
  

 

 

 

  

 

 

  

 

46

International Journal of Modeling and Optimization, Vol. 9, No. 1, February 2019

DOI: 10.7763/IJMO.2019.V9.682

  

  

Abstract—In recent years robots have begun to become an 

active presence in everyday life in various forms. Helpful robots 

that offer help and support to people with special needs or social 

robots that are able to interact with customers in stores. The 

basic challenges that lie in improving their utilization and 

development are that they do not interact with each other and 

cannot use the information from one to the other. This paper 

aims to present a method of how to create a low-cost Android 

operated robot in order to validate the proposed architecture for 

an Edge-Computing Cloud in which the robots can be 

interconnected in a digital society. 

 
Index Terms—Robotics, robotics-cloud, edge computing.  

 

I. INTRODUCTION 

For years robots have been slowly making their way into 

every aspect of our lives from huge scale industrial processes 

to every day around the house appliances and small gadgets. 

The unprecedented rise of the technology industry has given 

us the opportunity to make our day to day lives much easier. 

When thinking of the term robot, people associated them with 

small scale electrical humanoids that didn’t serve a purpose or 

have an impact on the lives of people besides entertainment. 

Over the years this changed, and the public opinion changed 

slowly from useless contraptions to extremely helpful 

machines. They started doing the work that humans used to do 

ex-cept they do it faster, better and they don’t get tired or 

demand raises. After workers and companies understood that 

this is the future they embraced it and started improving 

robotics technology to make them more effective, cheap and 

reliable.  

One of the main reasons that robots have gained all this 

popularity is in part that they can help with small tasks around 

the house for example automated vacuum cleaners, lights 

windows and so on, they make lives easier and public 

perception slowly changed for the better.  

The problem is that the public doesn’t realize how much 

more robots do for us; they do the work no human wants or 

can do. They handle materials and substances that are highly 

dangerous. Nowadays robots are each designed specifically 

for one task, their design and characteristics have been highly 

optimized over the years. One of the best examples of this 

phenomenon are robotic arms, which are used as all robots 

from day to day tasks as professional photography to handling 

highly volatile substances such as uranium or other 

radioactive substances without the risk of radiation poisoning. 

 
Manuscript received October 18, 2018; revised December 23, 2018.  This 

work was partially supported by the by the ROBIN 

(PN-III-P1-1.2-PCCDI-2017- 0734) project.  

Stan Ovidiu  and Liviu Miclea are with the Technical University of Cluj 

Napoca, Faculty of Automation and Computer Science, Department of 

Automation, Cluj Napoca, Romania (e-mail: ovidiu.stan@aut.utcluj.ro).  

Robotic arms have come a long way since their debut in 1954 

[1], they revolutionized the manufacturing industry, 

conceived and then patented in 1961.The first instance had 

three degrees of freedom, a hunk of metal that weighed a 

staggering 1200 kilogram and was put to use in factory 

automation in New Jersey.  

Nowadays robots are extremely varied and have a lot of 

purposes as stated earlier and due to the development of the 

technology’s robots can also collaborate, request additional 

information from existing data warehouses in Cloud 

environments [3].  Our goal is creating software and services 

modules for the use of robots in an interconnected digital 

society, enabling companies to develop complex, intelligent 

and performing products and services for these users as well 

as society as a whole. Such robot systems are based on sensors, 

which retrieve data and analyze, and higher-level information 

is derived from which rules systems are built [2]. These data 

processing and processing systems (of large size, or generated 

in high speed streams - e.g., a camera mounted on a 

stand-alone machine captures several frames per second) 

require in-creased processing and storage capabilities, which 

is why many companies prefer the use, where possible, of a 

Cloud support environment. Data is captured by such sensors, 

transferred through various wireless or wireless 

communications technologies to the Cloud, where data 

processing and retrieval are transmitted back to intelligent 

control mechanisms [4]. 

 

II. BACKGROUND 

In order to create a complex Cloud environment in which 

all the dependency based and machine learning algorithm 

firstly we design and proposed an Edge Cloud system through 

which the robots can communicate and collaborate. The 

overall architecture is presented in Fig. 1.  

