factor.  

Similar to MDP, the goal of ZSMG is to maximize the 

discounted future rewards. In each iteration, the agent and the 

opponent choose their own action based on the current state St. 

The next state and the reward of players are determined by the 

joint action (a, o).  

B. Multi-agent RL Algorithms 

In this section, we review the core ideas of several 

representative multi-agent RL algorithms. Also, the defects of 

these algorithms are analyzed. 

On the basis of ZSMG, Minimax-Q learning algorithm was 

presented combined with Q-learning and minimax algorithm 

[10]. It’s similar to classical Q-learning except that the max 

operator is replaced by the minimax. For deterministic action 

policies, the updating rule of Minimax-Q is: 
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where α is the learning rate, V(s) is the value of state in 

ZSMGs. For alternating Markov games, V(s) is presented as: 

 

( ) ( )max min , ,
oa

V s Q s a o
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=
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.                            (2) 

 

The agent selects action through ɛ-greedy policy, and the 

optimal policy is: 

 

( ) ( )* *argmax min , ,
oa

s Q s a o


=
OA

.                        (3) 

 

Similar to Q-learning, Minimax-Q converges to the 

equilibrium when the state-joint action pairs are visited 

infinitely [11]. But it’s not easy for Minimax-Q, because 

agent’s next state depends on the opponent’s action in the 

current state. If the opponent never performs certain actions in 

certain states, it may be difficult for the agent to get the 

optimal policy. On the other hand, in the early stage of 

learning, Minimax-Q has a low learning efficiency and 

basically randomly selects actions. Also, similar to Q-learning, 

Minimax-Q is not efficient in learning because only one Q 

value is updated per iteration. 

Minimax-Q(λ) is the combination of Minimax-Q and TD(λ) 

algorithms. Q values of several (s,a,o) tuples are updated each 

iteration, depending on the current TD error combined with 

eligibility traces of past events. Minimax-SARSA is an 

on-policy multi-agent RL algorithm, which combines the 

minimax algorithm and SARSA. At the beginning of the 

learning process, Minimax-SARSA converges slower than 

other algorithms because it depends on the actual policy 

followed. However, Minimax-SARSA presents a better 

performance than Minimax-Q when rewards obtained by 

explorations are terrible.  

Minimax-QS embeds QS-algorithm into Minimax-Q. It 

defines the similarity among state-joint action pairs by 

spreading function σt(s,a,o,si,ai,oi)[0,1]. In [4], 

σt(s,a,o,si,ai,oi)=gt(s,si)δ(a, ai)δ(o,oi), where gt is the state 

similarity function, δ is the Kronecker delta function. For each 

update, the Q value of tuple (si,ai,oi) is updated 

simultaneously according to the similarity degree to the tuple 

(s,a,o). The updating rule of Minimax-QS is: 

 

( ) ( )

( ) ( ) ( ) ( )
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       (4) 

 

where V(s) is the same as (2). The performance of 

Minimax-QS depends not only on the type of environment but 

also on how the spreading function is defined. If the similar 

relationship between state-joint action pairs is not properly 

described, the performance will be degraded, i.e., 

Minimax-QS needs relevant prior knowledge in the field. 

HAMMQ uses a heuristic function to induces action choice, 

and it requires a more precise domain-dependent prior 

knowledge of the field than Minimax-QS. Compared to 

Minimax-Q, HAMMQ only changes the policy of selecting 

actions without changing the way of updating Q values. For 

alternating ZSMG, the action choice rule of HAMMQ is: 
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where ,  are real values, H is the heuristic function. For a 

given state s and opponent action o, H is expressed as: 

 

( )
( ) ( ) ( )max , , , ,

, ,
0

Ha
Q s a o Q s a o a s
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where  is a small real value, H(s) is the prescribed action by 

the heuristic function. However, in practical applications, it is 

not easy to obtain an effective heuristic. Moreover, the 

performance of the algorithm mainly depends on the choice of 

heuristics. 

 

III. OPPONENT MODELLING Q(Λ) ALGORITHM 

As depicted in Section II, Minimax-Q(λ), Minimax-QS and 

HAMMQ enhance the learning process by using temporal 

generalization, spatial generalization, and action 

generalization respectively. Minimax-QS and HAMMQ 

accelerate convergence by domain-dependent prior 

knowledge, the performance of the algorithm mainly depends 

on the choice of spreading functions or heuristics.  

The OMQ(λ) presented in this section is the combination of 

fictitious play in game theory and eligibility trace in RL. 

