

Abstract—Markov games and reinforcement learning

algorithms are applied successfully in multi-agent learning

systems such as Minimax-Q. Because of the interdependence

between agents, it’s time consuming to find the optimal policy

when agents learning concurrently. Some algorithms accelerate

convergences through spatial or action generalization, which

requires domain-dependent prior knowledge. In order to

improve learning efficiency directly, the opponent modelling

Q(λ) algorithm is proposed which combines fictitious play in

game theory and eligibility trace in reinforcement learning. A

series of empirical evaluations were conducted in the classical

soccer domain. Compared with several other algorithms, it is

proved that the algorithm contributed in this paper significantly

enhances the learning performance of multi-agent systems.

Index Terms—Opponent modelling, markov Games,

multi-agent, reinforcement learning.

I. INTRODUCTION

In classical reinforcement learning (RL), single-agent

learns through trial-and-error interactions with its

environment directly, without relying on exemplary

supervision or complete models of the environment [1].

Markov decision process (MDP) is the underlying of

single-agent RL. It is an environment that the current state

contains all the historical information. A finite MDP is a tuple

M = <S, A, P, R, γ>, where S is a finite set of states, A is a

finite set of actions, P is the transition probability matrix,

p(sʹ|s,a)≐Pr{St+1=sʹ|St=s,At=a}, R is a reward function r(s,a)

≐[Rt+1|St=s,At=a], γ is a discount factor. The target of

solving MDPs is to find the optimal policy (a|s) to maximize

the total expected discounted future rewards [Gt] from

time-step t, where (a|s)≐Pr{At=a|St=s} is the probability

take action a at state s, k

t t kk
G R



+ +=
=  10

 is the discounted

accumulated rewards.

In multi-agent systems, agents are located in a

non-stationary scenario, where an agent’s rewards from the

environment depend on other agents’ actions. Multi-agent RL

tasks are not MDP, and classical RL algorithms may not

applicable. Littman combined matrix games and Q-learning

algorithm [2] and proposed Minimax-Q learning [3] to solve

zero-sum game RL tasks. Trying to enhance the convergence

rate, several improved algorithms were proposed based on

Minimax-Q, such as Minimax-QS [4], Minimax-Q(λ) [5],

Manuscript received November 10, 2018; revised April 1, 2019.

The authors are with the College of Artificial Intelligence, National

University of Defense Technology, Hunan, Changsha 410073 China. (e-mail:

nudtchenhao15a@163.com, nudtjHuang@hotmail.com, fj_gjx@qq.com).

Minimax-SARSA [5], HAMMQ [6], [7], etc. The Core ideas

of these algorithms are illustrated in Section II.

Minimax-Q learning is a conservative algorithm, assuming

that the opponent always chooses the best action. However,

the opponent doesn’t always follow an optimal policy.

Therefore, it’s a good idea to choose actions by evaluating the

opponent’s policy. Fictitious play [8] in game theory is

consistent with this idea and was applied to opponent

modelling (OM) [9]. In this paper, we present the opponent

modelling Q(λ) (OMQ(λ)) algorithm, which combines

fictitious play and eligibility trace [1] together to further

improve the performance of the agent.

The remaining parts of this paper are organized as follows.

Section II reviews the core ideas of several representative

multi-agent RL algorithms and illustrates their contribution to

accelerating convergence. Section III shows how to embed

eligibility trace into opponent modelling and proposes the

OMQ(λ) algorithm. Section IV conducts a series of empirical

evaluations in Littman’s classical soccer domain [3] and

presents the superiority of our algorithm. Section V draws the

conclusion of our research.

II. MARKOV GAMES AND MULTI-AGENT RL ALGORITHMS

A. Markov Games Framework

Markov game is a combination of MDP and matrix games.

It’s presented as a tuple MG = <n, S, A1…n, P, R1…n, γ>. In

zero-sum Markov games (ZSMG), it is defined as ZSMG =

<S, A, O, P, R, γ>, where S is a finite set of states, A is a

finite set of actions for the agent, O is a finite set of actions for

the opponent, P is the transition probability matrix, p(sʹ|s,a,o)

≐Pr{St+1=sʹ|St=s,At=a, Ot=o}, R is a reward function r(s,a,o)

≐[Rt+1|St=s,At=a,Ot=o], γ is a discount factor.

Similar to MDP, the goal of ZSMG is to maximize the

discounted future rewards. In each iteration, the agent and the

opponent choose their own action based on the current state St.

