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Abstract— In this paper, the third Version of Non-dominated 
Sorting Genetic Algorithm (NSGA III) inspired by nature is 

presented and used for the problem of optimal power flow (OPF) 

in power systems with a unified power flow controller (UPFC). 

The total cost of production, emission and active loss in a power 
system with the UPFC that sets the load bus voltage and 

controls the power transits across the transmission line are 

minimized and validated optimally with the use of NSGA III. 

The NSGA III algorithm is an extension of NSGA I and II 
that is based on natural selection, it is also recently proposed 

multi-objective optimization (MOO) algorithms. The 

performances of NSGA III have been tested and verified on the 
IEEE 30-bus power system by comparing them to several other 

methods multi objective particle swarm optimization (MOPSO) 

and Strength Pareto Evolutionary Algorithm (SPEA II). In  

addition, NSGA III are used not only to optimize contradictory 

objectives such as total production cost, emission and active 
power losses, but also to improve the voltage profile of the 

power system. Our results illustrate that NSGA III can be used 

successfully to solve non-linear power system problems in the 

presence of UPFC, the most powerful and dynamic device of the 

third generation of the FACTS family. 

 
Index Terms—Front de Pareto, multi-objective optimisation, 

NSGA III, UPFC.  

 

I. INTRODUCTION 

When the energy transmitted in  the various transmission 

lines and branches out over large geographical areas, the 

challenge is to reach the optimal operating point of the 

operating system, this is done by respecting all the maximum 

and minimum capabilit ies of all devices and machines 

connected to the transport network. In addition, this , while 

respecting the constraints imposed by the customers. The 

data becomes very formidable with large operating systems 

and interconnection with each other. The equations become 

very difficult to solve and in some ways contradictory 

solutions.  Optimization has become a science in itself and 

has attracted many researchers and scientists from around the 

world, not only in electrical systems, but also in many 

sensitive specialties [1]. 

Many sciences overlap in order to develop intelligent 

algorithms that derive from the study and careful 

consideration of humans in natural phenomena. Many 

objectives have been set and developed by researchers where 

each objective aims to reach an optimal operational point. 

Often, you find many solutions and it is impossible to try 
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them all, to contradict each other. A solution gives a good 

result for a particular purpose. But gives a bad result in  

another goal in the same network. Here, the applicat ion of 

logic becomes necessary, and many solutions must be 

removed with only good solutions being shown in the 

different objectives to be optimized. GA is one of these 

algorithms, has evolved a lot since it was invented and 

published by John Holland in 1975. GA is based on the 

tradition of the work of nature from a Darwinian point of 

view [2]. Uses a technique inspired by the biology of 

evolution, such as selection, crossover, mutation to obtain 

approximate optimal solutions. Srinivas & Deb proposed 

NSGA in 1995, then it came an NSGA II extension by Deb et 

al in  2002 [3]. Later NSGA III by Deb  and Jain in 2014 with a 

multi-objective non-domination approach based on several 

reference points. 

In this article, the utility of NSGA III is to provide 

optimized solutions by satisfying the active and reactive 

power balance, voltage profile, safety margin index, 

transmission losses, emission index, while Power generators 

operate within its allowable limits. All this with minimizing 

as much as possible the total cost of energy production. We 

aim to take advantage of the benefits of UPFC to improve 

power flow and achieve the best results that achieve the 

greatest number of goals. 

UPFC is the most complete and practical of the FACTS 

family. Combine the advantages of the series types and the 

advantages of the parallel types. Where it consists of a serial 

part and another shunt connects to each other by a capacitor. 

It can switch between several control modes. In this work, the 

inclusion of UPFC is by adding two fictitious buses (n + 1) 

represents the serial part, and (n + 2) represents the shunted 

part. All this by modifying the Jacobian matrix in Newton 

Raphson's algorithm [5], [6]. 

The results in this article are d ivided into 5 cases. Start 

with the first case with Simple -Objective Optimizat ion (SOO)  

without UPFC, fo llowed direct ly by case 2 SOO with UPFC. 

Cases 3 and 4 contain Bi-objective Optimizat ion (BOO) 

without and with UPFC compared with mult i-objective 

particle swarm optimization (MOPSO) and St rength Pareto 

Evolutionary A lgorithm (SPEA II) respectively. Finally  

MOO with and without UPFC in case 5.  