Fictitious play technique helps the agent select the current 

optimal action by evaluating the past history of the action 

selected by the opponent, i.e., it assesses the opponent’s 

policy at each iteration. It is proven that, in zero-sum games, 

the empirical distribution obtained by fictitious play 

converges to the Nash equilibrium [12]. Let K(s,o) indicate 

the number of times opponent takes action o at state s, and n(s) 

denotes the number of times opponent in state s. Per iteration, 

the agent chooses action by the following formula: 

 

( )
( )

( )
( )

,
arg max , ,

a
o

K s o
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O

.                  (7) 

 

Eligibility trace is a mechanism to make learning more 

efficient. OMQ(λ) embeds eligibility traces into opponent 

modelling Q algorithm, which accelerates the learning 

efficiency. For each iteration, after the agent and the opponent 

taking action a and o respectively, the Q values of the past 

(si,ai,oi) tuples are updated on the basis of the traces. Let 

e(si,ai,oi) denotes the trace of the tuple (si,ai,oi), and the 

updating rule of Q(si,ai,oi) is expressed as: 

 

( ) ( )

( ) ( ) ( ) ( )
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Q s a o Q s a o
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.               (8) 

 

Based on the core idea of fictitious play, V(s) here is 

defined as follows: 
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e(si,ai,oi) is decayed per iteration: 

( ) ( ), , = , ,i i i i i ie s a o e s a o                             (10) 

where λ is the trace-decay parameter, λ[0,1]. λ determines 

the rate at which the trace falls. 

For alternating Markov games, the OMQ(λ) implemented 

in this paper is described in Algorithm 1.  

 

Algorithm 1. OMQ(λ) 

Input: S: a finite set of states, A: a finite set of agent’s actions, O: a finite 

set of opponent’s actions, r(s,a,o): reward from the environment, V(s): 

value function, Q(s,a,o): state-joint action value function, e(s,a,o): trace 

function of tuples, K(s,o): numbers of times opponent takes action o at 

state s, n(s): numbers of times opponent in state s, T: list of (s,a,o) tuples, 

the eligibility traces 

1. Initialize:sS,V(s)0,n(s)0; 

sSaAoO,Q(s,a,o)0,e(s,a,o)0; 

sSoO,K(s,o)0; 

2. Observe current state s 

3. loop 

4.   Agent select action a by (7); opponent select action o through its 

policy 

5.   Receive the reward r(s,a,o) from the environment and observe next 

state sʹ 

6.   Update Q(s,a,o)=Q(s,a,o)+α[r(s,a,o)+γV(sʹ)−Q(s,a,o)] 

7.   for all (si,ai,oi)T do 

8.     Calculate trace decay with (10) 

9.     Update Q(si,ai,oi) with (8) 

10.     if e(si,ai,oi) <  then 

11.       delete (si,ai,oi) from T 

12.     end if 

13.   end for 

14.   Update V(s) with (9) 

15.   ai a, e(s,ai,o)0; e(s,a,o)1 

16.   if (s,a,o)T then 

17.     TT(s,a,o) 

18.   end if 

19.   ssʹ 

20. end loop 

 

Opponent

Agent

 
Fig. 1. The initial state of the soccer domain. 

 

It is worth noting that the list T and a small real number  is 

used to control the space complexity of OMQ(λ) algorithm.  

Compared to classical Minimax-Q, OMQ(λ) is more 

rational. If the opponent never takes action o in state s, the Q 

value of tuple (s,a,o,) is ignored by (7). As the number of 

iterations increases, the model of the opponent is more precise, 

and the action selected by the agent is more reasonable. 

Taking the advantages of eligibility trace, OMQ(λ) converges 

faster. Compared to Minimax-QS and HAMMQ, OMQ(λ) 

doesn’t require prior knowledge and heuristic information of 

the domain, making it more convenient in practical 

applications. 

 

IV. EXPERIMENTS IN THE CLASSICAL SOCCER DOMAIN 

A. The Classical Soccer Domain 

The soccer domain proposed by Littman is a classical lab 

environment for adversarial multi-agent RL. The Agent and 

the opponent are placed in a 45 grid world, and the initial 

state of players are shown in Fig. 1. Each cell can only be 

occupied by one player, and the ball occupies the same cell as 

one of the players. Each iteration, plays can choose an action 

from up, right, down, left and stand. The possession of the ball 

is given randomly to the agent or the opponent at the 

beginning of the game. 

