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Abstract—This paper presents the relationship between the 

Hurst Exponent (H) and the Rescaled Range Analysis (R/S) in 

the classification of Foreign Exchange Market (FOREX) time 

series by the supposition of the existence of a Fractal Market in 

an alternative to the traditional theory of Capital Markets. In 

such a way, the Hurst Exponent is a metric capable of providing 

information on correlation and persistence in a time series. 

Many systems can be described by self-similar fractals as 

Fractional Brownian Motion, which are well characterized by 

this statistic. 

 
Index Terms—Hurst exponent, R/S analysis, fractal analysis, 

financial time series, fractional.  

 

I. INTRODUCTION 

The necessity to anticipate and identify changes in events 

points to a new direction in line with the analysis of the 

fluctuations of prices of financial assets. This new direction 

leads us to argue about new alternatives in Finance Theory 

and Capital Markets. In the spirit of this contention the theory 

of fractals arises by innovating the argumentation [1]. 

Empirical studies, especially in Hydrology and 

Climatology, decade of 1950, reveal the presence of Long 

Memory (LM) in temporal and spatial data. These series 

present persistence in the sample autocorrelations, that is, 

significant dependence between observations separated by a 

long interval of time [2]. 

Harold Edwin Hurst [3] has spent much of his academic life 

studying water storage issues. He invented a new statistical 

method, Hurst Exponent (H) that is applied in several areas 

including Fractals and Chaos Theory, Long Memory 

Processes and Spectral Analysis. It provides concrete 

information on correlation and persistence, which makes H an 

excellent index for studying complex processes such as the 

financial time series. The values of the Hurst Exponent of 

time series are estimated using the Rescaled Range Analysis 

(R/S) method. 

The value of this exponent varies from 0 to 1. The more 

distinct from 0.5, the longer the long-term memory. Therefore, 

processes with long memory are processes that have H > 0.5, 

persistent processes, or H < 0.5, anti-persistent processes. For 

H = 0.5 the signal or process is random or Brownian Motion 

[4]. 

This paper aims to present the relationship between the 

Hurst Exponent and the R/S Analysis in the prediction of 
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financial time series by the hypothesis of the existence of a 

Fractal Market in an alternative to the traditional theory of 

Capital Markets. The method used for the estimated 

calculation of the Hurst Exponent (H), using the R/S Analysis, 

follows the methodology developed by Mandelbrot and 

Wallis [4], based on the works of Hurst [5], discussed by 

Peters [6] and presented by Couillard [7]. 

Some academic research initiatives have been developed 

and performed in the field of econophysics to examine the 

properties and phenomena of random walk and presence of 

long memory in financial time series. 

In his paper, Qian [8] analyzed the Hurst exponent for 

Dow-Jones index. He found that the periods with large Hurst 

exponents could be predicted more accurately than those with 

H values close to random series, which suggested that stock 

markets were not totally random in all periods. 

Corazza [9] studied the returns in some FX Markets and he 

discovered that the values of Hurst Exponent were 

statistically different from 0.5 in most of the samples. He also 

found that the Hurst exponent is not fixed but it changes 

dynamically over time, concluding that FX Markets follow a 

fractional Brownian motion. 

Cajueiro [10] measured the long-term dependence and 

efficiency in emergence markets of stock indexes. He 

suggested that the long-range dependence measures are more 

significant with Asian countries than for Latin American 

countries. 

Others, like Cornelis [11], Singh [12] and Kyaw [13], also 

studied the degree of long-term dependence and the fractional 

Brownian motion in several return curves by the application 

of the Hurst Exponent. 

Hence, despite the good results found in several studies, the 

challenge in the prediction of financial time series by the 

hypothesis of the existence of the Fractal Market is still open, 

either for forecasting financial time series or for forecasting 

trends for financial indicators. 

This paper is organized as following: Section 2, Fractal 

Time Series, presents a review of fractal theory relating it to 

time series. Section 3, Hypothesis of the existence of a Fractal 

Market, compares the Fractal Market and the traditional 

Theory of Capital Markets. The Section 4, Hurst Exponent 

and the R/S Analysis, exposes the theoretical bases of the 

Hurst processes and the development of the R/S Analysis. 

