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Abstract—With the approach of the 2020 Tokyo Olympics 

and Paralympics, interest in sports for participants with 

disabilities has been steadily increasing. For Japan to be 

successful in the Paralympic sports, scientific and engineering 

support similar to that provided to other Olympic competitors 

is necessary. This study develops a multimodal strategy board 

to improve Japan’s competitiveness in goalball, a team sport for 

visually impaired players. The proposed tool is composed of an 

image processing system that determines the ball’s position and 

movement, and a strategy board that provides tactical 

information. This paper describes the method used to determine 

ball position from game video and the structure of a haptic 

device incorporated into the strategy board.  

 
Index Terms—Disability sports, goalball, image processing 

system, haptic device, multimodal strategy board.  

 

I. INTRODUCTION 

Tokyo has been selected to host the 2020 Summer 

Olympics and Paralympics. Since the announcement, interest 

in disability sports in Japan has increased significantly. 

In recent years, it has become common to use information 

communication technology and image processing technology 

in sports science. With improvements in tracking methods for 

balls and athletes, the tracking accuracy of sports video has 

steadily improved [1], [2]. In team sports, the acquisition of 

extensive data on player movements and tactics is now 

possible. Research on systems to visualize team performance 

for strategy analysis has become mainstream, especially in 

ball sports such as American football, soccer, and volleyball 

[3]-[7]. In these systems, the positions of the players and the 

ball are recorded using a set of cameras. Players and coaches 

are then able to analyze the visual information using 

computers and scientifically evaluate the performance of 

both individual players and the team as a whole. In order to 

develop competitive sports for participants with disabilities 

in Japan, establishing a system that provides this type of 

scientific and engineering support is essential. In this study, 

we develop such a system for goalball, one of the 

Paralympics sports. 

Goalball is played by two teams of three players each on a 

volleyball-sized indoor court (18 m long × 9 m wide) with a 

goal (9 m wide × 1.3 m high) at either end. The court is 

divided into six areas, three on each side of the court. Tactile 

markers set 3 m apart and extending the full width of the 
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court define each team’s orientation area, landing area, and 

neutral area. The game is played in two 12-minute halves. 

The aim of the game is to earn points by rolling or bouncing a 

ball (20 cm diameter, 1.25 kg) embedded with bells into the 

opponents' goal. The players are blind or visually impaired 

and wear eyeshades at all times. Teams alternate between 

offense and defense. Players on offense roll or bounce the 

ball from their end of the playing area to the other. The 

defensive players listen to the steps of the offensive player, 

the sound of the bells in the rolling ball, etc., to judge the 

position and movement of the ball, and defend their goal 

when the ball is pitched towards it. 

Scientific analysis via image processing has previously 

been used in blind football (soccer) played by visually 

impaired participants [8]. In goalball, the Swedish and 

German teams have developed an efficient strategic support 

system for their players and teams. In contrast, in goalball in 

Japan, the coach typically takes notes while watching video 

after a game and ―manually‖ assesses player positioning and 

team strategies. This makes it virtually impossible for the 

coach to provide timely technical and tactical coaching to his 

players during or immediately following a game. 

Individuals with visual impairments are often referred to as 

being ―information handicapped.‖ They have difficulty 

recognizing pictures or characters, which means that tactical 

instructions given by coaches to visually impaired players are 

given orally since strategy boards or tablets that present 

graphic information cannot be used. As a result, players often 

have difficulty intuitively understanding the coach’s 

strategies. Given this situation, it seems highly desirable to 

find ways to automate strategy analysis by using computers 

for data processing and to develop a sensory substitution 

system that transforms analytical data into audio/tactile 

information. Multimodal interface that interacts with a 

system through multiple communication modes—including 

visual and auditory modes—is already being used for 

information presentation in welfare engineering and virtual 

reality [9],[10]. A similar approach can be applied to sports. 

The purpose of this study is to develop a multimodal 

strategy board for enhancing a goalball player’s 

understanding of game tactics and for sharing tactical 

information within the team. This paper provides an outline 

of such a board and describes the method of ball position 

extraction from video used to generate data and the haptic 

device that is incorporated into the board. 

