
  

  

Abstract—From the perspective of vehicle driving, the 

relationship between driveline efficiency and fuel efficiency is a 

trade-off. Moreover, there are differences in each driver’s 

preference in the ranges of driveline and fuel efficiency. For 

these reasons, the optimization between driveline efficiency and 

fuel efficiency is applied by considering personal driving 

characteristics. A study using a continuously variable 

transmission (CVT) control algorithm has advantages because 

continuous gears have a lot of freedom for control. Therefore, 

the target probability, which is related to the driving 

characteristics, is applied to the CVT gear shifting control 

algorithm based on a CVT vehicle model and verified.  

 
Index Terms—Controller, CVT, driveline efficiency, 

economy mode, fuel efficiency, modeling, personal driving 

characteristic, sporty mode. 

 

I. INTRODUCTION 

From the perspective of powertrain system development, 

increases in driveline and fuel efficiency are the most 

important factors to satisfy intensified low pollution 

restrictions and the demands of customers [1]-[3]. In the 

powertrain research field, there are efforts to increase the 

driveline and fuel efficiency. Power management system 

(PMS) technology, an integration control technique for 

engine and transmission, provides a dramatic improvement 

of driveline and fuel efficiency through the control of engine 

speed and torque. In the study of PMS technology, the 

driver’s driving characteristics are considered predominant 

factors in developing a control algorithm for the 

transmission-shifting ratio. 

The problem is that there is a trade-off relationship 

between driveline efficiency and fuel efficiency regarding the 

control of the transmission-shifting ratio [4]. To optimize this 

relationship, a specific standard should be devised. However, 

it is difficult to select an optimum value that exactly fits the 

driving characteristics of all drivers. Before such a selection 

can be predicted, a transmission control algorithm that can 

apply driving characteristics should be developed based on a 

vehicular model. 

To develop the transmission control algorithm, adaptive 

transmission control (ATC) is generally considered to reflect 

the driving characteristics. To develop an ATC, an evaluation 

of the driving characteristics, driving conditions, and 

environmental decisions are seriously considered indexes of 
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the driving characteristics. However, such a scoring is not 

objective and the ATC standards can easily be changed when 

the target vehicle is changed because it also changes the 

driving characteristics. Therefore, a more exact and universal 

(generally applicable) control algorithm should be developed 

using a probability control algorithm.  

In this study, a probability control algorithm is devised to 

increase the universality of a target probability. This is a 

proportion between driving with optimized driveline 

efficiency (sporty mode) and with optimized fuel efficiency 

(economy mode) that is used to apply the driving 

characteristics. The probability control algorithm, which is 

related to the shifting ratio control algorithm, was developed 

based on a continuously variable transmission (CVT) vehicle 

model that allows a designer to control the effect of 

optimization on driveline and fuel efficiency. 

In Section II of this paper, the development of a CVT 

vehicular model based on a powertrain model and a vehicle 

and road loads model is described to verify the control logic 

in the simulation environment. In Section III, the target 

probability tracking controller (probability control algorithm), 

which allows the vehicle to reflect the driver’s driving 

characteristics, is described.  

 

II. VEHICULAR MODEL BASED ON A VEHICLE TEST 

To study the control algorithm, a vehicular model was 

developed. The model comprises the powertrain model and 

vehicle and road load model because the major consideration 

is longitudinal dynamics [5]. An automatic transmission (AT) 

vehicular model was developed using dynamic formulas 

derived from the application of commercialized AT vehicle 

test results. Based on the AT vehicular model, a new CVT 

vehicular model was developed and verified. 

 

 
Fig. 1. Simulation environment of the AT vehicular model. 

 

Fig. 1 shows the simulation environment of the AT 

vehicular model using Matlab/Simulink tool. In the figure, 
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the top left block in the simulation environment is the 

powertrain model, which includes the engine map, torque 

converter model, and transmission-shifting algorithm based 

on the test results [6]. The right block in the simulation 

environment is the vehicle and road load model, which 

includes the surroundings and vehicle information. The 

formulas of the two models are as follows [7]. 
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where 
e tf wN = , 

eI  is the engine inertia [kgm2]; 
e  is the 

angular acceleration of the engine (rad/s); 
eT  is the engine 

torque (Nm); 
tI  is the transmission inertia (kgm2); 

dI  is the 

differential gear inertia (kgm2); 
fN  is the gear ratio of 

differential gear (-); 
wI  is the wheel inertia (kgm2); 

w  is the 

angular acceleration of the wheel (rad/s); r is the wheel 

effective radius (m); and 
xF  is the traction force (N). Here, 

xF is the traction force (N); xR  is the rolling resistance (N); 

AD  is the drag force (N); xa  is the vehicle acceleration 

(m/s2);   is the road slope (rad); W  is the weight of the 

vehicle (kg); and g is the acceleration of gravity (m/s2).  