Section 5, Methodology, exposes the method used for the 

estimated calculation of the Hurst Exponent (H), using the 

R/S Analysis. Section 6, Experimental Results, presents the 

R/S Analysis evaluation in a use case. Finally, Section 7, 

Conclusion, presents the general analysis and the 

contributions of this paper, as well as suggestions for future 

papers. 
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II. FRACTAL SERIES 

It can be seen that many of the spatial structures in nature 

are the result of the combination of a considerable number of 

identical components, implying the existence of the principle 

of having similar self-structures called fractal [14]. 

The concept of fractals relates to attempts to measure the 

size of the targets for which traditional definitions based on 

Euclidean geometry do not work well. A fractal, usually of 

fractional size, is a mathematical entity that can present itself 

as a spatial pattern or even a time series, and can be divided 

into parts, where each of these parts is similar to the original 

object [15]. 

A. Fractal Geometry 

Fractal is defined by a geometric figure, of fragmented 

appearance, which can be subdivided indefinitely into parts, 

where the parts are, in some way, reduced copies of the whole. 

There is a geometric fractal when the whole is a perfect 

magnification of a part. The concept of geometric fractal was 

created in the early twentieth century to show that there were 

mathematical elements different from what the classical 

geometry of Euclid (300 BC) said [16].  

B. Deterministic Fractals 

Exact self-similarity is understood to be the invariance of 

the structure after an isotropic transformation, that is, that 

which occurs with the same intensity in all directions. In this 

matter, by taking an object S, as a set of points 

1 2 3{ , , ...}R x x x and applying a factor of scale b in a similar 

auto transformation, it changes the coordinates of the points 

for 
1 2 3{ , , ,...}.bR bx bx bx Then the set S composed by the 

points of coordinates R, is self-similar if it is invariant after 

performing the transformation [17].  

As an example, a fractal called the Sierpinski Triangle 

shown in Fig. 1(a). Its basic construction begins with an 

equilateral triangle, fully filled. Considering initially the 

midpoints of the three sides that, together with the vertices of 

the original triangle, form four new congruent triangles. 

Subsequently, the central triangle is subtracted, thereby 

removing the first stage of the basic building process. This 

subtraction results in three congruent triangles whose sides 

measure half the side of the original triangle. The procedure 

described above is repeated for each of these three triangles. 

In this way, starting with a single triangle, a sequence of 3, 

9, 27, 81 triangles are generated, corresponding respectively 

to levels 1, 2, 3 and 4, presented in Fig. 1(b) [17]. 

 

 
Fig. 1. (a) Sierpinski Triangle and (b) its first five constructions [17]. 

 

 

This formation law, successively applied, causes the 

triangular structure to consist of gradually smaller triangles 

that are perfect copies of the initial shape of the figure. Hence, 

by applying a zoom to any part has something similar to the 

figure as a whole as exposed in Fig. 1(a). In the extreme of the 

infinite applications of this process is obtained an exact 

similar auto-fractal figure [17]. 

C. Fractal Dimension 

Assis [17] also emphasizes that by the classical Euclidean 

concept a coordinate, length, describes a line, two coordinates, 

length and width, describe a plane and three coordinates, 

length, height and width, and describe a volume. By this prism, 

a point has dimension zero. 

Associated with the perpendicular axes, the Euclidean 

dimension specifies in one, two or three dimensions some 

point respectively belonging to a line, area or volume. It may 

be noted that Euclidean dimensions are always integers. 

Considering the Koch curve, exhibited in Fig. 2, which 

construction is done by using a line segment, which is divided 

into three equal segments. From there, it replaces the third 

median part with an equilateral triangle removing the base. 

The iterative procedure is the application of the rule to each of 

the line segments that resulted from the previous iteration 

[17]. 

Observing each step of the iterative process, it is noted that, 

from one level to the next, three segments are replaced by four 

of equal length, so the total length is multiplied by ¾ in the 

correlation of successive levels. It also be seen that the limit of 

a geometric succession of ratio ¾ is infinite, determining that 

the final figure will have an infinite length. Mandelbrot also 

had observed that and denominated this limit. 

