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Numerical Simulation on Spatial Curves for Distributed
Parameter Propagation Processes

Vlad Muresan, lulia Clitan, Tiberiu Colosi, Mihail Abrudean, Mihaela-Ligia Unguresan, and Andrei
Clitan

Abstract—The paper is referring to distributed parameter
propagation phenomena, in relation to the Cartesian coordinate
axes (0p;0q;0r). The analogical model of the propagation
phenomenon is expressed through a partial differential equation
of second (Il) order, associated to each coordinate axis. The
numerical integration is based on the matrix of partial
derivatives of the state vector (M,q), that uses approximating
solutions for the calculations start. The numerical simulation of
the propagation phenomenon follows parametrical spatial
curves predetermined in relation to time (t), respectively
p =p@), g=q(t), and r = r(t), in the period t, <t <t;. The
examples run on the computer are referring to identical or
different propagation parameters in relation to the three
Cartesian coordinate axes. The numerical simulation evolves
after spatial curves in form of a spiral, which encloses
significantly the evolution of the studied phenomenon. Some
references are made on the applicability of the elaborated
programs, for chemical, metallurgical, pollution processes etc.

Index Terms—Partial differential equations (PDEs),
analogical modeling, numerical simulation, matrix of partial
derivatives of the state vector, thermal propagation, structure
parameters, approximating solutions.

I. INTRODUCTION

In Fig. 1, a propagation phenomenon (for example of the
temperature)  Yoooo(t,p,q,r), oriented on the Cartesian
coordinate axes (Op; 0qg; Or) is formally presented, where the
propagation sources are disposed in the origin of these
coordinate axes. It is considered that the propagation
phenomenon is different, in relation to each from the three
coordinate axes [1]-[3]. With the increasing of the
propagation time, from (to), (to), (t2).., to the final time (t;), and
of the propagation distances on each axis, respectively (po, p1,
P2,-.-, P), (dos 91, U2, Gf), @nd (ro, 4, I,..., Iy), the propagation
on each axis will progressively decrease, respectively yoop(ti,
Pi), Yooq(ti, i) and Yoor(ti, 1i), for (i = 0, i = 1, ip,..., i),
presenting negligible values at yoop(tr, Pr), Yooo(ts, df) and Yoor(ts,
rf).

The analogical model of the propagation phenomenon on
each axis, is considered that it can be expressed through
partial differential equations (PDE) of Il order (t,....),
respectively [4]-[7]: PDE Il (t, p) for (Op) axis, PDE Il (t, q)
for (0q) axis, PDE Il (t, r) for (Or) axis, as it is shown in Table
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Fig. 1. Example of propagation phenomenon oriented on the Cartesian
coordinate axes.

TABLE I: THE MODEL OF THE PROPAGATION PHENOMENON ON EACH

AXIS
PARAMETERS . R
AXeS | EnTUM I | bpp | e Ie Le Py 15 Mg R B
HOMOGENQUS 0] 4 1.5 1 1.5 10 4 1.5 1 1.5
INHOMOGENEQUS 10 4 1.5 1 1.5 10 4 1.3 1 1.5
%op - Yoor +%or “Yiop ¥ 9op Yoo T o1p Yo +dop - Yor Tup Jup =
0p PDE (17) X
Axis =S (ua.m Yop 9100 tap T Pap0p “1;’)
- - £ 2
Tyop.2) P T, D ., A8 R__B )
m’ K T Tw * T ls * ! (]r]: ‘ 7R )
PARAMETERS P p
MEDIUM ol brg| g | Bo | o | % | B0 | R | O | &
HOMOGENOUS 10 4 1.5 1 1.5 10 4 1.3 1 1.5
INHOMOGENEOQUS 18 4 1.25 2 23 18 4 1.25 2 23
0g g * Yoog +%og Yiog *%0g “Yug T g Yoo T g Yag T %ig g =
Axis PDE(iq)
=K (04000 2op + 01000 Mg +P2000 tag)
- - g g
Tpot.4) . Tip 1, Do I, g o O o
S o0g - SR R = e 0. g B __=2 [£]
k-‘g ¢ TgTag N ToTip N ) (ﬁ ¢ o0 e ™)
PARAMETERS . R
MEDIUM ‘2| bm | *m | I Tz s Bg *r it %
HOMOGENQUS 0] 4 1.5 1 1.5 10 4 1.5 1 1.3
INHOMOGENEOQOUS 26 4 1.167 3 33 26 4 1.167 3 33
o %oz - Yoor T %oz “Yior T %or Y20z T 01z Yur T %or Yoz T Mz =
Axis PDE(i7)
=K_|'R (ua.m Yoz *9100r e T P200m “1.2)
- - -z -
Tort.1) K -tk ,%__Te T R ,2_R &
w0 T Ta Tz ) (]{*R: R !

