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Abstract—The paper is referring to distributed parameter 

propagation phenomena, in relation to the Cartesian coordinate 

axes (0p;0q;0r). The analogical model of the propagation 

phenomenon is expressed through a partial differential equation 

of second (II) order, associated to each coordinate axis. The 

numerical integration is based on the matrix of partial 

derivatives of the state vector (Mpdx), that uses approximating 

solutions for the calculations start. The numerical simulation of 

the propagation phenomenon follows parametrical spatial 

curves predetermined in relation to time (t), respectively                    

p = p(t),  q = q(t), and r = r(t), in the period t0 ≤ t ≤ tf . The 

examples run on the computer are referring to identical or 

different propagation parameters in relation to the three 

Cartesian coordinate axes. The numerical simulation evolves 

after spatial curves in form of a spiral, which encloses 

significantly the evolution of the studied phenomenon. Some 

references are made on the applicability of the elaborated 

programs, for chemical, metallurgical, pollution processes etc. 

 
Index Terms—Partial differential equations (PDEs), 

analogical modeling, numerical simulation, matrix of partial 

derivatives of the state vector, thermal propagation, structure 

parameters, approximating solutions. 
 

I. INTRODUCTION 

In Fig. 1, a propagation phenomenon (for example of the 

temperature) y0000(t,p,q,r), oriented on the Cartesian 

coordinate axes (0p; 0q; 0r) is formally presented, where the 

propagation sources are disposed in the origin of these 

coordinate axes. It is considered that the propagation 

phenomenon is different, in relation to each from the three 

coordinate axes [1]-[3]. With the increasing of the 

propagation time, from (t0), (t1), (t2).., to the final time (tf), and 

of the propagation distances on each axis, respectively (p0, p1, 

p2,..., pf), (q0, q1, q2,..., qf), and (r0, r1, r2,..., rf), the propagation 

on each axis will progressively decrease, respectively y00P(ti, 

pi), y00Q(ti, qi) and y00R(ti, ri), for  (i = 0, i = 1, i2,..., if), 

presenting negligible values at y00P(tf, pf), y00Q(tf, qf) and y00R(tf, 

rf). 

The analogical model of the propagation phenomenon on 

each axis, is considered that it can be expressed through 

partial differential equations (PDE) of II order (t,....), 

respectively [4]-[7]: PDE II (t, p) for (0p) axis, PDE II (t, q) 

for (0q) axis, PDE II (t, r) for (0r) axis, as it is shown in Table 
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I. 

 

 
Fig. 1. Example of propagation phenomenon oriented on the Cartesian 

coordinate axes. 

 
TABLE I: THE MODEL OF THE PROPAGATION PHENOMENON ON EACH 

AXIS  

 
 

The notations of the intensity of the propagation (yij...) 
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, for i = 0, 1, 2 and j = 0, 1, 2, in each case, 

and the input signals (ui...)  correspond with ....
....

i

i
i i

d u
u

dt
 , for 

i = 0, 1, 2. The (aijS) coefficients, for S = P, then S = Q and       

S = R, from the structure of the three PDE II (t,s), (where s = p, 

s = q and s = r), have the expressions: a00S = 1; a10S = T1S + T2S; 

a20S = T1S ∙ T2S; a01S = S1 + S2; a02S = S1 ∙ S2 and a11S = (T1S +         
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+ T2S)∙(S1 + S2). The structure parameters (T1S, T2S, S1, S2), that 

define the (aijS) from above, present phenomenological 

interpretations formally identical with the coefficients of the 

transfer functions of second order , where respectively (T1 and 

T2) are time constants, and (S1 and S2) are space constants 

(length, width, depth). It results that to each Cartesian axis, it 

corresponds a pair of time constants (T1... ; T2...) and a pair of 

space constants (S1...; S2...), as it is formally presented in Fig. 2 

and in Table I. 

 

 
Fig. 2. The time constants and the space constants associated to Cartesian 

axes. 
 