 

 
Fig. 1. Proposed cloud architecture. 

 

Robots can be very different, from humanoids to intelligent 

self-driving cars or just IoT systems that collect and processes 

locally information from sensors. Each of the robots can 

Remotely Operated Robot with Live Camera Feed 

Stan Ovidiu and Liviu Miclea 



  

 

 

  

 

 

 

 

 

 

 

 

 

47

International Journal of Modeling and Optimization, Vol. 9, No. 1, February 2019  

communicate with each other if they are close enough or 

through the access points (AP). These robots generate all sorts 

of data such as equipped sensors data (light, temperature, gas, 

etc.), localization information, multimedia data, engine data, 

etc. Basically, the robots represent the Edge level of our 

architecture. In cloud, all the information’s and data 

generated by the robots are collected and stored but in the 

same time the cloud is also use in order to process the 

information’s. 

 

III. ROBOT IMPLEMENTATION 

In order to validate our concept, firstly we design a basic 

Android controlled robot with video live stream. The overall 

system is presented in Fig. 2. The Raspberry Pi camera 

provides a continuous video stream to the local wireless 

network, being hosted on port 8000 [7]. This address is used 

by the Android device to provide the operator with direct 

camera feed of the robot’s environment. The Android device 

can set a desired speed for the robot, and using the on-screen 

buttons is able to transmit to the robot system its orientation 

parameters. 

 

 
Fig. 2. System diagram. 

 

On the Raspberry Pi Zero W housed by the robot runs a 

Node.js express server application which handles 

communication between the control device through a 

RESTful API service and the Arduino Nano board through 

I2C bus serial communication. Through the received input 

commands from the Android smartphone, the server 

interprets and handles the requests accordingly by constantly 

feeding direction and speed data to the embedded device. 

Navigation parameters of the robot are updated continuously, 

its direction data being fed as long as the operator holds down 

the button for a certain direction, while motor speed is 

adjusted and tuned by a PID controller relative to the imposed 

set point from the device.  

A. Hardware Design 

The robot, as show in Fig. 3, is composed of an Arduino 

Nano ATMEGA328P board for interfacing with the hardware 

components, a L298N Dual H-Bridge for motor control, 2 

rotary encoders with infrared speed sensors to facilitate data 

acquisition for motor tuning, 2 AC5712 analog current 

sensors, a Raspberry Pi Zero W for I2C communication, and a 

camera module attached to the Raspberry Pi. DSN2596 and 

LM7805 are voltage regulators for the 2 connected 

microcontrollers. 

A LI-PO battery feeds supply voltage to the H-bridge; the 

supply can be cut at any given moment through a switch 

placed in the center of the robot. Because the 12V jumper is in 

place, the H-bridge feeds an output of 5V to power up the 

Raspberry Pi and the Arduino Nano board.  

The robot does not make use of stepper motors, and as such 

the jumpers on ENA (Motor A) and ENB (Motor B) are 

removed. Instead, the pins are connected to the Arduino to 

facilitate PWM (Pulse-width modulation) output, enabling 

DC motor speed control. 

 
Fig. 3. Block diagram of the robot. 

 

The L298N Dual H-Bridge is composed of four switching 

elements which control each individual motor through pairs 

of HIGH and LOW signals.  

By supplying the appropriate HIGH and LOW signal to the 

channel of a DC motor we can dictate the direction it will turn 

to by reversing the polarity of the DC current applied to it. For 

instance, HIGH to D4 and LOW to D5 will cause the left 

motor to reverse, while LOW to D4 and HIGH to D5 will 

cause the left motor to turn forward. 

 

 
Fig. 4. State flow diagram of the system. 

 

The corresponding control for each individual motor has 

been mapped and an appropriate finite state machine flow [6]

implemented to achieve precise navigation control at any 

given time (Fig. 4). 