The notations of the intensity of the propagation (yj..)

i+] ot
correspond  with: :w i :ﬂ ,
ati-ap! ati-aq]
aiJrjy
Y=o, fori=0,1,2andj=0,1,2, in each case,
ot'-or!

and the input signals (u;_) correspond with u, = ‘i---- , for

dt
i =0,1, 2. The (ajjs) coefficients, for S = P, then S = Q and
S =R, from the structure of the three PDE Il (t,s), (where s =p,
s=qand s =r), have the expressions: agys=1; aos = T1s + Tos;
A20s= Tis - Tas; @015 = Sy + Sp; Aps = S1 - Sz and aggs = (Toys +
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+ T,5)(S1 + Sy). The structure parameters (Tys, Tos, S1, S), that
define the (ajs) from above, present phenomenological
interpretations formally identical with the coefficients of the
transfer functions of second order , where respectively (T, and
T,) are time constants, and (S; and S,) are space constants
(length, width, depth). It results that to each Cartesian axis, it
corresponds a pair of time constants (T, ; T,.) and a pair of
space constants (S;_; S,.), as it is formally presented in Fig. 2
and in Table I.

NziThr

RiR,

For(tr)

]
5]

S
L=]

K

Foop@.4)

Yoor (£, 2)

Tip:lap
R:h

Fig. 2. The time constants and the space constants associated to Cartesian
axes.

It is considered that for this propagation process (for
example thermal) through dispersion, having different
intensities on the three coordinate axes, the analytical
solutions Yoop(t, P), Yooo(t, @) and yeor(t, r) are not known.
However, it is intended to use an approximating method of
numerical simulation, which has closer results, consequence
of a possible set of measurements that can reflect the reality
accurate enough.

Il. THE APPROXIMATING SOLUTIONS

The approximating solutions .. (t, p) , yOOQ (t,q) and

Yoor (8, 1) necessary for the start of numerical integration

(valid for unit step type input signal), are obtained through
measurements, associated to procedures of expert type, being
desirable to get as much closer as possible to the analytical
solutions Yoop(t, P), Yooo(t, @) and yeer(t, r). For these
approximating solutions, the following usual expression is
adopted

yOOS (t, S) = [Kys : FOTS (t) ' FOS (S)] * uOS (t) ) (1)
which is singularized for each coordinate axis (respectively
S=P;S=Q;S=Rands=p,s = q respectively s =r), from
Table 1. Also, the notation “*” signifies the convolution
product between the two functions depending on time (t).

With ugs(t) is notated the intensity of the propagation
sources, localized in the origin of the Cartesian coordinate
axes and oriented after each axis.

In the case of a perfect radial source (a spherical one), it is
considered that ugp(t) = Ugg(t) = Ugr(t), but in a more general
case, the intensity of these sources can differ, respectively
Uop(t) # Uog(t) # Ugr(t). In Fig. 3 it is considered that the
exponential functions Fqrs(t) are increasing ones, and Fys(s)
are decreasing ones.
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Fig. 3. The exponential functions Fors(t) and Fos(S).

0
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For the final values (t) and (s;), it is considered that
Fors(t) — 1, respectively Fos(sy) — 0. The ( Kys) coefficients,
from (1) are proportionality constants, that for this paper are
considered of unitary values.

Through the appropriate choice of these structure
parameters, associated to each coordinate axis, respectively
(T1p, Top, Py, Py) for the (Op) axis, then (Tiq, Taq, Q1. Qy) for
the (0q) axis and finally (Tqg, Tor, R1, R) for the (Or) axis, it is
intended to obtain a very close process’ work description in
relation to the measurement results gained through expert
procedures.