 

II. FORMULATIONS OF THE OPTIMAL POWER FLOW 

PROBLEM WITH UPFC 

Each network has its own personality. The functions in the 

research documents vary according to the objectives to be 

optimized. In this paper, take into account three functions. 

The first function is to reduce the fuel cost, which reflects the 

economic and investment face [4]. 
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The second function is to reduce emission index from generation 

plants that reflect the environmental side. 
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Finally, reduce power losses that reflect the performance 

of the network. 
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These objectives are subject to a set of equality constraints 

as follows: 
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They are also subject to a set of inequality constraints  
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Without neglecting the side of protection 
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The Equivalent Circuit o f UPFC in this article is taken  

from reference [5]. For a better control reg ime in the 

transmission line Lij in to bus i, UPFC also subject to a set of 

limit constraints considered as follows: Active power 

exchange limit between the two sides (series and shunt), 

Current limit through the serial side, Shunt side current limit  

and amplitude limit of the voltage in jected by the series side. 

We summarize it mathematically as follows [6]: 
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The performance and reliab ility of multi-objective power 

flow optimization algorithms with and without FACTS 

device remain important issues in the field of electrical 

system control and planning. A new application of NSGA III 

for solving multi-objective optimizat ion problems requires 

particularly high performance. In other ways, it is impossible 

to define an optimal solution to a mult i-objective 

optimization problem in general. Instead, there is a set of 

optimal solutions forming a Pareto front (FP). 

 

III. PARETO FRONT  

The Pareto front is a  set of non-dominated solutions chosen 

as optimal if no objective can be improved without 

sacrificing at least one other objective. On the other hand, a 

solution X1 is considered to be dominated by another solution 

X2 if, and only if, X2 is also good or better than X1 with 

respect to all objectives. Most multi-objective optimizat ion 

algorithms practice this concept invented by the Pareto 

economist to obtain the non-dominated set of solutions, 

hence the Pareto front [7]. Fig.1 illustrates a Pareto front 

typical of a minimizat ion optimization problem of two  

objectives where the arrow in the figure indicates the 

Pareto-optimal region. 

 

 
Fig. 1. Pareto Front  (min-min). 

 

IV. NSGA II 

In the first step of the algorithm of NSGA II is to choose 

the best N member of the population of the offspring Rt of 

size 2N among the combined population of parents and 

descendants Pt ∪ Qt if Pt is of size N. This step thus preserve 

the elite members of the parents' population. To do this, the 

combined Rt population is first sorted according to different 

levels of non-domination of the different objective functions. 

Then, each non-denomination level is selected one at a time 

to construct a new population St, starting from F1, until the 

size of St is equal to N or for the first time greater than N. 

Let's say that the last level included is the l. Thus, all 

solutions from level (l + 1) are rejected from the combined 

population Rt . In most situations, the last level accepted is 

only partially accepted. In such a case, only the solutions that 

maximize the diversity of the front are chosen. This is 

achieved through an efficient but approximate n iche 

preservation operator that calculates crowding distance for 

each member of the last level as a summat ion of the objective 

normalized d istance between two neighboring solutions. 

Subsequently, solutions that have larger crowding distance 

values are chosen [8]. 

 

V. NSGA III 

The identification of non-dominant fronts in NSGA III by  

the use of usual dominance principle. The reference points 

are chosen during optimizat ion by the use of systematic 

techniques of Das and Dennis [5] to ensure the diversity of 

solutions obtained. The members of the population are 

associated with each of these points of reference [9]. 

 

  (     
 

)                                            (15) 

 

where H is the total number of reference points and M is the 

number of objectives. If the reference points are widely  

distributed throughout the hyperplane normalized, the 

resulting solutions are being widely  distributed on the front of 

Pareto optimal. The ideal point of the population St is 

determined by identifying the min imum value fo r each 
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objective function zi
min

 . Each objective value of St is then 

translated so that the ideal point of St translated becomes a 

null vector by the deference between the objective value fi 

and the minimum value of each objective as follows [10]: 

 

  
             

                                  (16) 

 

The association of each member of the population (yellow 

points in fig.2) to a reference point (black points) by a 

reference line (b lue rights) corresponding to each reference 

point. In the hyperplane, the reference point whose reference 

line is closest to a member of the population in the 

standardized objective space is considered to be associated 

with members of the population, this is determined by the 

vertical d istance between each member of the population St 

and each of the reference lines. Where the black square point 

represents the ideal point or the optimal solution [10] [11]. 