Formula (1) describes the powertrain dynamics. In this 

formula, the engine power is transferred to the drive wheels. 

Formula (2) describes the vehicle and road load dynamics. 

The formula shows how the power from the powertrain 

dynamics is used to calculate the actual acceleration of the 

vehicle. Therefore, in Fig. 1, the AT vehicular model using 

these formulas is described, and the specifications of an 

actual commercial vehicle are applied to the model. The 

specifications of the commercialized vehicle are as follows. 

 
TABLE I: SPECIFICATIONS OF A COMMERCIAL VEHICLE 

 
 

Table I shows the parameters of the vehicular model that 

describes the actual commercialized vehicle. As shown in Fig. 

1, the parameters were applied to the model using the 

Matlab/Simulink tool. 

To verify a longitudinal vehicle model, its maximum error 

and correlation of longitudinal speed are generally compared. 

Therefore, by comparing the vehicle test results, the 

vehicular model was verified using the output (the maximum 

error and correlation of the longitudinal speed) with the same 

input of throttle position corresponding to the accelerator 

position sensor.  

 
(a) 

 
(b) 

Fig. 2. AT vehicular model verification. 

 

As shown in Fig. 2(a), the same input of throttle position, 

which was used in the vehicle test, is used in the simulation. 

From this condition, the graph shows that the longitudinal 

speed of the test result and that of the vehicular model 

simulation are similar. To show the quantitative results, the 

maximum error and correlation were used, and the 

correlation formula used is as follows.  
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Formula (3) is Pearson’s product-moment coefficient of 

correlation (Pearson’s r) [8]. In this formula, the r-square 

value is the correlation value. On the basis of these results, 

the AT vehicular model was developed with a maximum 

error of 2.93 km/h and correlation of 99.68%. 
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Fig. 3. Advantages of a CVT. 

 

As shown in Fig. 3, a CVT can continuously change the 

gear ratio without shifting shock and shifting loss. Hence, 

CVT is more controllable than AT, and this makes it useful 

for taking an optimal value of driveline or fuel efficiency. 

The CVT vehicular model was developed based on the 

previously developed AT vehicular model, and the shifting 

schedule was created using the AT shifting schedule. Then, 

the CVT vehicular model was verified by comparing it with 

the AT vehicular model. 

 

 
(a) 

 
(b) 

Fig. 4. Shifting scheduling of a CVT vehicle. 

 

The AT shifting map is shown in Fig. 4(a). The gear ratio 

discretely changes at 4.714 (first gear ratio), 2.341 (second 

gear ratio), and 0.974 (third gear ratio). As shown in Fig. 4(b), 

the discrete shifting values were then interpolated to make 

them continuous because the CVT shifting map should be 

continuous. 

To verify the reactions of the CVT vehicular model, the 

same input used for the AT vehicular model was applied, and 

the outputs of the AT and CVT vehicular models were 

compared (see Fig. 5). The current gear graph shows that the 

AT vehicular model is discretely shifting and the CVT 

vehicular model is continuously shifting. The engine speed 

and transmission torque graphs show that the shifting shock 

and shifting loss of the CVT vehicular model are lower than 

those of the AT vehicular model. In addition, the longitudinal 

speed of the CVT vehicular model is slightly higher than that 

of the AT vehicular model because of less energy loss. In this 

way, the CVT vehicular model was developed and verified. 

 

 
(a) 

 
(b) 

Fig. 5. CVT vehicular model verification. 

 

III. PROBABILITY CONTROL ALGORITHM FOR THE CVT 

VEHICULAR MODEL 

Based on the CVT vehicular model, a probability 

controller that can select driving in the sporty mode (for 

driveline efficiency) or driving in the economy mode (for fuel 

efficiency) was developed. A maximum engine performance 

line and minimum fuel consumption line were drawn on each 

engine map, and a brake-specific fuel consumption map was 

the result of an engine test. Then, each line was optimized 

using “B. Bonsen’s CVT ratio control strategy optimization,” 

[9] which considers the physical limitations of the vehicle. To 

verify the tracking ability of the control algorithm, the 
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optimized lines were used as reference lines. The target 

probability, which is a proportional line between the two 

optimized lines, was used as the ultimate reference line for 

the tracking control (probability control) algorithm. This 

control algorithm was verified using a case in which the 

personal driving characteristic was predicted. 