For the non-periodical, exponentially increasing function
Fors(t), from (1) and from Fig. 3, it is chosen

t

Ts _ TZS

T2 S _TlS

Tis
Tis—Tos

Fors @ =1~

(S=P; S=Q; S=R) and for the non-periodical, exponentially
decreasing function Fggs(s), also from (1) and from Fig. 3, it is
chosen

St
S1—5;

eSl

Fos (8) = ®)

S-S,
(S=P;S=0Q;S=R), (s=p;s=q;s=r) with the remark that
both functions, were proved to be appropriate, in numerous
applications of the propagation phenomena.

(F=rg.)
Fig. 4. The final values and the inflection points.

I1l. THE APPROXIMATION OF TIME AND SPACE CONSTANTS

The constants can differ, more or less, in relation to the
three coordinate axes from Fig. 2. From the experimental
curves, achieved through expert methods, it is approximated
for each abscissa, the final values (t;) and (s;) from Fig. 3, as
well as the values (ti) and (sis) for which these functions

2
d°Fors () _

e and
t

present inflections, respectively



International Journal of Modeling and Optimization, Vol. 8, No. 4, August 2018

d?Fos (s)
ds?
from Fig. 4, with the indices S = P; S=Q; S =R, respectively

S=pP;S=Q;S=T.
For the time constants, it is operated with the relations:

=0, as it is formally exemplified, for the point (i)

_ s _Ts s
Hs = Tis+Tps T 1S prse(Ithgs)
Tys = Ars ‘Tis as well as with the relation:
ttﬁ =% (for S = P, Q, R). It is chosen irs > 1,

s prs-(Ars—1)
. t
resulting: pur _Masdntrs 6y can also be established
M1 s
_ Msl S
that T = TorgInigg s 25 = Tihrg ts Formally

identical, for the space constants, the following relations are

N Sts S, Sts
a|SO Obtalned H.S :m , s 2871 f Sl :m f
S, =Ag-S, Sis _ AsInhs (for s = p, q, r). It results
S5 us-(A5-D)
. s
Hg _Asdnis Se since As > 1. It can be established
2 )
As—1 is
gl gl
that Sl_msis 52 = g -Sg - For numerous

applications tis= (0.1,0.20) - t, and sjs= (0.1,0.20) - S, wWhere
certainly the values for t;; and s are known.

If the propagation phenomena differ very much in relation
to the Cartesian coordinate axes, it results that the final times
(tw, tio , trr), and the inflections values (tip, tig , tir), can exhibit
very different values. It results that the final propagation
distances (S, Stq , Sr) and the associated ones to the inflection
phenomena (Sip, Sig, Sir) can differ very much among each
other. Consequently, according to previously presented
equations, both the value of the time constants and of the
space constants can have values even more different, in
relation to the coordinate axes.

IVV. EXAMPLES OF PROPAGATION IN A HOMOGENOUS
MEDIUM

The propagation is considered identical on the three
Cartesian coordinate axes from Figs. 1 and 2. Consequently,
the homologous propagation constants will be equal,
respectively the time constants: Tip = T1g = Tir and Top = Tog
= Top, also the space constants P, = Q; =R;and P; = Q; =R,
P,=Q,=R,. There are also considered: tx = 10; S=P; S=Q;
S =R (time units); ;= py = r; = 10 (length units); s = 5= 4;
(S=P;S=Q;S=R), 41s=4s=15;(S=P;S=Q; S=R).
Finally, the time constants result as:

Hrs-(I+As)

S=P;S=0Q; S=R, and the space constants (length):
St

S = '

1 ps(I+hs)
R and s =p, q, r. Consequently, T;s = 1; Tys = 1.5; S; = 1;
S, =15.

= O'l'th =1, T25 = iTS . TlS = 15, where

=01-s; =1;S,=4s- $;=1.5,forS=P, Q,
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The inflection abscissa can also be established as:

= Mistnlas) ¢ 01216t and

prs-(Ms 1)
_ AgIn(rg)

ns-(A5-)
time and the space (length) units are certainly different.

With the above data and according to (2), Fors(tis) = 0.9962
and Fgs(tis) = 0.2592 are calculated, and with relation (3)
Fos(sf) = 0.0037 and Fys(s;) = 0.7407 are calculated, as it is
formally presented in Fig. 4, too. The numerical simulation
inside of this medium is operated on the spatial curve of a
spiral [8,9], defined through the system of parametric
equations:

iS

is St = 0.1216- s, , with the remark that the

p:p(t):p-cos?r'—nm (4)
p

q:q(t):p~sin¥-t, ()
P

r=r(t)=$-t, (6)

p

where (p) and (T,) correspond with the radius of the spiral,
respectively with the period of a complete revolution, and (Jr)
is the step of the spiral.