 

 
Fig. 2. Association of members of the population with reference points. 

 

The reference points need not be associated with a member 

of the population. Subsequently, a niche preservation 

operation is performed by counting the number of individuals 

of Pt + 1= St /Fl that are associated with each reference point, 

and defining a set of reference points containing the reference 

points having the number of min imal n iches ρ. If this set 

contains no points, we choose one at random. 

If ρ is zero, the front Fl has no associated member at the 

reference point. In  this case, the reference point is excluded. 

Other scenario, there is one or more members in front of Fl 

associated with the reference point. In this case, the one with 

the shortest perpendicular d istance from the reference line is 

added to Pt  + 1. 

The size N of the population depends on H, NSGA III does 

not require new parameters other than the usual GA 

parameters. In NSGA III, elite solutions are carefully  

selected while maintaining the diversity of solutions by 

focusing on the closest solutions to the reference line for each 

reference point. All of these steps can be simplified in Fig. 2. 

The Steps of the gray zone have been presented in detail in  

[10] .  

We apply now it to the mult i-objective power flow 

optimization problem in next section. 

 

 
Fig. 3. Flowchart of NSGA III. 

 

VI. RESULTS AND DISCUSSIONS 

In this section, the simulat ions were performed in the 

MATLAB R2017a environment on a 1.70 GHz CPU 

i3-4005U PC with 4 GB of RAM. To show the capabilit ies of 

NSGA III and UPFC, 3 objective functions Cp, Ep and Ploss 

were studied using an IEEE 30-bus [12] system taking into 

account all the imposed constraints. The minimum and 

maximum capacity of the generators, the fuel cost 

coefficients and the emission factors are presented in 

appendix in  Table VI and VII. The parameters of the NSGA 

III, MOPSO and SPEA II methods used in this article are 

presented in Table 8, 9 and 10. 

A. CASE 1  

Simple Objective Optimization (SOO) without UPFC of 

fuel cost, emissions and power loss using NSGA III. The best 

solution for each optimal objective function is listed in Table 

1. The other two functions were monitored and placed in  the 

same table with control of the voltages and their angles, as 

well as the active and reactive power control generated by the 

6 generators installed  in  the IEEE 30-Bus network. As 

indicated in this table, it  is clear that the reduction of a 

particular goal results in an increase of another goal or both. 

B. CASE 2  

SOO of fuel cost, emissions and power loss with UPFC 

installed in transmission line 27-30 with    
          and 

      
  

        using NSGA III. Fo llowed by two 

diagrams in Fig. 4 showing the voltages and their angles in 

the different buses, and this for case 1 and 2. A slight 

improvement in the fuel cost is indicated in Table 2. There is 

also a decrease in power loss, which is due to the benefits of 

UPFC in improving the power flow and thus a slight decrease 

in losses. As shown in Fig. 4, the ability of UPFC to set the 

voltage in the bus 30 is one of its main advantages. As shown 

in Fig.4, there is also an improvement of the voltage angles 

not only in the bus 30, but also in  the buses adjacent thereto. 

This is due to the dynamics of react ive energy generation by 
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UPFC. 

 

 

 
Fig. 4. The voltages and angles for Case 1 and 2. 