The player’s objective is to bring the ball into the 

opponent’s goal (right for the agent and left for the opponent), 

and get a score of +1. When a player with the ball wants to 

move to a cell occupied by another player, the player loses the 

ball and the move fails. Any action that causes the player to go 

out of bounds is ignored. The end condition of the game is that 

any player brings the ball into the opponent’s goal or the 

player’s steps reach the limit. After the game, the players’ 

position and the possession of the ball are reset. 

B. Experimental Setup 

In this section, we compared the performance differences 

of OMQ(λ) with Minimax-Q, Minimax-Q(λ), Minimax-QS, 

HAMMQ, and OM. A sequence of 100 sessions was run for 

each algorithm, and each session consists of 700 matches of 

10 games.  

The parameters used in every algorithm are the same. The 

player who scores the goal receives a reward +1 from the 

environment. The learning rate α was initialized to 1.0 and 

decayed at a rate of 0.9999954 for each iteration. The 

exploration rate ɛ was 0.2 and the discount factor γ was 0.9. 

The values of the above parameters are identical to those used 

in [3]-[6]. The Q values of all (s,a,o) tuples and the value 

functions V(s) of all states are initialized to 0. The maximum 

steps for every player were set to 15. For Minmax-QS, the 

linearly decreasing spreading function was identical to [4], 

where σt(s,a,o,si,ai,oi)=gt(s,si)=τd, τ=0.7, and d=1. For 

algorithms Minimax-Q(λ) and OMQ(λ), λ=0.05. For 

HAMMQ, ===1, the heuristics suggested action was 

defined as the direction in which the player attacks (i.e., left or 

right), ignoring the state of another player. 

Evaluation 1: The purpose of the first set of experiments 

was to assess the performance of the 6 algorithms versus a 

random opponent, i.e., the agent was a player using an RL 

algorithm mentioned above, and the opponent chose action 

randomly. We calculated the average accumulated number of 

goals scored by the agent from 700 matches, over 100 

sessions. 

Evaluation 2: The purpose of the second set of 

experiments was to assess the performance of the OMQ(λ) 

agent against the opponent using multi-agent RL algorithm. In 

this paper, we used Minimax-QS, which performed 

excellently in evaluation 1, as the opponent of OMQ(λ). For 

comparison, we also employed the Minimax-Q, 

Minimax-Q(λ), Minimax-QS and HAMMQ agents to 
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compete with the Minimax-QS opponent respectively. We 

calculated the average cumulative number of goal difference 

(i.e., the difference between the number of goals and the 

number of goals lost) got by the agent from 700 matches, over 

100 sessions. 

C. Results Analysis 

Experimental results of evaluation 1 are shown in Fig. 2, 

Fig. 3 and Table I. Overall, OMQ(λ) converges fastest and has 

the highest cumulative goals in the experiments. Fig. 2 

presents the 4 best among the 6 algorithms, which are 

Minimax-QS, HAMMQ, OM, and OMQ(λ). The agent using 

OM closed to the performance of the HAMMQ agent around 

400 matches. However, the Minimax-QS agent only 

approached the performance of the HAMMQ agent after 600 

matches. In the experiments, no algorithm exceeds the 

average goals (over 100 sessions) of the OMQ(λ) agent in 700 

matches. The OMQ(λ) agent scored an average of around 5.7 

goals at the end of matches, and the other 3 agents only got an 

average of around 4.7 goals at the end of experiments. As 

illustrated in Section III, the performance of HAMMQ is 

strictly related to the heuristic chosen, so in practice, it 

requires accurate prior knowledge in the field. It should be 

noted that the heuristic chosen in this paper is not optimal. A 

better heuristic function should consider how to get the ball 

from the opponent. 

Fig. 3 presents the learning curves of the first 50 matches 

for the agent using the 6 algorithms respectively against a 

random opponent. The HAMMQ agent performed best at the 

beginning of the experiment benefiting from the heuristic 

function. In conjunction with Fig. 2, after 8 matches, the 

OMQ(λ) agent approached the performance of HAMMQ and 

showed an overwhelming advantage after 100 matches. 

Profiting from the eligibility trace, the OMQ(λ) agent scored 

more goals than the OM agent in each match (averaged over 

100 sessions) throughout the learning process. And it’s worth 

noting that the symmetrical environment makes it easy to 

define the spreading function, i.e., in practical applications, 

finding the proper spreading function may be time consuming. 

 
Fig. 2. Average goals of the agent using Minimax-QS, HAMMQ, OM, and 

OMQ(λ) respectively versus a random opponent. 

Fig. 3. Average goals (the first 50 matches) of the agent using Minimax-Q, 

Minimax-QS, Minimax-Q(λ), HAMMQ, OM, and OMQ(λ) respectively 

versus a random opponent. 