It is considered that for this propagation process (for 

example thermal) through dispersion, having different 

intensities on the three coordinate axes, the analytical 

solutions y00P(t, p), y00Q(t, q) and y00R(t, r) are not known. 

However, it is intended to use an approximating method of 

numerical simulation, which has closer results, consequence 

of a possible set of measurements that can reflect the reality 

accurate enough. 

 

II. THE APPROXIMATING SOLUTIONS  

The approximating solutions 
00

( , )
P

y t p , 
00

( , )
Q

y t q  and 

00
( , )

R
y t r  necessary for the start of numerical integration 

(valid for unit step type input signal), are obtained through 

measurements, associated to procedures of expert type, being 

desirable to get as much closer as possible to the analytical 

solutions y00P(t, p), y00Q(t, q) and y00R(t, r). For these 

approximating solutions, the following usual expression is 

adopted 
 

00 0 0 0
( ), [ ( ) ( )] ( )

S yS TS S S
y t s K F t F s u t    ,           (1) 

 

which is singularized for each coordinate axis (respectively       

S = P; S = Q; S = R and s = p, s = q respectively s = r), from 

Table 1. Also, the notation “*” signifies the convolution 

product between the two functions depending on time (t). 

With u0S(t) is notated the intensity of the propagation 

sources, localized in the origin of the Cartesian coordinate 

axes and oriented after each axis. 

In the case of a perfect radial source (a spherical one), it is 

considered that u0P(t) = u0Q(t) = u0R(t), but in a more general 

case, the intensity of these sources can differ, respectively 

u0P(t) ≠ u0Q(t) ≠ u0R(t). In Fig. 3 it is considered that the 

exponential functions F0TS(t) are increasing ones, and F0S(s) 

are decreasing ones.  

 
Fig. 3. The exponential functions F0TS(t) and F0S(s). 

 

For the final values (tf) and (sf), it is considered that              

F0TS(tf) → 1, respectively F0S(sf) → 0. The ( KyS) coefficients, 

from (1) are proportionality constants, that for this paper are 

considered of unitary values.  

Through the appropriate choice of these structure 

parameters, associated to each coordinate axis, respectively 

(T1P, T2P, P1, P2) for the (0p) axis, then (T1Q, T2Q, Q1, Q2) for 

the (0q) axis and finally (T1R, T2R, R1, R2) for the (0r) axis, it is 

intended to obtain a very close process’ work description in 

relation to the measurement results gained through expert 

procedures. 

For the non-periodical, exponentially increasing function 

F0TS(t), from (1) and from Fig. 3, it is chosen 
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(S = P; S = Q; S = R) and for the non-periodical, exponentially 

decreasing function F0S(s), also from (1) and from Fig. 3, it is 

chosen 
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(S = P; S = Q; S = R), (s = p; s = q; s = r) with the remark that 

both functions, were proved to be appropriate, in numerous 

applications of the propagation phenomena. 

 

 
Fig. 4. The final values and the inflection points. 

 

III. THE  APPROXIMATION OF TIME AND SPACE CONSTANTS 

The constants can differ, more or less, in relation to the 

three coordinate axes from Fig. 2. From the experimental 

curves, achieved through expert methods, it is approximated 

for each abscissa, the final values (tf) and (sf) from Fig. 3, as 

well as the values (tiS) and (siS) for which these functions 

present inflections, respectively 
2

0

2

( )
0TSd F t
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  and 
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2
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2

( )
0Sd F s

ds
 , as it is formally exemplified, for the point (i) 

from Fig. 4, with the indices S = P; S = Q; S = R, respectively 

s = p; s = q; s = r.  