Thus, in the n
th

 level, the length of the Kock curve will be 

given by: 

 

   1 3 4 3
n

n nL L L                          (1) 

 

Fig. 2 represents the first four levels for the construction of 

the Kock curve and their respective lengths. 

Comparing this type of curve, which has infinite detailing, 

with a conventional line, this curve occupies more space, and 

hence has a fractal dimension greater than 1 : 0, even so it 

does not occupy the space of a band that contains it, in this 

case dimension 2 : 0. Because of that, this concept of fractal 

dimension, D, is closely related to the structure of occupation 

of the space of the figure. 

 According to Falconer [18], the topological dimension Dt can 

be defined iteratively by defining the topological dimension 

of a point as zero. The topological dimension of other objects 

is a result of the value of Dt of the element which makes it 

disconnected plus 1. For a curve, one point is sufficient to 

make it disconnected, so that the corresponding value of Dt is 

0 + 1 = 1. Continuing with this logic, for a plane, a curve 

makes it disconnected, thus having 1 + 1 = 2. Finally, for a 

volume, a surface makes it disconnected, 2 + 1 = 3.  

Also, according to Falconer [18], the immersion dimension, 

Di, represents the dimension in which the object is immersed. 
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Fig. 2. Kock curve showing the first 4 levels and their lengths [17]. 

 

For instance, the letters of this paper are taken. These have 

topological dimension 1, however they are immersed in the 

space of the paper sheet, which suggests that their immersion 

dimension is 2. 

The fractal dimension of a set, begins with the definition of 

metric space R
n
. In the line a range is defined as a line segment, 

whereas in R
n
 the interval is defined as a sphere of radius γ, 

centered at xi. The sphere is represented 

by     ; | ;n

i i i iB x y R d x y    where d(xi; yi) is the 

measure of the space R
n
. 

In accordance with Mandelbrot [19], a given set A 

constitutes a fractal if, in A, Di > D > Dt, where D is the fractal 

dimension, Di is the immersion dimension, and Dt is the 

topological dimension of the set A. 

 

III. FRACTAL MARKET 

The Efficient Markets Hypothesis has some exceptions to 

the assumption of normality [20]. Osborne [21] had found an 

anomaly when attempting to plot a graph of the probability 

density function of the distribution of returns. Osborne also 

observed that the distribution had higher kurtosis than the 

normal, leptokurtic, or heavy-tailed distribution, although at 

that time he had not madden attention to this fact. 

Turner and Weigel apud Peters [6] conducted a study on 

the behavior of the volatility of the daily returns of the S&P 

Index for the period between 1928 and 1990, finding results 

similar to those found by Fama [22] and Sharpe [23]. 

These studies show evidence that returns on securities in 

the capital markets are not normally distributed. Hence, if 

returns are not normally distributed, much of the statistical 

analysis that of correlation coefficients, becomes highly 

compromised and may lead to erroneous results, suggesting 

also that the idea of the occurrence of random walk in stock 

prices is wrong. 

The Fractal Theory began to impose itself as a counterpoint 

to the hypotheses created by the more conservative financial 

theory, for offering a more realistic perspective on the 

functioning of the Financial Market. 

Called self-similar, the fractals have less elaborate 

structures, whose scale changes are manifested proportionally 

in every structure. The fractals most similar to the behavior of 

prices are the self-related ones, since they change of scales in 

diverse directions. There are also multi-fractals, those in 

which scales vary in several different ways. 

When analyzing fractal geometry figures, it possible to 

notice a similarity between the parts with the whole, 

independent of the scale in which the object is observed. This 

property describes fractal behavior governed by the Power 

Law. 

The classical Power Law, initially discovered by Vilfredo 

Pareto in studies on income distribution, allows us to visualize 

changes in patterns of behavior that are repeated in numerous 

size scales of the figure. This law is characterized by the 

probability of measuring some quantity that varies 

exponentially with that quantity. But was through Mandelbrot 

that in 1961 identified the Power Law in the series of prices of 

assets in the Financial Market. Later Mandelbrot published an 

article [24], aided by computational processing, where he 

identified patterns in the price series governed by a similarity 

defined by the Power Law and also described that the 

behavior of asset prices was distant from a normal 

distribution. 