 

II. MULTIMODAL STRATEGY BOARD  

Fig. 1 shows the multimodal strategy board system. The 

system includes an image/sound processing system, a 

computer for data analysis, a strategy board that provides 
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information to the players, and a tablet on which coaches can 

formulate a tactical plan. Player positions and ball trajectories 

are detected by the image processing system, which consists 

of cameras and microphones. Data on the frequency and/or 

duration of time that the players and the ball spend occupying 

or traversing the various areas of the court are displayed in 

both a color-coded map and as numeric data. These data, 

along with a proposed tactical plan, are transformed into 

audio/tactile information and presented on the strategy board. 

The multimodal strategy board system has two primary 

advantages: 

 The visualized information can be used to analyze the 

contents of the game and allows a rethinking of the team’s 

strategy in preparation for the next game. 

 The multiple-sense-organ presentation promotes a better 

understanding of tactics by the players. 

 

 
Fig. 1. Multimodal strategy board. 

 

III. BALL POSITION EXTRACTION 

A.  Process of Ball Extraction  

In general, researchers in sports analysis use multiple 

cameras to acquire accurate, error-free data. At actual 

sporting events, a monocular camera is often used to acquire 

the appropriate video data. In this study, we used video data 

recorded by a monocular camera to extract the position of the 

ball. The analysis target is the video of a match filmed with a 

single home video camera. Ball position extraction is 

executed according to the flow shown in Fig. 2. 

 

 
Fig. 2. Flow of ball position extraction. 

 

[STEP1]  Determination of image area. 

A frame with no players or ball on the court is extracted as 

a calibration image. The surrounding area (windows, 

audience, etc.) is eliminated and the area to be analyzed is 

determined. This area is then applied to all images. 

 

[STEP2] Detection of moving objects. 

Moving objects are detected using the temporal difference 

method in which moving objects are identified by measuring 

the difference between It, the image at time t, and It-Δt, the 

image at time t − Δt. (In this step, the images are converted to 

grayscale.) 

The temporal differences are thus calculated as 

 

                    
tttttt IIDif  ,
                        (1) 

 

The logical product of two difference images Dift-Δt and Dift,t+Δt 

creates logical product image Ia: 

 

                    
tttttta DifDifI   ,,
                     (2) 

 

Fig. 3 shows an example of the detection of moving 

objects. As can be seen in panel (c), the ball is displayed as a 

bright circle against a black background. This is the result of 

a simple test: If the density value of difference image is 

greater than or equal to a designated threshold value, then the 

color of the target pixel is set to white; otherwise, it is black. 

(Black indicates that the two difference images are equal, i.e., 

there is no movement.) It is obvious here that only the players 

and the ball have been extracted. 

 

 
(a)  Dift-Δt, t                                       (b)  Dif Δt+t,t 

 
(c)  Ia   

Fig. 3. An example of the detection of moving objects. 

. 

[STEP3]  Detection of circular shape. 

Because the ball in goalball is harder than a soccer ball and 

is difficult to deform, the shape of the ball in the image is 

nearly a perfect circle. In this study, we extract a candidate 

ball area using the circular Hough transform. First, the radius 

(pixel value) and the mean hue of the ball on the far side and 

the near side of the court are acquired, and the range of the 

radius is defined. The sensitivity coefficient of the circular 

Hough transform is also set. If the coefficient is set to a large 

value (close to 1), then more circular objects will be detected. 

In this example case, the radius range is set to [10, 30], the 

hue range is set to [0.2, 0.8], and the sensitivity coefficient is 

set to 0.90. 

Next, the Hough transform is performed on the difference 

image obtained in STEP 2. As a result, all bright circles in the 

image within the radius range are searched for and the 

relative strength value of the center of the circles is obtained. 

The circles with the highest strength values determine the 

candidate ball areas (Fig. 4(a)). The hue in a candidate area is 

then compared with the hue of the ball, and the candidate area 

with the smallest difference is established as the area of the 

ball (Fig. 4(b)). 

