
  

  

Abstract—As the application of big data becomes more and 

more popular, machine learning algorithms are changing with 

each passing day, and the models produced by machine learning 

are increasingly diversified. The focus of big data applications 

has gradually shifted to the prediction and inference of models. 

How to choose the most suitable model for enterprise application 

scenarios among many machine learning models has become a 

topic of research that has attracted much attention. Ensemble 

methods have been proposed to discover best model by multiple 

training phase. Studies of finding best combination within 

multiple modes are still few. Configuring different machine 

learning models with appropriate parameters and looking for 

parameters is an NP-hard problem, which requires an 

optimization algorithm. This study proposes to apply 

differential evolution algorithm to integrate multiple trained 

machine learning models into an appropriate model. In this 

paper, the regression model is taken as an example and the 

differential evolution algorithm is compared with the particles 

swarm optimization algorithm. The results show that the 

differential evolution algorithm has better performance. 

 
Index Terms—Big data, differential evolution, machine 

learning, optimization.  

 

I. INTRODUCTION 

Big data applications consist with four major steps: data 

collection, data preparation, model training and validation, 

model inference. (Fig. 1) Since more and more machine 

learning algorithms have developed for model training, the 

model selection and performance evaluation have become the 

significant role before model inference for production 

applications. 

 

 
Fig. 1. The major steps of big data applications. 

 

Ensemble learning was originally proposed for 

classification [1]. The basic concept of ensemble learning is 

that the integration of a number of experts to make decisions 

in some specific ways (such as voting method, weighting 

method), the results will be better than only a single expert. 

Because each expert's expertise is different, the combined 

mechanism allows the experts to complement each other and 

get better results. Ensemble learning focus on training data 

replacement or not to obtained more efficient model. Sagi and 
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Rokach introduced the concept of ensemble learning, reviews 

traditional, novel and state‐ of‐ the‐ art ensemble methods 

[2]. 

Since model selection is selecting the best performance 

model from different machine learning models, models 

selection is different thinking from ensemble methods that is 

choosing the best result from different approaches (ex. 

bagging, boosting) with one model.  

With the advent of big data, more and more machine 

learning models will be produced and applied to production, 

but the past literature mostly focuses on ensemble methods, 

and the literature of model selection is relatively rare. The 

purpose of this paper is to explore the best use of the 

algorithm to find the optimal combination solution of multiple 

machine learning models. 

This study applied different algorithm with same training 

data, then finding the optimal parameters combination via 

differential evolution methods. Three different famous 

datasets were employed to verify the integrated model and the 

outcomes performed better than any single machine learning 

model. The rest of this paper is arranged as follows. In section 

II, related works are reviewed. Research methods are 

described in section III. Section IV reveals the results of the 

experiments. At last, conclusion is presented in Section V. 

 

II. RELATED WORKS 

There have been numerous studies in the literature dealing 

with regression including generalized linear model, rigid 

regression and robust regression. In addition, a lot of research 

works have been conducted in the fields of differential 

evolution and particle swarm optimization. This section 

provides review of these works. 

A. Regression 

In statistic, the Generalized Linear Model (GLM) is a 

flexible linear regression model. This model allows the 

distribution of the deviation of the number of strains to have 

other distributions than the normal distribution. This model 

assumes that the distribution function of the random variables 

measured by the experimenter and the systematic effects (ie, 

non-random effects) in the experiment can establish a 

function that can explain its correlation via a link function. 

The representative literature of the generalized linear model is 

an outline of the principles, calculations (such as the most 

approximate estimators) and practical applications of 

generalized linear models [3]. 

Ridge regression analysis is a technique for the presence of 

multiple collinear (automatically independent variables) data. 

In the case of multicollinearity, although the ordinary least 
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squares (OLS) is fair to each variable; they vary widely, 

shifting the observations away from the true values. Ridge 

regression reduces the standard error by adding a degree of 

deviation to the regression.  

Ridge regression solves the multicollinearity problem by 

the contraction parameter λ (lambda). The assumption of this 

regression is similar to the least squares regression, except for 

the constant term. It shrinks the value of the correlation 

coefficient but does not reach zero, which indicates that it has 

no feature selection function. This is a regularization method 

and uses L2 regularization. 

The models for linear regression in the previous article 

were all based on the least squares method. However, when 

there are many outliers in the data sample points, the impact 

of these anomalies on the regression model will be very large, 

and the traditional regression method based on least squares 

will not be applicable. 

Though, you can consider pre-processing the data and 

eliminating those abnormal points before doing regression 

analysis. However, in the actual data, there are two problems: 
Outliers are not well defined, and there is no good standard 

for determining which points are outliers. 