The next state and the reward of players are determined by the

joint action (a, o).

B. Multi-agent RL Algorithms

In this section, we review the core ideas of several

representative multi-agent RL algorithms. Also, the defects of

these algorithms are analyzed.

On the basis of ZSMG, Minimax-Q learning algorithm was

presented combined with Q-learning and minimax algorithm

[10]. It’s similar to classical Q-learning except that the max

operator is replaced by the minimax. For deterministic action

policies, the updating rule of Minimax-Q is:

Opponent Modelling with Eligibility Trace for Multi-agent

Reinforcement Learning

Hao Chen, Jian Huang, and Jianxing Gong

International Journal of Modeling and Optimization, Vol. 9, No. 3, June 2019

140DOI: 10.7763/IJMO.2019.V9.699

mailto:nudtchenhao15a@163.com

() () () () (), , , , , , ' , ,Q s a o Q s a o r s a o V s Q s a o = +  + −   (1)

where α is the learning rate, V(s) is the value of state in

ZSMGs. For alternating Markov games, V(s) is presented as:

() ()max min , ,
oa

V s Q s a o


=
OA

. (2)

The agent selects action through ɛ-greedy policy, and the

optimal policy is:

() ()* *argmax min , ,
oa

s Q s a o


=
OA

. (3)

Similar to Q-learning, Minimax-Q converges to the

equilibrium when the state-joint action pairs are visited

infinitely [11]. But it’s not easy for Minimax-Q, because

agent’s next state depends on the opponent’s action in the

current state. If the opponent never performs certain actions in

certain states, it may be difficult for the agent to get the

optimal policy. On the other hand, in the early stage of

learning, Minimax-Q has a low learning efficiency and

basically randomly selects actions. Also, similar to Q-learning,

Minimax-Q is not efficient in learning because only one Q

value is updated per iteration.

Minimax-Q(λ) is the combination of Minimax-Q and TD(λ)

algorithms. Q values of several (s,a,o) tuples are updated each

iteration, depending on the current TD error combined with

eligibility traces of past events. Minimax-SARSA is an

on-policy multi-agent RL algorithm, which combines the

minimax algorithm and SARSA. At the beginning of the

learning process, Minimax-SARSA converges slower than

other algorithms because it depends on the actual policy

followed. However, Minimax-SARSA presents a better

performance than Minimax-Q when rewards obtained by

explorations are terrible.

Minimax-QS embeds QS-algorithm into Minimax-Q. It

defines the similarity among state-joint action pairs by

spreading function σt(s,a,o,si,ai,oi)[0,1]. In [4],

σt(s,a,o,si,ai,oi)=gt(s,si)δ(a, ai)δ(o,oi), where gt is the state

similarity function, δ is the Kronecker delta function. For each

update, the Q value of tuple (si,ai,oi) is updated

simultaneously according to the similarity degree to the tuple

(s,a,o). The updating rule of Minimax-QS is:

() ()

() () () ()

, , , ,

, , , , , , , ' , ,

i i i i i i

i i i i i i

Q s a o Q s a o

s a o s a o r s a o V s Q s a o 

= +

 + −  

 (4)

where V(s) is the same as (2). The performance of

Minimax-QS depends not only on the type of environment but

also on how the spreading function is defined. If the similar

relationship between state-joint action pairs is not properly

described, the performance will be degraded, i.e.,

Minimax-QS needs relevant prior knowledge in the field.

HAMMQ uses a heuristic function to induces action choice,

and it requires a more precise domain-dependent prior

knowledge of the field than Minimax-QS. Compared to

Minimax-Q, HAMMQ only changes the policy of selecting

actions without changing the way of updating Q values. For

alternating ZSMG, the action choice rule of HAMMQ is:

()
() ()arg max min , , , ,t

oa

random

Q s a o H s a o p
s

otherwisea


 

 

  +   = 


OA (5)

where ,  are real values, H is the heuristic function. For a

given state s and opponent action o, H is expressed as:

()
() () ()max , , , ,

, ,
0

Ha
Q s a o Q s a o a s

H s a o
otherwise

 


 − + =
= 



A (6)

where  is a small real value, H(s) is the prescribed action by

the heuristic function. However, in practical applications, it is

not easy to obtain an effective heuristic. Moreover, the

performance of the algorithm mainly depends on the choice of

heuristics.