 

TABLE I: RESULTS OBTAINED IN CASES 1 WITHOUT UPFC 

 Case 1 : SOO with UPFC 

 Cost Emission Loss 

V1 1,060 1.060 1.060 
V2 1,043 1.043 1.043 
V5 1.010 1.010 1.010 
V8 1.010 1.010 1.010 

V11 1.082 1.082 1.082 
V13 1.071 1.071 1.071 
θ1 0.000 0.000 0.000 
θ2 -3,579 -0,623 -0.620 

θ5 -10,381 -4,630 -4.627 
θ8 -8,026 -2,730 -2.728 
θ11 -8,541 -0,092 -0.090 
θ13 -9,652 -0,874 -0.872 

PG1 176.905 52.020 51.897 
PG2 49.475 79.878 80.000 
PG5 20.141 50.000 50.000 
PG8 20.228 35.000 35.000 

PG11 12.031 30.000 30.000 
PG13 14.096 40.000 40.000 
QG1 -1.647 28.770 28.808 

QG2 29.254 4.019 3.979 
QG5 26.584 14.484 14.484 
QG8 16.757 3.996 3.996 
QG11 15.196 15.281 15.281 

QG13 8.266 6.873 6.873 

Cp  [$/h] 802.182 968.302 968.562 
EP [ton/h] 0.336 0.197 0.197 
P loss [MW] 9.476 3.498 3.497 

 
TABLE II: RESULTS OBTAINED IN CASES 1 WITHT UPFC 

 Case 1 : SOO with UPFC 

 Cost Cost Cost 

V1 1.060 1.060 1.060 
V2 1.043 1.043 1.043 

V5 1.010 1.010 1.010 
V8 1.010 1.010 1.010 
V11 1.082 1.082 1.082 
V13 1.071 1.071 1.071 

θ1 0.000 0.000 0.000 
θ2 -3.505 -0.682 -0.614 
θ5 -10.195 -4.679 -4.618 
θ8 -7.714 -2.770 -2.717 

θ11 -8.746 -0.124 -0.072 
θ13 -9.998 -0.896 -0.846 

PG1 173.768 54.091 51.650 

PG2 49.456 77.576 80.000 
PG5 21.187 50.000 50.000 
PG8 26.658 35.000 35.000 
PG11 10.203 30.000 30.000 

PG13 11.054 40.000 40.000 
QG1 -0.882 28.013 28.758 
QG2 28.777 4.433 3.625 
QG5 26.148 14.323 14.320 

QG8 14.296 2.742 2.751 
QG11 14.960 15.030 2.751 
QG13 8.243 6.555 6.558 

Cp  [$/h] 801.328 962.895 967.972 
EP [ton/h] 0.331 0.197 0.197 

P loss [MW] 9.126 3.467 3.450 

 

C. CASE 3 

The results of bi-objective optimization (BOO) without 

UPFC of Cp and Ep as two main objectives are represented in 

Fig.5.a, Cp and Ploss as two main objectives are represented in 

the Fig.5.b. and Ep and Ploss are drawn in Fig.5.c. Note that in 

all three figures the algorithm provided well-distributed 

solutions across the entire Pareto front. It is not possible to 

improve a goal without degrading others, so the objectives 

are contradictory. In  Fig.5.a, the maximum solution 

horizontally (912.748, 0.201) vertically contradicts the 

maximum solution (802.509, 0.325). The same thing in  

Fig.5.b, the solution (963.291, 3.517) goes against the 

solution (803.167, 9.021). For the two solutions in Fig.5.c, 

(0.197, 3.497) and (0.197, 3.537) there is a very small margin  

of contradiction. The algorithm also offers solutions that 

belong to the area Pareto optimal solutions, these solutions 

are the best solutions taking into account the two objectives, 

they are closest to the ideal points (800, 0.2), (800.3) and 

(0.197, 3.490) o f the three landmark respectively. The results 

presented numerically in Table 3. The results were compared  

to the BOPSO method with the parameters presented in 

appendix in Table 9. The results were very  close, but the 

BOPSO method could not determine the Pareto front with the 

parameters provided in the third bi-ob jective optimizat ion Ep 

and Ploss and the figure obtained is presented in Fig.5.f. 

D. CASE 4 

in this case we apply  the same previous BOO but in the 

presence of UPFC. Despite the increasing complexity of the 

network and the opposition of objectives and modifications 

of the Jacobian matrix in  the presence of UPFC. However, 

the algorithm was able to provide well-d istributed solutions 

on the Pareto front. The results clearly show, comparing 

Tables 3 and 3, that in the p resence of UPFCs there is a 

minimizat ion of all objectives. 