 

Fig. 4. Average goal difference of the agent using Minimax-QS, HAMMQ, 

and OMQ(λ) respectively versus a Minimax-QS opponent. 

Fig. 5. Average goal difference (the first 120 matches) of the agent using 

Minimax-Q, Minimax-QS, Minimax-Q(λ), HAMMQ, and OMQ(λ) 

respectively versus a Minimax-QS opponent. 

 

Table I. shows the cumulative number of wins of 700 

matches (averaged over 100 sessions) for the agent using the 6 

algorithms respectively versus a random opponent. It can be 

seen intuitively that OMQ(λ) won the most in the whole 

learning process, up to 3789 wins. 

The second set of experimental results are shown in Fig. 4, 

Fig. 5 and Table Ⅱ. Fig. 4 present average goal difference of 
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the agent using Minimax-QS, HAMMQ, and OMQ(λ) 

respectively against a Minimax-QS opponent. It is worth 

mentioning that these algorithms perform admirably in 

evaluation 1 when competing against random opponents. 

Average goal difference of the Minimax-QS agent fluctuated 

at the equilibrium from the start, because its opponent also 

used the same algorithm. The HAMMQ agent occupied the 

upper hand at the beginning, but eventually, it was crushed by 

the opponent. OMQ(λ) is the best performing learning 

algorithm in this experiment. It took about 630 matches for 

the Minimax-QS opponent to learn how to compete with the 

OMQ(λ) agent. 

 
TABLE I: THE CUMULATIVE NUMBER OF WINS OF RL AGENTS VERSUS A 

RANDOM OPPONENT OF 700 MATCHES 

Agent vs. Opponent Wins 

Minimax-Q vs. random 293687 vs. 20113 

Minimax-QS vs. random 295291 vs. 20014 

Minimax-Q(λ) vs. random 295177 vs. 19714 

HAMMQ vs. random 335541 vs. 20213 

OM vs. random 344293 vs. 20213 

OMQ(λ) vs. random 378966 vs. 20114 

 

TABLE Ⅱ: THE CUMULATIVE NUMBER OF WINS OF RL AGENTS VERSUS A 

MINIMAX-QS OPPONENT OF 700 MATCHES 

Agent vs. Opponent Wins 

Minimax-Q vs. Minimax-QS 2624102 vs. 2722101 

Minimax-QS vs. Minimax-QS 277695 vs. 2695105 

Minimax-Q(λ) vs. Minimax-QS 267494 vs. 268499 

HAMMQ vs. Minimax-QS 235180 vs. 2564220 

OMQ(λ) vs. Minimax-QS 329588 vs. 2983127 

 

Fig. 5 shows the first 120 matches average goal difference 

of the agent using Minimax-Q, Minimax-QS, Minimax-Q(λ), 

HAMMQ, and OMQ(λ) respectively versus a Minimax-QS 

opponent. Throughout the learning process, the curves of the 

agent using Minimax-QS and Minimax-(λ) are similar, but the 

Minimax-QS agent is slightly better at the beginning. The 

Minimax-Q agent performed worst at the first 50 matches and 

caught up the Minimax-QS agent after about 450 matches. In 

conjunction with Fig. 4, agents using HAMMQ performed 

best in the first 100 matches and got the largest goal 

difference (averaged 4.2 over 100 sessions), but after 100 

matches, the advantage was recovered by the Minimax-QS 

opponent and then overtaken after 200 matches. It can be seen 

from the curves that the OMQ(λ) agent also got advantages at 

the initial stage, and maintained the longest time. 

Table Ⅱ. shows the cumulative number of wins of 700 

matches (averaged over 100 sessions) for the agent using the 5 

algorithms respectively versus a Minimax-QS opponent. 

Benefiting from opponent modelling and TD(λ), the OMQ(λ) 

agent performed best among 5 algorithms. 

It must be noted that the results presented in this paper are 

far from convergence, and the values of parameters here are 

designed for comparative experiments. 

 

V. CONCLUSION 

This paper contributed the OMQ(λ) algorithm for 

multi-agent RL, which combines fictitious play in game 

theory and eligibility trace in RL. Core ideas and the 

algorithm of OMQ(λ) were elaborated. A series of 

comparative experiments were conducted in the classical 

soccer domain, and the results showed that our algorithm 

achieved the best performance in against with a random 

opponent and a Minimax-QS opponent without any 

domain-dependent prior knowledge. While ensuring learning 

efficiency, OMQ(λ) is more convenient and versatile, 

compared to algorithms that require prior knowledge. 
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