III. OPPONENT MODELLING Q(Λ) ALGORITHM

As depicted in Section II, Minimax-Q(λ), Minimax-QS and

HAMMQ enhance the learning process by using temporal

generalization, spatial generalization, and action

generalization respectively. Minimax-QS and HAMMQ

accelerate convergence by domain-dependent prior

knowledge, the performance of the algorithm mainly depends

on the choice of spreading functions or heuristics.

The OMQ(λ) presented in this section is the combination of

fictitious play in game theory and eligibility trace in RL.

Fictitious play technique helps the agent select the current

optimal action by evaluating the past history of the action

selected by the opponent, i.e., it assesses the opponent’s

policy at each iteration. It is proven that, in zero-sum games,

the empirical distribution obtained by fictitious play

converges to the Nash equilibrium [12]. Let K(s,o) indicate

the number of times opponent takes action o at state s, and n(s)

denotes the number of times opponent in state s. Per iteration,

the agent chooses action by the following formula:

()
()

()
()

,
arg max , ,

a
o

K s o
s Q s a o

n s





= 
A

O

. (7)

Eligibility trace is a mechanism to make learning more

efficient. OMQ(λ) embeds eligibility traces into opponent

modelling Q algorithm, which accelerates the learning

efficiency. For each iteration, after the agent and the opponent

taking action a and o respectively, the Q values of the past

(si,ai,oi) tuples are updated on the basis of the traces. Let

e(si,ai,oi) denotes the trace of the tuple (si,ai,oi), and the

updating rule of Q(si,ai,oi) is expressed as:

() ()

() () () ()

, , , ,

, , , , '

i i i i i i

i i i

Q s a o Q s a o

e s a o r s a o V s V s 

= +

 + −  

. (8)

Based on the core idea of fictitious play, V(s) here is

defined as follows:

International Journal of Modeling and Optimization, Vol. 9, No. 3, June 2019

141

()
()

()
()

,
max , ,

a
o

K s o
V s Q s a o

n s


= 
A

O

 (9)

e(si,ai,oi) is decayed per iteration:

() (), , = , ,i i i i i ie s a o e s a o   (10)

where λ is the trace-decay parameter, λ[0,1]. λ determines

the rate at which the trace falls.

For alternating Markov games, the OMQ(λ) implemented

in this paper is described in Algorithm 1.

Algorithm 1. OMQ(λ)

Input: S: a finite set of states, A: a finite set of agent’s actions, O: a finite

set of opponent’s actions, r(s,a,o): reward from the environment, V(s):

value function, Q(s,a,o): state-joint action value function, e(s,a,o): trace

function of tuples, K(s,o): numbers of times opponent takes action o at

state s, n(s): numbers of times opponent in state s, T: list of (s,a,o) tuples,

the eligibility traces

1. Initialize:sS,V(s)0,n(s)0;

sSaAoO,Q(s,a,o)0,e(s,a,o)0;

sSoO,K(s,o)0;

2. Observe current state s

3. loop

4. Agent select action a by (7); opponent select action o through its

policy

5. Receive the reward r(s,a,o) from the environment and observe next

state sʹ

6. Update Q(s,a,o)=Q(s,a,o)+α[r(s,a,o)+γV(sʹ)−Q(s,a,o)]

7. for all (si,ai,oi)T do

8. Calculate trace decay with (10)

9. Update Q(si,ai,oi) with (8)

10. if e(si,ai,oi) <  then

11. delete (si,ai,oi) from T

12. end if

13. end for

14. Update V(s) with (9)

15. ai a, e(s,ai,o)0; e(s,a,o)1

16. if (s,a,o)T then

17. TT(s,a,o)

18. end if

19. ssʹ

20. end loop

Opponent

Agent

Fig. 1. The initial state of the soccer domain.

It is worth noting that the list T and a small real number  is

used to control the space complexity of OMQ(λ) algorithm.

Compared to classical Minimax-Q, OMQ(λ) is more

rational. If the opponent never takes action o in state s, the Q

value of tuple (s,a,o,) is ignored by (7). As the number of

iterations increases, the model of the opponent is more precise,

and the action selected by the agent is more reasonable.

Taking the advantages of eligibility trace, OMQ(λ) converges

faster. Compared to Minimax-QS and HAMMQ, OMQ(λ)

doesn’t require prior knowledge and heuristic information of

the domain, making it more convenient in practical

applications.