E. CASE 5 

The optimizat ion here is done taking into consideration the 

three objectives at the same time without and with UPFC in  

fig.7.a and b respectively. In many research articles like[13], 

the objectives are combined, gathered or subtractive by 

multip lying them by special coefficients limited between 0 

and 1 according to the importance of the objective to be 

improved, this method does not reflect the real optimization. 

Here the algorithm proposes solutions representing the Pareto 

multi-dimension front. The MOO with the installation of 

UPFC with the same parameters mentioned above gives 

better solutions closer to the ideal point (800, 0.200, 3) as 
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shown in Table V.  

 
 

 
 

  

Fig. 5. BOO without UPFC by NSGA III and BOPSO in case 3. 
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Fig. 6. BOO with UPFC by NSGA III and SPEA II in case 4 . 

 

  
Fig. 7. MOO optimization by NSGA III for case 5 

 

TABLE III: RESULTS OBTAINED FOR CASE 3 COMPARED WITH BOPSO 

 BO O NSGA III BO PSO 
Case 3 (a) Case 3 (b) Case 3 (c) Case 3 (e) Case 3 (e) Case 3 (f) 

Cp Ep Cp P loss Ep P loss Cp Ep Cp P loss Ep P loss 

Min 802.509 0.201 803.167 3.517 0.197 3.497 802.301 0.197 802.553 3.691 0.206 4.132 
Max 912.748 0.325 963.291 9.021 0.197 3.537 968.562 0.381 947.434 10.181 0.223 5.010 
Range 110.238 0.124 160.124 5.504 0.00035577 0.040 166.261 0.184 144.881 6.49 0.016651 0.877 
Std 30.7734 0.033 41.596 1.450 0.00012963 0.012 48.006 0.034418 41.787 1.771 0.002613 0.153 

Mean 836.520 0.250 849.581 5.753 0.197 3.512 878.083 0.231 841.547 6.563 0.21402 4.573 

 

TABLE IV: RESULTS OBTAINED FOR CASE 4 COMPARED WITH SPEA II 

 
 

BO O NSGA III SPEA II 
Case 4 (a) Case 4 (b) Case 4 (c) Case 4 (e) Case 4 (e) Case 4 (f) 

 Cp Ep Cp P loss Ep P loss Cp Ep Cp P loss Ep P loss 
Min 802.275 0.199 802.237 3.596 0.196 3.450 801.135 0.197 802.497 3.474 0.196 3.450 
Max 934.764 0.325 950.104 8.548 0.197 3.486 961.429 0.332 962.289 8.509 0.197 3.488 
Range 132.489 0.125 147.866 4.951 0.00036939 0.036588 160.293 0.135 159.791 5.034 0.00037004 0.038021 

Std 32.666 0.028 34.532 1.346 0.00010413 0.00757 48.569 0.038 47.791 1.53 0.00010423 0.01044 
Mean 836.454 0.247 834.247 6.195 0.197 3.454 863.801 0.235 858.271 5.493 0.197 3.467 

 

 
TABLE V: MOO OPTIMIZATION BY NSGA III FOR CASE 5 

 MO O  NSGA III  MO O  NSGA III  
 case 5 (a) case 5 (b) 
 Cp Ep P loss Cp Ep P loss 

Min 803.102 0.200 3.710 802.490 0.198 3.628 
Max 936.742 0.319 8.621 942.480 0.311 8.436 
Range 133.64 0.119 4.910 139.989 0.113 4.807 

Std 36.924 0.0316 1.33 35.169 0.028 1.199 
Mean 851.088 0.246 5.912 840.350 0.239 5.628 

 

The algorithms have generally given converging results. 

However, NSGA III algorithm excelled in most cases. This is 

shown in Table 3 and 4 by the Mean values. Standard 

deviations also show stability of this superiority. One of the 

biggest problems with mult i-object ive metaheuristic 

algorithms is to group solutions in one area and not distribute 

them on the Pareto front. This is where the MOPSO 

algorithm failed in case 3 (f). Here, in NSGA III the 

importance of the reference lines in the distribution of 

solutions and the prevention of their regrouping in  a single 

small area is clearly demonstrated. The Normalize, Associate 

and Niche operators can adapt to changing the number of 

functions and modifying their algebraic expressions. In 

addition, no settings are changed when you switch from 

single objective optimization (Case 1 and 2) or higher (Case 

3,4 and 5). It has therefore been applied to our problem in a 

simpler and less complicated way and this leads to a lot of the 

time profit  by comparing it  to previous versions I and II.  the 

distribution of solutions is very uniform from the Pareto front. 