The dedicated MATLAB program CPARAMS5(6) is used
based on the method of the matrix of partial derivatives of the
state vector (Mpqax), associated with Taylor series, [3], using
for the start of the calculus the approximating solutions
Yoos (1 5) , from (1). Other initialization parameters than the
previously mentioned ones, are: p = 0.5, or = 1; T, = 1.2,
Ky =1; 0 =0; At = 0.01; Ag = At - 100. The extraction of
integration results on the three coordinate axes, is made
I—g ,forn=0,1,2,...,12,
asitis presented in Tables2,3and 4, forT,=1;T,=15;S; =
1,5,=15; p =05, T,=1.2,6r=1, K, =1, Up =

simultaneously in the moments t =n-

T
10 and the extraction step A0 = ﬁ It is remarked that p(t)

and q(t) present non-periodical behaviors with amplitudes of
(25), and r(t) is an increasing linear variable. The exponential
solutions yp(t,p) and yo(t,.q) present small periodical
components, and the exponential solution yg(tr), after
reaching a maximum, is progressively decreasing until a value
practically negligible.

Table Il corresponds to the first period (T,), meaning
(0 <t<T,), with the (r) increasing abscissa, fromt=0; r =0,
or
Tp
referring to the third period, (3 - T, <t <4 - T)), with the
increasing abscissa (r), fromt =3 - T, = 3.6; r = 3, until
t=4-T,=4.8, respectively r = 4. Table 4 contains the tenths
period, respectively (10 - T, <t<11 - T,), with the increasing
abscissa (r), from t 10 - T, 12; r 10, until
t=11-T,=13.2,and r=11.

The final result y(t,p,q,r), corresponds to a “space-temporal
hypotenuse”, according to the obvious relation:

until t =t = T, respectively r=—-T =1. Table 3 is
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Y(t P.G.1) = Y3t P)+Y3 (La)+YR(Lr) (7)

as passing back from the parametric coordinates (4), (5), (6),
that define the spiral, to the Cartesian coordinates. It is
remarked that while advancing in time, respectively from the
Table 2, to Table 3, then Table 4, the values of y (t, p, g, 1)
from (7), are increasing progressively more slowly, so as, in
Table 4 practically they get steady between (13.650,13.690).
Hence, it results that the final solution y (t, p, g, r) obviously
presents an exponential evolution, too, increasing in
transitory regime (Table 1), and then practically stabilized in
stationary regime (Table 1V).

TABLE II: SIMULATION RESULTS CORRESPONDING TO THE FIRST PERIOD

L Ll .5 Elsh o) 5|5 L Lk 5
I e R A R LR B R A IR U IS R e

P L 30 60 90 120 | 150 | 180 | 210 | 240 270 300 | 330 360
p [05] 0433 | 025 | _gaof [-025 |- 0433 | -05 |-0433|-0255| .07 | 025 | 0433 | 03
g | 0| 025 [0439| 05 |0433| 025 | 7 |-025|-0433] 05 [-0433|-025 | 5007
ro| 0] g0 | 0166 025 |0333( 0416 | 05 | 0383 | 0.666 | 075 | 0.833 | 0.916 1

o [ 0] 003 [ 0117 0254 | 0420 0.603 | 0.811 | 1.063 1362 | 1667 | 1919 | 2.137 | 2382

Yo | 0] 003 |0I13[ 0238 | 0407 0.623 | 0.866 | 1.098 | 1313 | 1561 | 1.858 | 2207 | 2.344

p | O] 003 [0118| 0.240 | 0415 0605 | 0811 | 1.026 [ 1.243 | 1438 | 1665 | 1.862 | 2.046
00533 10201 [ 04288 10718 | 1.057 [ 1438 | 1841 | 2067 [ 2700 [3.1483 | 3.503 | 4.042

TABLE IlI: SIMULATION RESULTS CORRESPONDING TO THE THIRD PERIOD
t]36 37 38 39 4 41 472 43 44 435 46 47 48
o ég 110 | 1140 | 1170 | 1200 | 1230 | 1260 | 1200 | 1320 | 1330 | 1380 | 1410 | 1440
po[05] 0433 | 025 [ qpf