Even if the abnormal point is determined, are these points 

that are determined to be abnormal; is it really the wrong data? 

It is very likely that this seemingly anomalous point is the data 

of the original model. If this is the case, then the points of 

these anomalies will carry a large amount of information of 

the original model, and a large amount of information will be 

lost after the culling. 

Robust regression is an algorithm used to replace the least 

squares method when the least squares method encounters the 

above-mentioned data sample points with abnormal points. In 

addition, robust regression can also be used for outlier 

detection, or to find those sample points that have the greatest 

impact on the model. 

B. Differential Evolution 

Differential evolution (DE) is a stochastic, 

population-based optimization algorithm that developed to 

optimize real parameter, real valued functions and was firstly 

introduced by Storn and Price in [4]. Fig. 2 is the standard 

flow chart of differential evolution.  

DE has the advantage of incorporating a relatively simple 

and efficient form of self-adapting mutation. The population 

size does not need to be overly high, and smaller populations 

can be considerably more efficient. With its ease of 

implementation and proven efficiency, DE is ideally suited to 

both novice and experienced users wishing to optimize their 

simulation models [5].  

Through two decades development, DE has improved by 

different configuration including population, mutation and 

cross rate to enhance the performance of this state-of-the-art 

evolution algorithm [6]. An improved version of the 

differential evolution (DE) based on the orthogonal design 

(ODE) was proposed that makes the DE faster and robust [7]. 

Simulations result shoed that the ODE can find the 

near-optimal solution in all cases and outperforms other 

state-of-the-art evolutionary algorithms in terms of the quality, 

stability as well as computational cost. Another enhanced 

differential evolution optimization algorithm has been 

developed [8]. The enhancement lies in reducing the number 

of control parameters from three (NP, F and CR) to two (NP 

and F), thereby simplifying the tuning process. Comparison is 

made with the original DE and other famous DE algorithm, 

and the results demonstrate the superiority of the proposed 

approach for most of the functions considered. Elsayed and 

Sarker proposed an adaptive configuration of differential 

evolution algorithms for solving big data optimization 

competition problems [9]. The proposed algorithm 

automatically determines the best variant and shows the 

superiority compared with the baseline algorithm. Piotrowski 

briefly reviews the opinions regarding DE population size 

setting and verifies the impact of the population size on the 

performance of DE algorithms [10]. Based on the extensive 

experimental results the use of adaptive population size is 

highly recommended, especially for higher-dimensional and 

real-world problems. 

The study of Das and Suganthan attempted to provide an 

overall picture of the DE [11]. It discussed the different 

schemes of parameter control and adaptation for DE and 

extended review of the modifications of DE for tackling 

constrained, multi-objective, uncertain, and large-scale 

optimization problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2. Flow chart of standard differential evaluation. 

 

C. Particle Swarm Optimization 

PSO is an evolutionary technique [12] for solving 

unconstrained continuous optimization problems. The PSO 

concept is based on observations of the social behavior of 

animals. The population consisting of individuals (particles) 

is assigned a randomized initial velocity according each 

individual’s own movement experience and that of the rest of 

the population. The relationship between the swarm and the 

particles in PSO is similar to the relationship between the 

population and the chromosomes in the GA.  

In PSO, the problem solution space is formulated as a 

search space. Each position of the particles in the search space 

is a correlated solution of the problem. Particles cooperate to 

determine the best position (solution) in the search space 

(solution space).  

Reference [13] proposes the application of particle swarm 
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optimization (PSO) to the problem of full model selection, 

FMS, for classification tasks.  Results obtained in the 

framework of a model selection challenge show the 

competitiveness of the models selected with PSO. In 

predictive maintenances, the estimation of remaining useful 

life (RUL) of aircrafts engines which affects their 

maintenance planning has been investigated by support vector 

regression optimized by PSO [14]. The experimental results 

show the efficiency of the proposed approach.  

All these approaches have demonstrated the advantages of 

the PSO method: simple structure, immediate applicability to 

practical problems, ease of implementation, quick solution, 

and robustness. 

Genetic algorithms, particle swarm optimization, and 

differential evolution algorithms are all branches of 

evolutionary algorithms. Many scholars have studied these 

algorithms, and through continuous improvement, the 

performance of the algorithms has been improved and the 

application fields have been expanded. Therefore, it is 

necessary to discuss these algorithms. Features, for different 

application areas and algorithm adaptability, it is very 

meaningful to recommend different algorithms for use. In the 

literature, the author conducted a series of experimental 

analysis on DE, EA, PSO for the 34 commonly used 

benchmark functions, and discussed the optimal solution for 

various algorithms. Through experimental analysis, the DE 

algorithm obtained the optimal performance. Moreover, the 

algorithm is relatively stable, and the inverse operation can 

converge to the same solution; the convergence speed of the 

PSO algorithm is second, but the algorithm is unstable, and 

the final convergence result is easily affected by the parameter 

size and the initial population; the convergence speed of the 

EA algorithm is relatively slow, but in the In terms of dealing 

with noise problems, EA can solve it well and DE algorithm is 

difficult to deal with this noise problem. 