IV. EXPERIMENTS IN THE CLASSICAL SOCCER DOMAIN

A. The Classical Soccer Domain

The soccer domain proposed by Littman is a classical lab

environment for adversarial multi-agent RL. The Agent and

the opponent are placed in a 45 grid world, and the initial

state of players are shown in Fig. 1. Each cell can only be

occupied by one player, and the ball occupies the same cell as

one of the players. Each iteration, plays can choose an action

from up, right, down, left and stand. The possession of the ball

is given randomly to the agent or the opponent at the

beginning of the game.

The player’s objective is to bring the ball into the

opponent’s goal (right for the agent and left for the opponent),

and get a score of +1. When a player with the ball wants to

move to a cell occupied by another player, the player loses the

ball and the move fails. Any action that causes the player to go

out of bounds is ignored. The end condition of the game is that

any player brings the ball into the opponent’s goal or the

player’s steps reach the limit. After the game, the players’

position and the possession of the ball are reset.

B. Experimental Setup

In this section, we compared the performance differences

of OMQ(λ) with Minimax-Q, Minimax-Q(λ), Minimax-QS,

HAMMQ, and OM. A sequence of 100 sessions was run for

each algorithm, and each session consists of 700 matches of

10 games.

The parameters used in every algorithm are the same. The

player who scores the goal receives a reward +1 from the

environment. The learning rate α was initialized to 1.0 and

decayed at a rate of 0.9999954 for each iteration. The

exploration rate ɛ was 0.2 and the discount factor γ was 0.9.

The values of the above parameters are identical to those used

in [3]-[6]. The Q values of all (s,a,o) tuples and the value

functions V(s) of all states are initialized to 0. The maximum

steps for every player were set to 15. For Minmax-QS, the

linearly decreasing spreading function was identical to [4],

where σt(s,a,o,si,ai,oi)=gt(s,si)=τd, τ=0.7, and d=1. For

algorithms Minimax-Q(λ) and OMQ(λ), λ=0.05. For

HAMMQ, ===1, the heuristics suggested action was

defined as the direction in which the player attacks (i.e., left or

right), ignoring the state of another player.

Evaluation 1: The purpose of the first set of experiments

was to assess the performance of the 6 algorithms versus a

random opponent, i.e., the agent was a player using an RL

algorithm mentioned above, and the opponent chose action

randomly. We calculated the average accumulated number of

goals scored by the agent from 700 matches, over 100

sessions.

Evaluation 2: The purpose of the second set of

experiments was to assess the performance of the OMQ(λ)

agent against the opponent using multi-agent RL algorithm. In

this paper, we used Minimax-QS, which performed

excellently in evaluation 1, as the opponent of OMQ(λ). For

comparison, we also employed the Minimax-Q,

Minimax-Q(λ), Minimax-QS and HAMMQ agents to

International Journal of Modeling and Optimization, Vol. 9, No. 3, June 2019

142

compete with the Minimax-QS opponent respectively. We

calculated the average cumulative number of goal difference

(i.e., the difference between the number of goals and the

number of goals lost) got by the agent from 700 matches, over

100 sessions.

C. Results Analysis

Experimental results of evaluation 1 are shown in Fig. 2,

Fig. 3 and Table I. Overall, OMQ(λ) converges fastest and has

the highest cumulative goals in the experiments. Fig. 2

presents the 4 best among the 6 algorithms, which are

Minimax-QS, HAMMQ, OM, and OMQ(λ). The agent using

OM closed to the performance of the HAMMQ agent around

400 matches. However, the Minimax-QS agent only

approached the performance of the HAMMQ agent after 600

matches. In the experiments, no algorithm exceeds the

average goals (over 100 sessions) of the OMQ(λ) agent in 700

matches. The OMQ(λ) agent scored an average of around 5.7

goals at the end of matches, and the other 3 agents only got an

average of around 4.7 goals at the end of experiments. As

illustrated in Section III, the performance of HAMMQ is

strictly related to the heuristic chosen, so in practice, it

requires accurate prior knowledge in the field. It should be

noted that the heuristic chosen in this paper is not optimal. A

better heuristic function should consider how to get the ball

from the opponent.

Fig. 3 presents the learning curves of the first 50 matches

for the agent using the 6 algorithms respectively against a

random opponent. The HAMMQ agent performed best at the

beginning of the experiment benefiting from the heuristic

function. In conjunction with Fig. 2, after 8 matches, the

OMQ(λ) agent approached the performance of HAMMQ and

showed an overwhelming advantage after 100 matches.

Profiting from the eligibility trace, the OMQ(λ) agent scored

more goals than the OM agent in each match (averaged over

100 sessions) throughout the learning process. And it’s worth

noting that the symmetrical environment makes it easy to

define the spreading function, i.e., in practical applications,

finding the proper spreading function may be time consuming.