=025 (<0433 -05 |-0433|-025 | o | 025 | 043 0.5

o [0 025 o3| 05 [o0433| 0250 | g0t | -025 [-0433] —05 |-0433 [-025 | 1of

# | 3] 3083 [3166] 325 3333 341 33 3.58 | 3.666 | 375 383 | 301 4

Yo 7'23 755 | 7919 ( 817 [ 8131| 706 | 7937 | 814 | 849 | 8728 | 864 | 843 837
Yo 7'28 7804 | 7667 | 7.65 |[7.873) 8219 | 8475 | 841 822 | 8174 | 837 | 871 804
Ya 2'93 232 | 2250 ( 217 [2101) 2027 | 1954 | 1881 | 1809 | 1730 1.67 160 | 1.336
j lg% 11108 | 1125 | 11412 [ 1051 | 11.63 [ 101775 | 11.855 | 11.05 | 1208 [ 1214 | 1223 | 1234

TABLE IV: SIMULATION RESULTS CORRESPONDING TO THE TENTHS

remarked that the steady state regime appears after the first
seven periods.

05
sin@*pi*t) 0
05 05 cos(2*pi*t)

Fig. 5. The evolution of the y solution for homogenous medium.

V. EXAMPLE OF PROPAGATION IN AN INHOMOGENEOUS

The propagation is considered different on the three
Cartesian coordinate axes from Fig. 2. It is highlighted the
inhomogeneity of the propagation medium through different
values of the time constants (T, ; T,.) and of the space
constants (S ; S,..), through the initializing instructions from
the new program CPARAMT7(8), respectively: Tipp = 1;
Topa=1.5;T1ga=2; Toga =2.5; T1ra = 3; Topa = 3.5; Spa = 1;
Sapa = 1.5; S10a = 2; Syon = 2.5; Sira = 3; Sora = 3.5, p = 0.5;

AT _ 4o Taq . Q .
o= LT, =12 g = g0 =125 2= & =125

T _ . R )
g = 1 = 1167 : M = g =167 :

tio = Mo - (Tig + Taq) = 18; tr= hr - (Tir + Tor) = 26;
0= Mo - (Q1+Qz) =18; ;= 1k - (Ry + Ry) = 26. For the first
period, the simulation results are presented in Table V.

TABLE V: SIMULATION RESULTS CORRESPONDING TO THE FIRST PERIOD

PERIOD F PO R R O R I S I T 3

P12 ] | ] 3 | BA] ] 06 ] ] ] 6L L e e e e e N R
N 0.1 02 03 04 0.5 0.6 0.7 08 09 1.0 11 12
o | 360 | 30 | 3600 | 30 | o | a0 | w0 | 3swo | w0 | w0 | 0 | %0 | 36 T e T o To i T a0 T e T e e
p |05 [ | 0 | s [-0s o] -5 o f-02s [5000 025 [oam | s » |05] 04 | 025 | oo |-025 |04 ] 05 |043| 025 | 1o | 025 | o] 03
g | 2007 | 025 [ 0433 | 05 | 0433 | 025 | 5007 |-005 0433 | 05 |-0433)-025 | 3907 f g onozsjs 3;2; on.éjs 3;;2 oﬂ.fljs 7111.U5 _onagg _on.';ﬁas3 _0.[;; _oﬂ.;;; _o.mgfg ml
r 10 [10.083 ] 10.166 | 1025 | 10.333 ] 1041 | 1050 | 1058 | 10.666 | 10.75 | 10.833 | 10916 [ 11 e | 0] 003 |0117| 0254 | 0420 | 0.603 | 0811 | 1.063 | 1.362 | 1.667 | 192 | 2.137 | 238
J“B 035 0.407 081 0.002 0811 03 0350 930 0812 0.004 0813 030 0361 Yo 0 0.000 0.037 0.08 0.134 | 0214 0.301 0.396 0.497 0.608 0.733 0.871 1.01
Yr 0 0.004 0.018 0.04 0.07 0.106 0.15 0.20 0.254 0.313 0377 0.445 0.516

Yo | 090 [ ose | o | 0357 | 050 | osur| o3 |os | ost| 036 |50 | osi4 | 0005 A e R e R TN R R REAe