Stable distributions are characterized by four parameters: α, 

β, γ and δ. The parameter α refers to the characteristic 

exponent, ranging from 0 and 2; α = 2 corresponds to a 

Gaussian distribution. The parameter β means asymmetry and 

varies between -1 and 1. The parameters γ and δ are 

corresponding to the scaling and location parameters 

respectively.  

The fractal dimension allows the identification of the 

existence of Power Law, is given by P = n
D
, where P are 

similar auto parts, n is magnification factor or Power Law 

governing the geometry, and D is the fractal dimension. 

Solving and evidencing in D, results in: 

 

 
 

log

log

P
D

n

 
  
 

                       (2) 

 

In this way, Mandelbrot calculated the slope of the line, α = 

1.7; smaller than the α of the normal distribution, α = 2, 

indicating a Power Law. 

Consequently, Mandelbrot developed two mathematical 

tools of fractal analysis in time series: the α distribution and 

the Hurst Exponent (H). Therefore, α is a measure of asset 

risk value, the smaller the value of the α, the heavier the tail 

behavior in the distribution, and the Hurst Exponent (H) 

reflecting the existence of persistence, a specific Power Law, 

driving the asset prices behavior. 

Mandelbrot [24] also developed a new statistical measure 

of nonparametric analysis called the Rescaled Range Analysis 

(R/S). By this new metric 1H  . In the hypothesis that H = 

½ means a Brownian motion, or rather having a normal 

distribution. Hence, if H = ½  α = 2 normal curves.  

A. Analysis of the Evidence of Fractals in the Financial 

Series 

Peters, [25] using the Hurst R/S technique, evaluated the 

persistence of memory in series of monthly returns of stocks 

of the S&P500 Index, American T-Bonds, and the relative 

return between the two series between the years of 1950 and 

1988, in a total of 463 monthly observations. 

Using the Hurst Exponent, or the power factor, H = log 
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(R/S) / N, where R/S is the division of the amplitude between 

the highest and the lowest occurrence recorded (R), by the 

standard deviation found in the series (S) and N is the number 

of observations, Peters obtained the results: H = 0.61 for the 

Index, H = 0.64 for the T-Bonds and H = 0.66 for the 

relationship between Index and T-Bonds. Peters evidenced a 

behavior of memory persistence of the market, characteristic 

of Brownian fractal behavior, but not significant to the point 

of the projection of the results beyond a short period since the 

random factor was much more present. Hence, he can 

conclude that the results pointed out that the model, called 

pure random walk, and did not apply to capital markets, as the 

efficient markets hypothesized. 

Müller [26] found fractals characteristics in time series of 

exchange rates, also identifying the scaling factor, the Power 

Law, followed by prices, by analyzing the time intervals of 

daily and intra-daily samples between the years from June 

1973 to June 1993, from a few minutes to a year. Müller can 

also verify that the changes in the price behavior were more 

similar to the fractal model, when compared them with 

GARCH processes. Besides that, volatility was positively 

correlated with the market activity and the transaction volume, 

in an indication that the market was also heterogeneous. 

Corazza [27] worked with commodity futures prices on the 

Chicago Stock Exchange between 1981 and 1991. He applied 

four tests, including the Hurst technique. The result found 

indicated that the historical series shared the fractional 

properties. 

Several other authors such as Larrain [28], Lo [29], 

Barkoulas [30], Richards [31], Panas [32] and more recently 

Di Matteo [33], among others, reached the conclusion that all 

global financial markets presented scale symmetry, with 

fractal characteristics, as well as the methodologies usually 

used to control risk, based on the standard deviation, were not 

efficient and able to provide a good classification. 

 

IV. HURST EXPONENT AND THE R/S ANALYSIS 

Suggested by the English engineer and hydrologist Harold 

Hurst in 1951, the H index estimate, part of the Rescaled 

Range Analysis (R/St). Hurst was responsible for building 

dams along the Nile River, when he observed the 

accumulation of values above and below the mean while 

tabulating the river level over the years. Inspired by the 

random process definition suggested by Einstein, Hurst ran 

some tests to check if the accumulation of above and below 

average values was random. 