Image / sound
processing
system

Computer

Strategy board

Tablet

Tactical plan

Position and 
trajectory data 
of players and ball

[STEP1]   Determination of image area

[STEP2]   Detection of moving objects 

[STEP3]    Detection of  circular shape   Ball tracking

[STEP4]  Coordinate transform 

                using Homography 

Goalball video
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(a)  Ball candidate area                          (b)  Extracted Ball area 

Fig. 4. An example of the detection of  a circular shape. 

 

[STEP4] Estimation of ball trajectory 

Acquisition of the ball trajectory on the court is obtained 

by projecting the ball trajectory obtained from the input 

image onto the overhead image using the homography 

transformation method. The homography matrix is calculated 

from the angle obtained from the court of the input image line 

and the point of the input image p1(x1, y1) to p4 (x4, y4) and the 

point of the overhead image P1(X1, Y1) to P4 (X4, Y4). (These 

points are the corners of the court.) 

From the ball coordinates (x, y) on the input image and the 

homography matrix, the ball coordinates (x', y') on the 

overhead image are obtained according to equation (3). Here, 

the x-axis is the direction of the short side of the court, and 

the y-axis is the direction of the long side of the court: 
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Fig. 5 shows an example of homography transform.  

 

 
                     (a) Input image                               (b) Overhead image 

Fig. 5. An example of homography transform 

  

B. Evaluation Experiment 

In the evaluation experiment, we used video data taken 

from the short side of the court. The resolution of the image 

was 1920 × 1080, and the frame rate was 30 fps. 

The evaluation was done by finding the extraction rate and 

the accuracy rate from the number of frames with ball 

candidate areas Nc, and the number of error frames Ne (i.e., 

the number of frames where the extracted ball area is 

incorrect). Here, the accuracy ratio indicates the proportion 

of successes in extracting the ball candidate region. The 

accuracy rate is obtained from the following equation: 

 

                      1001(%) 









c

e

N

N
rateAccuracy                     (4) 

 

Fig. 6 shows the estimated ball trajectory in (a) the input 

image and (b) the overhead image. Since the analyzed data 

were from video images taken from the short side of the court, 

the estimated range was about 7 m (Team B's landing area 

and neutral area), and accuracy with respect to depth was 

low.  

Table I shows an example of accuracy ratio results when 

Team A is attacking Team B and when Team A is being 

attacked by team B. As shown in the table, the average 

accuracy rate was 91.8%. When there was a candidate area 

for the ball, it was possible to extract the ball with a very high 

probability. On the other hand, the average extraction rate 

was only 64.6%. In many cases where candidate areas were 

determined not to exist, the player and the ball, or the ball and 

the goal post overlapped, as shown in Fig. 7(b). 

 

 
(a) Input image                               (b) Overhead image  

Fig. 6. Estimated ball trajectory.  

 
TABLE I: AS EXAMPLE OF ACCURACY RATIO RESULTS 

 
Team A 

→Team B 

Team B 

→Team A 
Average 

Total number  

of frames      
38 61 50 97 61 

Number of frames 

with ball candidate 

area:  Nc 

17 18 14 36 22 

Number of Error 

flames: Ne 
1 2 0 6 2 

Accuracy rate (%) 94.1 88.9 100 84.2 91.8 

Extraction rate (%) 55.3 70.5 72.0 60.8 64.6 

 

 
                    (a) success                          (b) error 

Fig. 7. An example of ball extraction results. 

 

As shown in Fig. 8, the estimable range was divided into 6 

areas, and throwing patterns of the ball was analyzed. Table 

II shows the analysis results. It was found that Team A threw 

many balls from area 2 to area 5, and team B threw many 

balls from the right side of team B. It was suggested that this 

method was useful for acquiring data necessary for tactical 

analysis. 

In the future, improving the accuracy of ball extraction and 

tracking using machine learning methods and particle filters 

will be a priority. 