For the time constants, it is operated with the relations: 
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T2S = λTS ∙T1S as well as with the relation: 
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(for S = P, Q, R). It is chosen λTS > 1, 

resulting: 
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. It can also be established 

that
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. Formally 

identical, for the space constants, the following relations are 

also obtained: 
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 (for s = p, q, r). It results 
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. For numerous 

applications tiS≅ (0.1,0.20) ∙ tfs, and siS≅ (0.1,0.20) ∙ sfs, where 

certainly the values for tfs and sfs are known.  

If the propagation phenomena differ very much in relation 

to the Cartesian coordinate axes, it results that the final times 

(tfP, tfQ , tfR), and the inflections values (tiP, tiQ , tiR), can exhibit 

very different values. It results that the final propagation 

distances (sfP, sfQ , sfR) and the associated ones to the inflection 

phenomena (siP, siQ, siR) can differ very much among each 

other. Consequently, according to previously presented 

equations, both the value of the time constants and of the 

space constants can have values even more different, in 

relation to the coordinate axes. 

 

IV. EXAMPLES OF PROPAGATION IN A HOMOGENOUS 

MEDIUM  

The propagation is considered identical on the three 

Cartesian coordinate axes from Figs. 1 and 2. Consequently, 

the homologous propagation constants will be equal, 

respectively the time constants: T1P = T1Q = T1R  and T2P = T2Q 

= T2R, also the space constants P1 = Q1 = R1 and P1 = Q1 = R1 

P2 = Q2 = R2. There are also considered: tfS = 10; S = P; S = Q; 

S = R (time units); sf = pf  = rf = 10 (length units); µTS = µS = 4; 

(S = P; S = Q; S = R), λTS = λS = 1.5; (S = P; S = Q; S = R). 

Finally, the time constants result as: 

1
0.1 1

(1 )

fS

fSS
TS TS

t
T t   

  
; T2S = λTS ∙  T1S = 1.5, where 

S = P; S = Q; S = R, and the space constants (length): 

1
0.1 1

(1 )

f

f
S S

s
S s   

  
; S2 = λS ∙  S1 = 1.5, for S = P, Q, 

R  and s = p, q, r. Consequently, T1S = 1; T2S = 1.5; S1 = 1;         

S2 = 1.5.    

   The inflection abscissa can also be established as: 

2

ln( )
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t t t
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, with the remark that the 

time and the space (length) units are certainly different. 

With the above data and according to (2), F0TS(tfS) = 0.9962 

and F0S(tiS) = 0.2592 are calculated, and with relation (3) 

F0S(sf) = 0.0037 and F0S(si) = 0.7407 are calculated, as it is 

formally presented in Fig. 4, too. The numerical simulation 

inside of this medium is operated on the spatial curve of a 

spiral [8,9], defined through the system of parametric 

equations: 
 

2
( ) cosp p t t

T


                                     (4)   

2
( ) sinq q t t

T


     ,                               (5) 

( )
r

r r t t
T


   ,                                 (6)  

 

where (ρ) and (Tρ)  correspond with the radius of the spiral, 

respectively with the period of a complete revolution, and (δr) 

is the step of the spiral.   

 The dedicated MATLAB program CPARAM5(6) is used 

based on the method of the matrix of partial derivatives of the 

state vector (Mpdx), associated with Taylor series, [3], using 

for the start of the calculus the approximating solutions 

00
( ),

S
y t s , from (1). Other initialization parameters than the 

previously mentioned ones, are: ρ  = 0.5; δr = 1; Tρ = 1.2;           

Ky = 1; θ = 0; Δt = 0.01; Δθ = Δt ∙ 100. The extraction of 

integration results on the three coordinate axes, is made 

simultaneously in the moments 
12

T
t n


  , for  n = 0, 1,2,...,12, 

as it is presented in Tables 2, 3 and 4, for T1 = 1; T2 = 1.5; S1 = 

1; S2 = 1.5;  ρ  = 0.5; Tρ = 1.2; δr = 1; Ky = 1;                    u0 = 

10 and the extraction step
12

T
  . It is remarked that p(t) 

and q(t) present non-periodical behaviors with amplitudes of 

(±5), and r(t) is an increasing linear variable. The exponential 

solutions yP(t,p) and yQ(t,q) present small periodical 

components, and the exponential solution yR(t,r), after 

reaching a maximum, is progressively decreasing until a value 

practically negligible.  