 

 
Fig. 6. Schematic block diagram of the CVT model control algorithm. 

 

Fig. 6 shows the schematic block diagram of the 

probability control algorithm. On the block diagram, the 

green boxes and lines indicate the CVT vehicular model, 

which includes the CVT shifting map. The blue boxes and 

lines indicate the control algorithm, which is composed of the 

gear ratio feedback algorithm using the PI control. The red 

box and lines indicate the prediction algorithm, which 

transfers the target probability to the probability controller. In 

the prediction algorithm, data from a specific driver who 

tested the vehicle were used to apply the personal driving 

characteristic used for the verification. 

 

 
(a) 

 
(b) 

Fig. 7. Engine map table (a) and BFSC map table (b). 

Fig. 7 shows the maximum engine performance and 

minimum fuel consumption lines drawn on each engine map, 

and the BFSC map, which is the result of an engine test. 

BFSC refers to the fuel consumption per hour ( [ / ]eB g h ) in 

relation to 1 kW of power, and its unit is 
3[ / ]eb Nm kWh . 

 

 
(a) 

 
(b) 

Fig. 8. Optimized driving efficiency (a) and fuel efficiency (b) line. 

 

The lines in Fig.7 are plotted in Fig. 8 as dotted lines; 

however, there were physical limitations in applying the lines. 

For example, when the throttle position changed less than 5%, 

the transmission output speed should increase more than 300 

rpm. However, this case is impossible. Therefore, using B. 

Bonsen’s method, the dotted lines were optimized and shown 

as solid lines. 
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(a) 

 
(b) 

 
(c) 

Fig. 9. Sporty and economy line traction control verification. 

 

In conclusion, to track the targets in Fig. 8, a PI control 

algorithm was developed. In Fig. 9(a), the sporty line is 

traced by the CVT vehicular model simulation. In the top 

graphs of (a), the CVT vehicle is operating in the sporty mode. 

On the bottom graph of Fig. 9(b), the economy line is traced 

by the CVT vehicular model simulation. In the top graphs of 

(b), the CVT vehicle is operating in the economy mode. In 

Fig. 9(c), the probability target line is traced by the CVT 

vehicular model. Therefore, the tracking ability of the 

probability control algorithm is verified. 
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(a) 

 
(b) 

Fig. 10. Driver’s intention traction control algorithm verification. 

 

Fig. 10 shows the results from the probability controller 

with the prediction algorithm. To predict the target 

probability with the prediction algorithm, the driver’s driving 

characteristic (driving in either the sporty or economy mode) 

should be decided. In the algorithm, accelerator-pedal input 

data was monitored every 3 s. In each 3 s of data, if the 

acceleration pedal increased more than 20% within 0.8 s or if 

the acceleration pedal was > 80%, then the driving 

characteristic selected was the sporty mode. If the 

acceleration pedal was not changing more than 10% for 3 s 

and the acceleration pedal was between 10% and 80%, then 

the driving characteristic selected was the economy mode. 

Once the sporty or economy mode was selected, the next 

mode selection would be after at least 3 s. Therefore, with the 

scenario in Fig. 10(a), the mode signal is shown in the left 

graph of (b). The mode signal causes the target probability to 

change, and the CVT vehicular model is affected by the 

controller, as shown in the right graph of Fig. 10(b). In 

conclusion, the driver’s driving characteristic was applied to 

the probability control algorithm of the CVT vehicular model 

and was verified.  

IV. CONCLUSIONS 

In this study, a CVT shifting ratio control algorithm was 

developed that applied the personal driving characteristics of 

the driver as a proportion between the sporty mode and 

economy mode. For this, a seven-step process was used. On 

the basis of the test results of a vehicle with AT, an AT 

vehicular model was developed and verified. A CVT model 

was developed based on the AT model. The CVT vehicular 

model was developed and verified by comparing it with the 

AT vehicular model performance. The engine and BFSC map 

tables were derived from the engine test results. Optimized 

lines for driving for driveline efficiency (sporty mode) and 

fuel efficiency (economy mode) were developed using B. 

Bonsen’s method. The CVT shifting ratio control algorithm 

(probability controller), which applied the traction control 

that could track each optimized line, was verified. The 

predicted driver’s driving characteristic determined as a 

proportion between the sporty mode and economy mode was 

verified.  

In future works, the prediction of a driver’s driving 

characteristics will be specified, and PMS technology, 

including engine power control, will be considered. In 

addition, the PI controller will be changed to a machine 

learning control algorithm. 
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