To further improve the performance of the device and 

allow precise navigational control we employ the use of the 



  

 

 

 

 

 

 

48

International Journal of Modeling and Optimization, Vol. 9, No. 1, February 2019  

two PWM outputs. Taking the initial system into account, the 

DC motors employed only two possible speeds as a result of 

continuous voltage supply. The PWM comes into play by 

supplying the motor with voltage in a series of pulses, with 

wider pulses being associated with a faster turn speed, and 

narrower pulses with slower turn speeds. 

 

 

Fig. 5. PWM example at different duty cycles. 

To further improve the reliability of our system and 

accentuate its scalability for future design and implementation, 

the received speed from the control system and subsequent 

PWM signal output payload is run through a PID structure 

[[8]] and continuously computed to provide an appropriate 

speed with respect to the imposed set point. 

For acquiring the necessary motor data for controller 

tuning we employ the use of two rotary encoders that feature 

an infrared speed sensor. To this end, a python script was 

written on the Raspberry Pi device to interact with the robot 

system.  

For accurateness of the acquired data we use three different 

speed levels: low (20), medium (50), and high speed (90). In 

each of the cases, the script dictates to the robot system the 

imposed set point and a direction to navigate. The robot 

interprets the set point signal, computes the current speed with 

respect to the rotary encoder’s specifications, and transmits it 

further to the DC motor as a PWM signal. The slave device 

then responds to the Raspberry Pi with the desired speed 

readings. 

This process is repeated three times for the varying speed 

values imposed. A data sampling of 150 readings per 

individual motor was deemed sufficient for system 

identification. The device was tested on different surfaces for 

more accurate data readings and for the purpose of replicating 

real world scenarios that could impede movement such as 

rough or slippery terrain. 

The Arduino Nano ATMEGA328P is the core of the robot 

and the main microcontroller interface that manages the rest 

of the system. 

The Raspberry Pi Zero W is installed parallel to the 

Arduino Nano board and facilitates I2C bus communication 

for retrieving sensor data and sending command signals to the 

board. A Node.JS server runs locally on the Raspberry Pi, 

listening for requests from the Android device and redirecting 

them to the robot. 

The camera module transmits a live camera feed on a local 

hosted network, allowing the Android device to view the 

environment from the perspective of the robot, albeit with a 

delay. 

The DSN2596 is a voltage step-down transformer meant to 

control the output voltage to the Raspberry Pi Zero W. An 

LM7805 positive voltage regulator is used to deliver fixed 

voltage to the system, and features internal current limitation 

and thermal shutdown from overheating, overall protecting 

the system from dangerous hazards. 

The L298N Dual H-Bridge denotes the motor controller of 

the system, complete with 2 ACS712 linear current sensors (1 

for each motor) for monitoring individual motor currents.   

The rotary encoders were used for system identification in 

order to determine individual motor speed and tune them to fit 

our needs. Using the tuned data, the Arduino board is able to 

manage each motor’s speed depending on a set point imposed 

by the Android device. 

B. Software Design 

The core of the application is based on the Node.js runtime 

and the server runs on the principle of asynchronous events. 

This facilitates a clean structure for triggering specific events 

that dictate the state flow of the system. The HTTP server 

implementation is deal for listening on specific endpoints for 

incoming HTTP requests as a way to transmit complex 

payloads. 

The server manages data transmission to the robot system 

through the embedded modules. Asynchronous operations are 

exposed on the local network through specific routes. The 

server makes use of standard data parsing for maintaining a 

steady flow. Each call employs callback functionality when 

delivering successful process result payload, or handling error 

messages in the case of system failures.   

The App.js file lies at the core of the server implementation 

and constitutes the integrated modules. A detailed structure of 

the server architecture and the relationship between the 

different Node.js modules are presented in Fig. 6. 

 

 

Fig. 6. Node.js server diagram. 

1) I2C bus protocol 

I2C is a synchronous serial computer bus used for 

communication between the Raspberry Pi Zero W and the 

embedded Arduino Nano ATMEGA328P microcontroller. It 

is a multi-master, multi-slave communication protocol widely 

used for short-distance communication between an integrated 



  

 

 

 

 

49

International Journal of Modeling and Optimization, Vol. 9, No. 1, February 2019  

circuit and a microcontroller. It facilitates a bus speed of up to 

100 kb/s in standard mode and up to 400 kb/s in fast mode.  