The results show that NSGA III is able to approach the 
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optimal Pareto mult idimensions front with reasonable 

convergence and coverage even in the presence of the UPFC 

controller. The results in  ِCases 2, 4 and 5 (b) show that they 

were better in the presence of the UPFC controller and this is 

reflected in its positive and fle xib le characteristics for the 

control of power flow and bus voltage with its positive 

impact on power generated from power stations and losses in 

transmission lines. In addition to reducing the emission rate 

resulting from a small reduction in the power generated. To a 

large extent in this work, these results show that the NSGA 

III algorithm in  the presence of UPFC used to solve 

multiobjective optimization problems with obscure search 

locations is extremely efficient at finding a very good 

approximation  and the solutions of highly  optimized  

distribution of Pareto multi-dimensions. 

 

VII. CONCLUSION 

The optimizat ion problems were solved as a 

multi-constrained optimization problem where the fuel cost, 

emissions and power losses are minimized. The well 

distributed solutions across the Pareto front because of the 

reference points. The proposed NSGA III algorithm based on 

a dominant multi-object ive Pareto front with a most 

complicated FACTS device has been successfully 

implemented by testing on the IEEE 30-Bus network to solve 

the SOO problem, BOO and MOO. UPFC controls real-t ime 

power flow in transmission lines by adjusting on line 

parameters, including node voltage, phase angle, and line 

impedance. It also contributes to the reduction of the three 

objectives: cost, emission and active loss, as evidenced by the 

results of this article. Compared to the results obtained by 

MOPSO and SPEA II frequently used, the results show that 

the proposed NSGA III can be highly competit ive for 

selected cases. Therefore, it is reasonable to assume that the 

NSGA III algorithm is an effective method for solving 

multi-objective optimization problems includ ing FACTS 

devices with high accuracy.  

Future work will consist of providing more practical 

results of the Pareto front obtained from mult i-objective 

optimization algorithms for power grid operators , with 

adapted to help them choose the best solution and make 

appropriate and correct decisions. 

APPENDIX 

TABLE VI: LIMITS AND FUEL COST COEFFICIENTS OF GENERATORS 

 P
min

 P
max

 10
4
.ai bi ci 

G1 50 200 037.5 2.00 0 

G2 20 80 175.0 1.75 0 

G5 15 50 625.0 1.00 0 

G8 10 35 083.0 3.25 0 

G11 10 30 250.0 3.00 0 

G13 12 40 250.0 3.00 0 

 
TABLE VII: EMISSION COEFFICIENTS OF GENERATORS 

 10
5
.αi 10

3
.βi 10.γi 

G1 6.490 -5.554 4.091 
G2 5.638 -6.047 2.543 
G5 4.586 -5.094 4.258 
G8 3.380 -3.550 5.326 
G11 4.586 -5.094 4.258 
G13 5.151 -5.555 6.131 

 

 

TABLE VIII: PARAMETERS OF NSGA III 

NSGA III 
Max iterations 50 

Population Size 100 
Crossover Percentage 0.5 
Number of Parents 40 

Mutation Percentage 0.5 
Number of Mutants 40 
Mutation Rate 0.02 
Mutation Step Size 0.2 

number of division 10 

 
TABLE VIX:  PARAMETERS OF BOPSO 

BOPSO 

Max iterations 50 
Population Size 100 

Repository Size 100 
Inertia Weight 0.5 
Inertia Weight Damping Rate 0.99 
Personal Learning Coefficient 1 

Global Learning Coefficient 2 
Number of Grids per Dimension 7 

Inflation Rate 0.1 
Leader Selection Pressure 2 

Deletion Selection Pressure 2 
Mutation Rate 0.1 

 
TABLE VX: PARAMETERS OF SPEA II 

SPEA II 

Max iterations 50 

Population Size 50 
Archive Size 50 
KNN Parameter 30 
Crossover Percentage 0.7 

Number of Parents (Offspring’s) 36 
Mutation Percentage 0.3 
Number of Mutants 14 
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