 

III. METHODS 

There are two stages of experiments in this study. In the 

first stage, three different regression methods are employed to 

train models with selected datasets using R software.  The 

dataset is divided into two parts: one is 70% of data as training 

set and the other is remaining 30% as testing set. The three 

different regression models are evaluated by three metrics: r 

squared, mean absolute error (MAE) and root mean squared 

error (RMSE). In the second stage, the differential evolution 

algorithm is applied to find the best parameter combination of 

the three models trained in the first stage. The performance 

evaluation of parameter combination includes r squared, 

MAE and RMSE.  

The benchmark datasets applied to experiments are from 

UCI machine learning repository include Combined Cycle 

Power Plant (CCPP) and Concrete Compressive Strength 

(Concrete) [15]. Another dataset is Boston Housing (Boston) 

from Kaggle [16].  

The experiment environment ran on PC of i5-6400 CPU 

2.7GHz with 4GB RAM. 

A. Model Training 

Model Training of three different regression methods in the 

first step was conducted by RStudio. Fig. 3 presented the 

example code of R to execute data preparation and model 

training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. R code of model training CCPP 

After running the first stage, we should get the data table 

for each different dataset. as Table I. 

 
TABLE I: THE FIRST TEN RECORDS OF APPLYING TRAINED MODEL 

 Actual Glm Ridge Robust 

1 79.99 53.46346 45.0694 54.84891 

2 61.89 53.73476 44.87407 54.94491 

3 40.27 56.81259 46.03934 100.8365 

4 41.05 67.66368 50.71598 128.4022 

5 44.3 60.91206 44.79399 118.7823 

6 47.03 26.85992 32.92445 38.89255 

7 43.7 68.42076 51.65931 129.5637 

8 36.45 29.92792 35.06954 31.77787 

9 45.85 19.77815 29.87232 20.90228 

10 39.29 31.44208 36.9562 34.10077 

 

B. Exploring Optimal Solution 

Based on the outcomes of the first stage, the optimal 

algorithm is applied to exploring the optimal combination of 

three different regression models. Differential evolution was 

conducted to search weights combination for the actual value 

of each data in the datasets. Parameter setting of differential 

evolution is also considered in this study. There are three 

parameters should be set while conduct differential evolution 

including Population, F and CR. The parameter setting of the 

experiments is as Table II and the pseudocode of differential 

evolution is as Fig. 4. 

TABLE II: PARAMETER SETTING OF DE 

Parameter Value 

Iteration 20, 40, 60, 80 

Population 50, 100, 150, 200 

F 0.2, 0.4, 0.6, 0.8 

CR 0.2, 0.4, 0.6, 0.8 

TABLE III: PARAMETER SETTING OF PSO 

Parameter Value 

Iteration 20, 40, 60, 80 

Population 50, 100, 150, 200 

W 0.2, 0.4, 0.6, 0.8 

C1 0.2, 0.4, 0.6, 0.8 

C2 0.2, 0.4, 0.6, 0.8 

ccpp <- read.csv("C01.csv") 

set.seed(999) 

ind = sample(2, nrow(ccpp), replace = TRUE, prob=c(0.7,0.3)) 

ccpp_train = ccpp[ind ==1, ] 

ccpp_test = ccpp[ind ==2, ] 

avg_class=mean(ccpp_test$PE) 

ccpp_test$sst <- (ccpp_test$PE-avg_class)^2 

lm2 <- glm(PE ~., data=ccpp_train) 

summary(lm2) 

ccpp_test$glmpred <- predict(lm2, ccpp_test) 

ccpp_test$glmssr<-(ccpp_test$glmpred-avg_class)^2 

sum(ccpp_test$glmssr)/sum(ccpp_test$sst) 

ccpp_test$glmabse <- abs(ccpp_test$glmpred-ccpp_test$PE) 

mean(ccpp_test$glmabse) 

ccpp_test$glmsqre <- (ccpp_test$glmpred-ccpp_test$PE)^2 

mean(ccpp_test$glmsqre) 
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Fig. 4. Pseudocode of differential evolution. 

 

PSO is the algorithm for comparison in this experiment. 