T (00372 1 0035 | 5g? | 3007 | 50| 008 | 2007 | 2007 | 2107 | 207
Y | 3087 | 13053 | 13054 | 13080 | 13.656 ] 13.657 | 13.601 | 13.008 | 13.008 | 13603

0| 000 | 2497
T60 | 5660 B6H

The radius (p) of the spiral is (arbitrary) chosen sub-unitary
as p = 0.5, in order to maintain the spiral evolution, inside the
limits: ps=1; gs=1; ry= 1. In the initialization instructions, the
corresponding ones result: Tipa = T1p; Topa = T2p; T1ga = Tig;
Taon = Tog; Tira = Tir) Tora = Tor; Sipa = P1; Sopa = Pa;
S10a = Q1; So0a = Q2; S1ra = Ry; Sora = Ro. Also pa=p; 0a =0;
andra=r.

The intensity of supply sources is big enough, respectively
[Uop = Ugg = Ugpr = Ugxta = 10], in order to avoid the much
sub-unitary results.

In Fig. 5 the solution y(t,p,q,r) is presented, for the thirteen
periods of the simulation. The data associated to the Tables I,
I11, IV are included in this figure.

The graph from Fig. 5 is a 3D representation of the y
solution for the homogenous medium that highlights in an
intuitive manner the considered spiral. From Fig. 5, it can be

205

sin(2*pi*t)
(2*p )VD_5 o
) 02

2
C0S(2*pi*t)

Fig. 6. The evolution of the y solution for inhomogeneous medium.

In the Fig. 6, the solution y(t,p,q,r) is presented, for the
thirteen periods of the simulation. In this case, also, the graph
from Fig. 6 is a 3D representation of the y solution, but for the
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inhomogeneous medium. The tendency to steady state regime
is obvious in the upper part of the graph, where evolution of
the y solution is much slower than in the intermediary,
respectively in the lower part of the graph. In Fig. 7, a
comparative graph between the y solutions for the two
mediums (homogenous and inhomogeneous) is presented.

14 T T T T T T

12 B
For homogenous medium
10f B
sk For inhomogeneous medium 4
>
6 i
ar |
2r 4
o : : : : : :
0 2 4 6 8 10 12 14
TIME
Fig. 7. The y solutions for both homogeneous and inhomogeneous
mediums.

From Fig. 7 it results a higher inertia of the propagation
phenomenon in the case of the inhomogeneous medium
comparing with the homogeneous medium case.

VI. CONCLUSION

The paper presents, a procedure of numerical simulation,
oriented on spatial curves (for example spirals), for
distributed parameter propagation processes. The analogical
model of these processes is expressed through systems of
three equations with partial derivatives of second order with,
respectively PDE II(t,p), PDE l1I(t,q) and PDE lI(t,r), where
the variables (p), (q) and (r) belong to the Cartesian
coordinate axes (0p), (0q) respectively (0r). The form of these
three equations with partial derivatives is exemplified in
Table 1, and the expressions of the (ajjs) coefficients are
considered dependent on the time constants (T.s; T»s) and on
the space constants (Sy; S,) shown in the INTRODUCTION.
For both mediums, with homogenous and inhomogeneous
propagation, the same initial spatial curve is associated,
respectively the spiral. It is defined through the parametric
system of equations (4), (5), (6), having the radius (p), the
period of a complete rotation T, and the gradient (coefficient)

of increasing (_?—r) in relation to time. The return from the
P

parametric coordinates, to the Cartesian coordinates is
operated through relation (7). The example of propagation in
a homogenous medium is studied through a dedicated
program CPARAM 5(6). For the spiral, the radius p = 0.5, the
period T, = 1.2 and the step 6r = 1 on the Or axis are
considered. The final solution y(t,p,q,r) can be interpreted as a
spatial-temporal propagation resultant signal, (radiant energy,
temperature, pressure, chemical concentration) than can be
simultaneously obtained from the solution of three equations
with partial derivatives, disposed on the Cartesian coordinate
axes, having identical propagation parameters. It is
considered the same intensity of the propagation sources,
associated to the Cartesian coordinate axes, respectively ugp(t)
= Upo(t) = Ugr(t) = UexTa(t) = 10. The example of propagation
in a inhomogeneous medium is studied through a dedicated
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program CPARAM 7(8).
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