Table II corresponds to the first period (Tρ), meaning               

(0 ≤ t ≤ Tρ), with the (r) increasing abscissa, from t = 0; r = 0, 

until t = tf = Tρ, respectively 1
r

r T
T 



   . Table 3 is 

referring to the third period, (3 ∙ Tρ ≤ t ≤ 4 ∙ Tρ), with the 

increasing abscissa (r), from t = 3 ∙ Tρ = 3.6; r = 3, until                

t = 4 ∙ Tρ = 4.8, respectively r = 4.  Table 4 contains the tenths 

period, respectively (10 ∙ Tρ ≤ t ≤ 11 ∙ Tρ), with the increasing 

abscissa (r), from t = 10 ∙ Tρ = 12; r = 10, until                                    

t = 11 ∙ Tρ = 13.2, and  r = 11.   

The final result y(t,p,q,r), corresponds to a “space-temporal 

hypotenuse”, according to the obvious relation: 
 

International Journal of Modeling and Optimization, Vol. 8, No. 4, August 2018

204



  

2 2 2( , , , ) ( , ) ( , ) ( , )P Q Ry t p q r y t p y t q y t r   ,              (7) 

 

as passing back from the parametric coordinates (4), (5), (6), 

that define the spiral, to the Cartesian coordinates. It is 

remarked that while advancing in time, respectively from the 

Table 2, to Table 3, then Table 4, the values of y (t, p, q, r) 

from (7), are increasing progressively more slowly, so as, in  

Table 4 practically they get steady between (13.650,13.690).  

Hence, it results that the final solution y (t, p, q, r) obviously 

presents an exponential evolution, too, increasing in 

transitory regime (Table II), and then practically stabilized in 

stationary regime (Table IV). 

 
TABLE II: SIMULATION RESULTS CORRESPONDING TO THE FIRST PERIOD 

 
 

TABLE III: SIMULATION RESULTS CORRESPONDING TO THE THIRD PERIOD 

 
 

  TABLE IV: SIMULATION RESULTS CORRESPONDING TO THE TENTHS 

PERIOD 

 
        

The radius (ρ) of the spiral is (arbitrary) chosen sub-unitary 

as ρ = 0.5, in order to maintain the spiral evolution, inside the 

limits: pf = 1; qf = 1; rf = 1. In the initialization instructions, the 

corresponding ones result: T1PA = T1P; T2PA = T2P; T1QA = T1Q; 

T2QA = T2Q; T1RA = T1R; T2RA = T2R; S1PA = P1; S2PA = P2;                   

S1QA = Q1; S2QA = Q2; S1RA = R1; S2RA = R2. Also pA = p; qA = q; 

and rA = r.  

The intensity of supply sources is big enough, respectively 

[u0P = u0Q = u0PR = uEXTA = 10], in order to avoid the much 

sub-unitary results. 

In Fig. 5 the solution y(t,p,q,r) is presented, for the thirteen 

periods of the simulation. The data associated to the Tables II, 

III, IV are included in this figure.  

The graph from Fig. 5 is a 3D representation of the y 

solution for the homogenous medium that highlights in an 

intuitive manner the considered spiral. From Fig. 5, it can be 

remarked that the steady state regime appears after the first 

seven periods. 
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Fig. 5. The evolution of the y solution for homogenous medium. 