Table III illustrates the parameter setting of PSO. The 

pseudocode of PSO is as Fig. 5 and implemented in Python to 

execute that is the same as DE. 
 

Fig. 5. Pseudocode of differential evolution. 

 

IV. RESULTS 

The benchmark dataset of this study are Boston housing, 

Concrete Compressive Strength and Combined Cycle Power 

Plant. The Boston data frame has 506 rows and 14 columns. 

The target field is median value of owner. The Concrete 

dataset contains 1030 instances and 9 attributes, while the 

output variable is the concrete compressive strength in MPa. 

The CCPP dataset contains 9568 data points collected from a 

Combined Cycle Power Plant over 6 years (2006-2011), when 

the power plant was set to work with full load. Features 

consist of hourly average ambient variables Temperature, 

Ambient Pressure, Relative Humidity and Exhaust Vacuum to 

predict the net hourly electrical energy output of the plant. 

The datasets information is listed in Table IV. 

TABLE IV: SUMMARY OF DATASETS 

Dataset Instances # Attributes # 

Boston 506 14 

Concrete 1030 9 

CCPP 9568 4 

 

In the comparison results of Boston dataset (Table V), DE 

can reach the performance of general linear model. However, 

PSO outperforms of MAE in average. 

DE presented excellent outcomes in the comparison of 

concrete dataset (Table VI). General linear model got the 

same result of DE in RMSE. 

TABLE V: THE COMPARISON RESULTS OF BOSTON DATASET 

Boston R-squared MAE RMSE 

GLM 0.740644 3.270869 4.679184 

Robust 0.474351 3.169009 5.110834 

Ridge 0.645192 3.252792 4.683165 

DE    

Avg. 0.739277 3.132219 4.679254 

Min 0.595747 3.131343 4.679184 

Max 0.740644 3.134232 4.680204 

PSO    

Avg. 0.740570 3.131470 4.679966 

Min 0.740247 3.131343 4.679184 

Max 0.740644 3.135852 4.692176 

 

TABLE VI: THE COMPARISON RESULT OF CONCRETE DATASET 

Concrete R-squared MAE RMSE 

GLM 0.672419 8.214343 10.353609 

Robust 0.747838 8.941826 15.644075 

Ridge 0.653029 10.011450 12.346823 

DE    

Avg. 0.781034 8.087327 10.360034 

Min 0.563289 8.085100 10.353609 

Max 0.837150 8.125401 10.535270 

PSO    

Avg. 0.609891 8.091543 10.39484 

Min 0.561476 8.077216 10.35361 

Max 0.615520 8.206088 10.69349 

 

The comparison of Table VII showed that DE is superior to 

PSO in two of three metrics, while GLM performs better than 

DE in R-squared. 

TABLE VII: THE COMPARISON RESULT OF CCPP DATASET 

CCPP R-squared MAE RMSE 

GLM 0.960641 3.625216 4.557126 

Robust 0.951230 3.625299 4.557127 

Ridge 0.959462 3.617954 4.560789 

DE    

Avg. 0.925531 3.618046 4.557126 

Min 0.297427 3.616068 4.557126 

Max 0.928696 3.620319 4.557127 

PSO    

Avg. 0.928667 3.617887 4.557132 

Min 0.928275 3.616109 4.557126 

Max 0.928696 3.620619 4.557203 

 

V. CONCLUSION 

This study attempts to find the optimal combination of 

machine learning models by using the optimization algorithm. 

The experimental method is to use the regression algorithm. 

Firstly, three regression algorithms are used to calculate the 

estimated values of each data of three different data sets. 

Secondly, the weight combination closest to the actual value 

is computed by the optimization algorithm with three different 

estimates in each data set. The algorithms for performance 

measurement are R-squared, MAE and RMSE. The results of 

the comparison provide the evidence that DE performs better 

than PSO in general. Future studies can compare other 

algorithms or find the optimal combination of other machine 

learning algorithms (ex, classification or clustering). 
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Initialize the populating, setting F and CR 

Do while not stop criteria 

    For each individual j in the population 

       Choose three numbers r1, r2, r3 where 1≦  r1, r2, r3 ≦ N 

       Generate random integer irand  

       For each parameter i  

            

           if rand()≦  CR or j=irand than  

           else  

       if  

Loop 

 

Initialize a population of particles with random positions. 

for each particle k do 

Evaluate Xk (the position of particle k) 

Save the pbestk to optimal solution set S 

end for 

Set gbest solution equals to the best pbestk  

repeat 

Updates particles velocities 

for each particle k do 

Move particle k 

Evaluate Xk 

Update gbest, pbest and S 

end for 

until maximum iteration limit is reached 
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