Let a sequence of values εt, t ≥ 1, be independent and 

identically distributed (i.i.d.), with mean µε and variance 2.t  

The sequence Wt = ε1 + ε2 + … + εt  is defined as a random 

walk and also: 

 

       1 2 ...t tE W E E E t                      (3) 

 

        2

1 2 ...t tVar W Var Var Var t                 (4) 

 

where E(ε) is the Expectation Value of   and Var(ε) is the 

Variance of ε. 

If the series of the level of the Nile River were set as a 

random walk, then the standard deviation value would be 

equal to ζε t
½
. The Rescaled Range Analysis (R/St) tests the 

null hypothesis of the exponent of the variable t being equal to 

½. Calling this exponent as H, homage of Mandelbrot to Hurst 

and the mathematician Ludwing Otto Hölder [34], it is 

possible to define the test by the null hypothesis H0: H = ½ 

and by the alternative hypothesis H0: H ≠ ½. 

Mandelbrot [35] has also developed a method to estimate 

the H parameter. By this method rejects the null hypothesis 

because H > ½, it is the case of persistence, rejects the null 

hypothesis because H < ½, it is the case of anti-persistence. 

It is possible to follow the method developed by 

Mandelbrot proceeding the presentation of Couillard [7], also 

discussed by Peters [6], according to: 

Let be a time series with N observations for equal intervals 

of time. Dividing the observations into M sub-periods with the 

same number of observations t, such as M × t = N, Im is 

defined for m = 1, 2,  …, M, such as each of the M sub-periods 

and Nk,m, k = 1, 2, …, t, as each element of a given sub-period. 

By this defines the mean 
mI  and the standard deviation 

mI of each sub-period. The notation adopted by this paper 

follows the same notation presented by Couillard [7] and used 

by Peters [6]. In this case 
m mI IS   to respect the notation 

R/S for the Rescaled Range formula. 

 

  ,

1

1
n

I k m
m

k

N
t




                            (5) 

 

   
2

,

1

1
n

I k m I
m m

k

S N
t




                      (6) 

 

Having the values of the means it is conceivable to 

reconstruct the original series and obtain a series with M 

sequences Im composed, each, by t deviations accumulated 

with respect to .I
m

 These accumulated deviations are defined 

as follows: 

 

 , ,

1

n

k m k m I
m

k

X N 


                            (7) 

 

where the amplitude of the mean deviations accumulated in 

each sequence Im is defined by: 

 

   I k,m k,m
m

R = max X  - min X                     (8) 

 

The series with M values 
mIR is normalized by dividing 

these amplitude values by their corresponding standard 

deviations .
mIS The mean of these standard values maintains 

the relationship between H and t. Therefore, the statistic is 

defined as: 

 

   
m m

1
t I I

1

S = S
M

H
M

m

R R ct


 
 

 
                     (9) 

 

International Journal of Modeling and Optimization, Vol. 8, No. 2, April 2018

119



where c is a constant. 

To obtain the value of H, and test it, computes a series of 

statistics R/St for different values of t, linearize the equality 

R/St  = ct
H
 and, with that, estimate the value of  H. To linearize 

the equality R/St  = ct
H
, simply apply the logarithm: 

 

    tlog S =log logR c H t                        (10) 

 

The value of H can be estimated by simple linear regression. 

Since 
mIR is always greater than or equal to zero and 

mIS is 

always greater than zero, the value of H will have a lower limit 

close to zero, depending on the value of c. As 
mI mIR S are 

sums of t  normalized values, their maximum value tends to t, 

so the maximum value of H tends to 1, depending on c. 

The question in performing this test is to define the size of 

the sub-periods Im so as to preserve for each value of R/St a 

number as close as possible to the variables. Also, the values 

of t should preferably be entire divisors of N, or integers as 

close as possible to some divisor of the series size, and 

consequently that the amount of deleted data may be minimal. 

Hurst [5] in his original test, needed the hypothesis that the 

values were normally distributed. By the test suggested by 

Mandelbrot [35], a test t, potentially the errors of the 

statistical model are associated with equation (13) as i.i.d. and 

normal. There is a discussion about the validity of these tests. 

Lo [29] and MacKinlay [36] attest that the tests may lead to 

the conclusion that there is long-term memory, persistence or 

anti-persistence, when in fact there are only short-term 

autocorrelation. The two tests, Hurst [5] and Mandelbrot [35], 

would not be robust in the presence of correlations between 

nearby variables. 