 
Fig. 8.  Region for analysis of throwing patterns.  
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TABLE II: RESULT OF THROWING PATTERNS (OFFENSE AND DEFENSE 

TEN TIMES) 

Team A →Team B Team B →Team A 

Area Area Count Area Area Count 

1 
4 

5 

6 

0 

1 

0 

4 

1 

2 

3 

3 

3 

0 

2 
4 

5 
6 

0 

7 
0 

5 

1 

2 
3 

0 

1 
0 

3 
4 

5 

6 

0 

1 

1 

6 

1 

2 

3 

0 

0 

3 

 

IV. HAPTIC DEVICE FOR THE STRATEGY BOARD  

Tactile displays and braille printers transform graphic 

information into tactile patterns that can be effectively 

displayed. These devices offer promising means for 

communicating with sports participants who are visually 

impaired. 

In this study, we incorporated a prototype haptic device 

using a piezo actuator into our strategy board system. Fig. 9 

shows the haptic device diagram. The device consists of a 

piezo haptic actuator (PiezoHapt actuator PHUA8060: TDK), 

a piezo haptic driver module (PWM Amp Module IFJ-001: 

Maruetsu), and a microcomputer (mbed NXP LPC1768: 

ARM). A signal formed with frequency and duty ratio related 

to the ball’s arrival frequency and time is transmitted from a 

personal computer to the microcomputer. A PWM signal is 

generated by the microcomputer and the haptic actuator is 

driven by the amplified signal. When the analog switch is 

switched on, the haptic actuator works as a vibration sensor. 

The vibration signal is communicated to the microprocessors. 

The PiezoHapt™ Actuator has a unimorph structure in 

which ceramic piezoelectric elements with electrodes on both 

sides are laminated on one side of a metal plate. The actuator 

can output various vibration patterns while driving at low 

voltage. Fig. 10 and Table III show the appearance and 

specifications of the piezo actuator. The unit is 80 mm long, 

60 mm wide, and 0.4 mm thick. 

 

 
Fig. 9. Haptic device diagram. 

 

The piezo haptic driver module was equipped with a PWM 

amplifier circuit and a step-up power supply circuit, and 

drove the piezo actuator efficiently and linearly. Fig. 11 

shows the displacement of the haptic actuator during pulse 

driving in no load status (the input signal to the piezo haptic 

driver module has an amplitude of 5 V and a frequency of 1 

Hz). The displacement of the actuator used here was 

approximately 62 μm; it instantly reacted to changes in input 

voltage. This result is similar to TDK’s published 

information (https://product.tdk.com/). The actuator is 

capable of generating vibration in various patterns and 

displacements with waveform control. 

 

 
Fig. 10. TDK’s PiezoHapt actuator. 

 
TABLE III: SPECIFICATION OF PIEZO HAPTIC ACTUATOR 

Vibration plate specifications 42Ni-Fe  

Electrode specifications 

Width 

Number of cores 

Insulation length 

Lead pitch 

Stripping length 

Reinforcement 

12 mm 

2 
30 mm 

7.0 mm 

5.0 mm 
8.0 mm 

Operation voltage 24VP-P(±12V) max.  

  

A piezoelectric element generates voltage in response to 

mechanical pressure. When mechanical pressure (tapping, 

pressing) is applied to the actuator, an electric signal is 

generated, as shown in the Fig. 12. This function can be 

effective in communicating analytical information to players 

and coaches. 

 

 
Fig. 11. Displacement of haptic actuator. 

 

 
Fig. 12. Vibration wave. 

 

V. CONCLUSION 

This paper provides an overview of a multimodal strategy 

board for goalball and establishes its significance. A method 
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for determining ball position from game video was described 

and illustrative results were shown. In an evaluation of the 

proposed ball extraction method, the accuracy rate was found 

to be approximately 91%, with an extraction rate of roughly 

65%. Since the ball could not be detected when it was 

obscured by a goal post or a player, further steps are needed 

to improve the accuracy of ball extraction and tracking. The 

haptic device created for the proposed strategy board was 

found to be useful in acquiring contact information and 

generating various vibration waveforms. 

In the future, methods for presenting strategic analysis and 

providing  multi-sensory information will be developed. We 

intend to take the lead in applying these developments to 

competitive sports played by participants with physical 

disabilities. 
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