 

V. EXAMPLE OF PROPAGATION IN AN INHOMOGENEOUS  

The propagation is considered different on the three 

Cartesian coordinate axes from Fig. 2. It is highlighted the 

inhomogeneity of the propagation medium through  different 

values of the time constants (T1... ; T2...) and of the space 

constants (S1... ; S2...), through the initializing instructions from 

the new program CPARAM7(8), respectively: T1PA = 1;       

T2PA = 1.5; T1QA = 2; T2QA = 2.5; T1RA = 3; T2RA = 3.5; S1PA = 1; 

S2PA = 1.5; S1QA = 2; S2QA = 2.5; S1RA = 3; S2RA = 3.5; ρ = 0.5;    

δr = 1; Tρ = 1.2; 
2

1

1.25
Q

TQ
Q

T

T
   ; 2

1

1.25
Q

Q

Q
   ; 

2

1

1.167R
TR

R

T

T
   ; 2

1

1.167
R

R

R
   ;                                             

tfQ = µTQ ∙ (T1Q + T2Q) = 18; tfR= µTR ∙ (T1R + T2R) = 26;                   

qf = µQ ∙ (Q1 + Q2) = 18; rf = µR ∙ (R1 + R2) = 26. For the first 

period, the simulation results are presented in Table V.  
 

TABLE V: SIMULATION RESULTS CORRESPONDING TO THE FIRST PERIOD 
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Fig. 6. The evolution of the y solution for inhomogeneous medium. 

 
 

In the Fig. 6, the solution y(t,p,q,r) is presented, for the 

thirteen periods of the simulation. In this case, also, the graph 

from Fig. 6 is a 3D representation of the y solution, but for the 
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inhomogeneous medium. The tendency to steady state regime 

is obvious in the upper part of the graph, where evolution of 

the y solution is much slower than in the intermediary, 

respectively in the lower part of the graph. In Fig. 7, a 

comparative graph between the y solutions for the two 

mediums (homogenous and inhomogeneous) is presented.  
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y
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Fig. 7. The y solutions for both homogeneous and inhomogeneous 

mediums. 

 

From Fig. 7 it results a higher inertia of the propagation 

phenomenon in the case of the inhomogeneous medium 

comparing with the homogeneous medium case. 
 
 

VI. CONCLUSION 

The paper presents, a procedure of numerical simulation, 

oriented on spatial curves (for example spirals), for 

distributed parameter propagation processes. The analogical 

model of these processes is expressed through systems of 

three equations with partial derivatives of second order with, 

respectively PDE II(t,p), PDE II(t,q) and PDE II(t,r), where 

the variables (p), (q) and (r) belong to the Cartesian 

coordinate axes (0p), (0q) respectively (0r). The form of these 

three equations with partial derivatives is exemplified in 

Table 1, and the expressions of the (aijS) coefficients are 

considered dependent on the time constants (T1S; T2S) and on 

the space constants (S1; S2) shown in the INTRODUCTION. 

For both mediums, with homogenous and inhomogeneous 

propagation, the same initial spatial curve is associated, 

respectively the spiral. It is defined through the parametric 

system of equations (4), (5), (6), having the radius (ρ), the 

period of a complete rotation Tρ and the gradient (coefficient) 

of increasing (
r

T


) in relation to time. The return from the 

parametric coordinates, to the Cartesian coordinates is 

operated through relation (7). The example of propagation in 

a homogenous medium is studied through a dedicated 

program CPARAM 5(6). For the spiral, the radius ρ = 0.5, the 

period Tρ = 1.2 and the step δr = 1 on the 0r axis are 

considered. The final solution y(t,p,q,r) can be interpreted as a 

spatial-temporal propagation resultant signal, (radiant energy, 

temperature, pressure, chemical concentration) than can be 

simultaneously obtained from the solution of three equations 

with partial derivatives, disposed on the Cartesian coordinate 

axes, having identical propagation parameters. It is 

considered the same intensity of the propagation sources, 

associated to the Cartesian coordinate axes, respectively u0P(t) 

= u0Q(t) = u0R(t) = uEXTA(t) = 10. The example of propagation 

in a inhomogeneous medium is studied through a dedicated 

program CPARAM 7(8).  
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