In the project’s context, the Raspberry Pi Zero W acts as 

the master device, requesting data from the Arduino board (or 

the slave device), expecting a response. It is a relatively 

simple communication protocol feasible for our needs in 

retrieving sensor data and delivering adequate speed 

command signals from the control device. 

2) HTTP through RESTful API services 

For data transmission on a local area network, HTTP has 

proven to be reliable, flexible, and accessible. REST 

(Representational State Transfer) is an architectural style that 

aims to impose upon the protocol a set of constraints to 

facilitate easier communication between systems. In essence, 

server and application design can change in a controlled 

environment without repercussions in the operating mode of 

the system components. User interface is separated from the 

data layer, ensuring flexibility across platforms and managing 

increased scalability server side.  

It is a form of stateless protocol implementation similar to 

HTTP itself, and thus RESTful APIs integrate seamlessly. 

Because of its nature, communication relies on an exchange 

of resources and do not rely on interfacing. This difference 

ensures REST applications achieve high performance and 

scalability, as the entire client-server ecosystem is not 

affected by constant updating and reusing of resources. 

Clients communicate with servers through requests in which 

they can pass extra information through headers or pass data 

through an optional message body. The four basic request 

types are: GET (retrieve a specific resource), POST (create a 

new resource), PUT (update a resource), and DELETE 

(remove a resource). It is similar in practice to CRUD 

operations specific to applications used for database 

management. Depending on the request path and the data 

transmitted, the server sends back a response with the 

appropriate status code along with data, should the 

requirements dictate.  

For its excellent performance and scalability, RESTful API 

services facilitate an optimized client-server communication 

through resource payload exchange. 

 

 

Fig. 7. Android application diagram. The advantage of dagger in android applications is the generation of required code without the use of reflection, which 

is a slow process in general and especially memory heavy for mobile devices. It provides compile-time assurance of necessary resource allocation. 

3) Android application architecture 

Due to the intricate interaction between the lifecycle of 

Android applications and the available resources, decoupling 

of standard Java/Kotlin language from the Android specific 

classes is required to facilitate stability. This is further made 

possible through a dependency injection framework known as 

Dagger 2. 

The Dagger framework is built upon code generation and 

annotation processing for providing the necessary 

dependencies and injecting resources where it’s needed: 

@Module and @Provides through which Dagger defines the 

classes and methods that provide dependencies; 

@Component, which are higher level interfaces that can 

include multiple modules, or even other components. They 



  

 

  

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

50

International Journal of Modeling and Optimization, Vol. 9, No. 1, February 2019  

are responsible for exposing the injection target and provide 

the dependencies declared by the modules; @Inject is used to 

request dependencies from the appropriate component. 

Injected components are provided all the methods declared 

in the base modules. Dagger handles automatic 

implementation of the injected component at compile-time 

and detects potential errors, warning the developer of 

unresolved or missing dependencies.  

For handling HTTP communication to the Node.js server 

we employ the use of Retrofit, a type-safe HTTP client that 

easily bridges API to Java/Kotlin [9]. It provides additional 

functionalities like caching, request interceptors, data 

conversion factories, custom request headers and file 

downloading. Its implementation is similar to asynchronous 

events on the Node.js server where data transmission is made 

possible through exposed endpoints, and as such is ideal for 

our project.  

To facilitate abstractization of the underlying business 

logic we employ a Model-View-Presenter architecture to 

separate network calls from the View layer (in the case of 

Android applications, views are generally associated with 

Activities and Fragments). The Model layer is responsible for 

handling data flow, caching, and API requests. The Presenter 

is responsible for querying the model and updating the view, 

and thus decouples operations from the Android code base. 

This facilitates separation of the presenter from the Android 

framework and allows the developer to run non-instrumented 

tests. 