Fig. 2. Average goals of the agent using Minimax-QS, HAMMQ, OM, and

OMQ(λ) respectively versus a random opponent.

Fig. 3. Average goals (the first 50 matches) of the agent using Minimax-Q,

Minimax-QS, Minimax-Q(λ), HAMMQ, OM, and OMQ(λ) respectively

versus a random opponent.

Fig. 4. Average goal difference of the agent using Minimax-QS, HAMMQ,

and OMQ(λ) respectively versus a Minimax-QS opponent.

Fig. 5. Average goal difference (the first 120 matches) of the agent using

Minimax-Q, Minimax-QS, Minimax-Q(λ), HAMMQ, and OMQ(λ)

respectively versus a Minimax-QS opponent.

Table I. shows the cumulative number of wins of 700

matches (averaged over 100 sessions) for the agent using the 6

algorithms respectively versus a random opponent. It can be

seen intuitively that OMQ(λ) won the most in the whole

learning process, up to 3789 wins.

The second set of experimental results are shown in Fig. 4,

Fig. 5 and Table Ⅱ. Fig. 4 present average goal difference of

International Journal of Modeling and Optimization, Vol. 9, No. 3, June 2019

143

the agent using Minimax-QS, HAMMQ, and OMQ(λ)

respectively against a Minimax-QS opponent. It is worth

mentioning that these algorithms perform admirably in

evaluation 1 when competing against random opponents.

Average goal difference of the Minimax-QS agent fluctuated

at the equilibrium from the start, because its opponent also

used the same algorithm. The HAMMQ agent occupied the

upper hand at the beginning, but eventually, it was crushed by

the opponent. OMQ(λ) is the best performing learning

algorithm in this experiment. It took about 630 matches for

the Minimax-QS opponent to learn how to compete with the

OMQ(λ) agent.

TABLE I: THE CUMULATIVE NUMBER OF WINS OF RL AGENTS VERSUS A

RANDOM OPPONENT OF 700 MATCHES

Agent vs. Opponent Wins

Minimax-Q vs. random 293687 vs. 20113

Minimax-QS vs. random 295291 vs. 20014

Minimax-Q(λ) vs. random 295177 vs. 19714

HAMMQ vs. random 335541 vs. 20213

OM vs. random 344293 vs. 20213

OMQ(λ) vs. random 378966 vs. 20114

TABLE Ⅱ: THE CUMULATIVE NUMBER OF WINS OF RL AGENTS VERSUS A

MINIMAX-QS OPPONENT OF 700 MATCHES

Agent vs. Opponent Wins

Minimax-Q vs. Minimax-QS 2624102 vs. 2722101

Minimax-QS vs. Minimax-QS 277695 vs. 2695105

Minimax-Q(λ) vs. Minimax-QS 267494 vs. 268499

HAMMQ vs. Minimax-QS 235180 vs. 2564220

OMQ(λ) vs. Minimax-QS 329588 vs. 2983127

Fig. 5 shows the first 120 matches average goal difference

of the agent using Minimax-Q, Minimax-QS, Minimax-Q(λ),

HAMMQ, and OMQ(λ) respectively versus a Minimax-QS

opponent. Throughout the learning process, the curves of the

agent using Minimax-QS and Minimax-(λ) are similar, but the

Minimax-QS agent is slightly better at the beginning. The

Minimax-Q agent performed worst at the first 50 matches and

caught up the Minimax-QS agent after about 450 matches. In

conjunction with Fig. 4, agents using HAMMQ performed

best in the first 100 matches and got the largest goal

difference (averaged 4.2 over 100 sessions), but after 100

matches, the advantage was recovered by the Minimax-QS

opponent and then overtaken after 200 matches. It can be seen

from the curves that the OMQ(λ) agent also got advantages at

the initial stage, and maintained the longest time.

Table Ⅱ. shows the cumulative number of wins of 700

matches (averaged over 100 sessions) for the agent using the 5

algorithms respectively versus a Minimax-QS opponent.

Benefiting from opponent modelling and TD(λ), the OMQ(λ)

agent performed best among 5 algorithms.

It must be noted that the results presented in this paper are

far from convergence, and the values of parameters here are

designed for comparative experiments.