 

IV. CONCLUSION 

This paper proposes a method on how to a remote operated 

machine using live feed camera in order to demonstrate the 

functionality of the Cloud-Edge architecture for robots. The 

Figure 8 shows how the robot looks like and also the Android 

application used in order to control it.  

 

Fig. 8. The results of the above analyzes. In the left is the developed robot 

and in the right is the Android application with live camera feed and the 

controls (direction and speed). 

The multimedia data transmitted by the robot is taken in the 

fog by AP and together with the information regarding the 

PWN and the status of the current used are forwarded to the 

cloud where at the moment they are just stored without being 

processed. 

 

 

ACKNOWLEDGMENT

 

The research presented in this paper is supported by the 

ROBIN (PN-III-P1-1.2-PCCDI-2017-

 

0734) project..

 

REFERENCES

 

[1]

 

M.

 

E.

 

Moran, “Evolution of robotic arms,”

 

Journal of Robotic Surgery, 

July 2007, vol.

 

1, no. 2, pp. 103–111, 2007。

  

[2]

 

K.

 

Ben, S.

 

Patil, P. Abbeel, and K.

 

Goldberg,

 

“A survey of research on 

cloud robotics and automation,”

 

IEEE Transactions on Automation 

Science and Engineering,

 

vol. 12, no. 2, 2015,

 

pp. 398-409.

 

[3]

 

K.

 

Anis

 

and

 

E. Shakshuki,

 

“Robots and sensor clouds,”

 

Springer 

International Publishing, 2016.

 

[4]

 

E.

 

Gabriele, S.

 

Rosa, and A.

 

Toma,

 

“fly4

 

smart

 

city: A cloud robotics 

service for smart city applications,”

 

Journal of Ambient Intelligence 

and Smart Environments,

 

vol. 8, no. 3, 2016, pp. 

 

347-358.

 

[5]

 

H. Poor, An Introduction to Signal Detection and Estimation;

 

New 

York: Springer-Verlag, 1985, ch. 4.

 

[6]

 

S.-J. Wang

 

and

 

M.-D. Horng,

 

“State assignment of finite state 

machines for low power applications,”

 

Electronics Letters, vol.

 

32, no. 

25, 1996.

 

[7]

 

R. Ikhankar, S. Ulabhaje, M. Dhadwe, V. Kuthe,

 

and S. Balpande,

 

“Pibot: The raspberry pi controlled multi-environment robot for 

surveillance &

 

live streaming,”

 

in

 

Porc. 2015 International 

Conference on Industrial Instrumentation and Control (ICIC), Pune, 

India, 2015.

 

[8]

 

Q. J. S.

 

Li,

 

“Study on pid parameters tuning method based on 

matlab/simulink,”

 

in

 

Porc. 2011 IEEE 3rd International Conference 

on Communication Software and Networks, Xi'an, China, 2011.

 

[9]

 

D. Zhang, S. Lin, Y. Fu,

 

and S. Huang,

 

“The communication system 

between web application host computers and embedded systems based 

on node.JS,”

 

in

 

Porc. 

 

2017 10th International Congress on Image and 

Signal Processing, BioMedical Engineering and Informatics 

(CISP-BMEI), Shanghai, China, 2017.

 

 

Stan O. is a lecturer in the Automation Department at the 

Technical University of Cluj-Napoca. His research 

interests include medical informatics, semantic 

interoperability, information management in the age of 

the Internet, dependability and fault-tolerant systems. 

Stan received a PhD in systems engineering from the 

Technical University of Cluj-Napoca. He is a member of 

IEEE.

 

 

Miclea L. is a

 

full professor the Automation Department 

at the Technical University of Cluj-Napoca. He is also the 

dean of the same faculty. He is the author or co-author of 

17 books, 40 research works and more than 180 scientific 

publications. His research interests include: 

dependability, cyber-physical-systems, agent systems.

 

Miclea is a Senior member of IEEE and is regular the 

general chairman of the bi annual 

IEEE-CS-TTTC-AQTR conference.

 

 