V. CONCLUSION

This paper contributed the OMQ(λ) algorithm for

multi-agent RL, which combines fictitious play in game

theory and eligibility trace in RL. Core ideas and the

algorithm of OMQ(λ) were elaborated. A series of

comparative experiments were conducted in the classical

soccer domain, and the results showed that our algorithm

achieved the best performance in against with a random

opponent and a Minimax-QS opponent without any

domain-dependent prior knowledge. While ensuring learning

efficiency, OMQ(λ) is more convenient and versatile,

compared to algorithms that require prior knowledge.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction

MIT Press, 1998, ch. 1, p. 17.

[2] W. J. C. H. Christopher and P. Dayan. “Q-learning,” Machine

Learning, 1992, pp. 279-292.

[3] L. L. Michael, “Markov games as a framework for multi-agent

reinforcement learning,” Machine Learning, 1994, pp. 157-163.

[4] H. C. R. Carlos and A. H. R. Costa, “Experience generalization for

concurrent reinforcement learners: The minimax-QS algorithm.” in

Proc. International Joint Conference on Autonomous Agents and

Multiagent Systems, 2002, pp. 1239-1245.

[5] B. Bikramjit, S. Sen, and J. Peng, “Fast concurrent reinforcement

learners.” in Proc. International Joint Conference on Artificial

Intelligence Morgan Kaufmann Publishers Inc, 2001, pp. 825-830.

[6] A. C. B. Reinaldo, C. H. C. Ribeiro, and A. H. R. Costa, “Heuristic

selection of actions in multiagent reinforcement learning.” in Proc.

International Joint Conference on Artificial Intelligence, Hyderabad,

India, 2007, pp. 690-695.

[7] A. C. B. Reinaldo et al., “Heuristically-accelerated multiagent

reinforcement learning,” IEEE Transactions on Cybernetics, vol. 44,

no. 2, 2014, p. 252.

[8] F. Drew and D. K. Levine, The Theory of Learning in Games, The

Theory of Learning in Games, MIT Press, 1998, pp. 177–198.

[9] W. Uther and M. Veloso “Adversarial reinforcement learning,” Studia

Mathematica, 1997, vol. 12, pp. 143-144.

[10] J. R. Stuart and P. Norvig, “Artificial intelligence: A modern

approach,” Applied Mechanics and Materials, 2010, pp. 2829-2833.

[11] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-learning,”

Machine Learning, vol. 8, 1992, pp. 279-292.

[12] K. Miyasawa, “On the convergence of learning process in 2x2 non zero

person game,” Research Memo, Princeton University, 1961.

Hao Chen was born in Shandong province, China,

1993. He received the bachelor’s degree in electrical

engineering and automation from the College of

Electrical Engineering, Hebei University of

Technology (HEBUT), Tianjin, China, in 2015, and

the master’s degree in control science and engineering

from the College of Mechatronics and Automation,

National University of Defense Technology (NUDT),

Hunan, China, in 2017.

 He is currently a Ph.D. student at the College of Artificial Intelligence,

NUDT, China. His current research interests include mission planning,

reinforcement learning, and intelligent confrontation simulation.

Jian Huang was born in Zhejiang province, China,

1971. She received the B.S. degree in control science

and engineering from the Department of Automatic

Control, NUDT, Hunan, in 1994, where she received

the master’s degree and the Ph.D. degree in control

science and engineering from the College of

Mechatronics and Automation, NUDT, in 1997 and

2000, respectively.

 She now is a professor at the College of Artificial

Intelligence, NUDT. She has been a visiting professor in Technische

Universiteit Delft. She is the co-author of the book: HLA simulation system

integrated design (Changsha, Hunan, National University of Defense

Technology Press, 2008). Her current research interests include mission

planning, system simulation, and artificial intelligence.

 Prof. Huang was selected as an innovation talent in the military in 2012.

She won the first prize and the second prize of the military science and

technology advancement for four times. Prof. Huang was awarded the

National March Eighth Red Flag Bearer and the second-class post allowance

for outstanding professional.

Author’s formal

photo

International Journal of Modeling and Optimization, Vol. 9, No. 3, June 2019

144

Jianxing Gong was born in Fujian province, China,

1976. He received the B.E. degree in control science

and engineering from Harbin Institute of Technology,

Heilongjiang, China, in 2001, and got the master’s

degree and Ph.D. degree in control science and

engineering from the College of Mechatronics and

Automation, NUDT, in 2003 and 2007, respectively.

He now is an associate professor at the College of Artificial Intelligence,

NUDT. His current research interests include system modelling, system

simulation, and mission planning.

International Journal of Modeling and Optimization, Vol. 9, No. 3, June 2019

145