However, there is evidence that the suggested correction 

has a bias. As observed by Teverovsky [37], Mandelbrot and 

Hudson [34], in simulated environments, had noticed the 

propensity to accept the null hypothesis H0: H = ½ when it is 

false. 

Couillard [7] suggested a specific t test for the H index. The 

controversy in applying a test for the H index by the way in 

which the finite sequences of values defined as empirically 

random walks are shown as values greater than ½ for the H 

index. Note that the values of H are distributed as a t-Student 

curve. This author proposes the test t = (v – m) / d, where v  is 

the estimated value of  H, m is the mean of the value of  H if 

there is no long memory and d is the standard deviation of  H 

if there is no long memory. 

 

V. METHODOLOGY 

The method used for the estimated calculation of the Hurst 

Exponent (H), using the R/S Analysis, follows the 

methodology developed by Mandelbrot and Wallis [4], based 

on the works of Hurst [5], discussed in Section 4. It is also 

included a first task to select the data of the elected time series 

for the usage of the R/S Analysis, scope of this work. So, the 

execution of the method presented here consists of the 

execution of the following tasks, the following tasks, 

highlighted in the presentation of Couillard [7], as well 

emphasized in Peters [6]: 

 Selection of time series data; 

 Calculation of the mean (Em) and the standard 

deviation (Sm) of the sub-series (Zi,m); 

 Standardization of the subseries data (Zi,m) by 

subtraction of the mean of the sub-series Xi,m = Zi,m - 

Em, for i = 1, …, N; 

 Generation of the cumulative time series 

, ,1

i

i m j mj
Y X


 , for i = 1, …, N; 

 Calculation of the variation Rm = max{Y1,m, …, Yn,m} 

- min{Y1,m, …, Yn,m}; 

 Computation of the Statistics (Rm/Sm); and 

 Estimation of the mean (R/S)n of the statistic (Rm/Sm) 

of all subsets of size n. 

Observing that the statistic R/S asymptotically follows the 

relation (R/S)n ≈ cn
H
, the value of the Hurst Exponent (H) can 

be calculated by a simple linear regression: log(R/S)n = log c + 

H log n.  

If the process is a Brownian motion, H must be ½, when the 

process is persistent then H is greater than ½, and when 

anti-persistent H is less than ½. For a simple linear trend, H = 

1 and for a white noise H = 0. Therefore, H must be between 0 

and 1. 

Beyond that, according to Couillard and Davison [7] most 

studies fail to find H ≠ ½ because they do not provide a 

significance test. That way, the test suggested by de Couillard 

and Davison is adopted and performed using the p–value < 

0.001. 

 

VI. EXPERIMENTAL RESULTS 

A. Selection of the Time Series 

For the experimental part, five financial time series were 

analyzed using the log-returns of Foreign Exchange Market 

(FOREX) [38] assets type. 

The Foreign Exchange Market (FOREX, FX, or Currency 

Market) is a global market for decentralized currency trading 

[39]. In terms of trading volume, it is by far the largest market 

in the world [40]. The main participants in this market are the 

largest international banks and they are responsible for 

defining the relative values of the different currencies. 

The following relationships between globalized currencies 

are used: AUD - Australian Dollar  JPY - Japanese Yen, 

CHF - Swiss Franc  JPY - Japanese Yen, EUR - Euro  

JPY - Japanese Yen, GBP - British Pound   JPY - Japanese 

Yen and EUR - Euro  CHF - Swiss Franc. 

According to Morettin [2] the price variation between the 

instants t–1 and t is given by ∆Pt = Pt – Pt–1 and the relative 

price or the return of this asset is defined by Rt = [(Pt – Pt–1) / 

(Pt–1)] = [(∆Pt) / (Pt–1)] = {[(Pt) / (Pt–1)] – 1} or rather: 

 

   11 t t tR P P                             (11) 

 

Still according to Morettin [2], normally Rt is expressed in 

percent, being called the rate of return. Also denoted by pt = 

log Pt, where log is the e base logarithm, the log-return of 

financial assets is defined as: 
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     1 1log log 1t t t t t tr P P R p p             (12) 

 

The log-returns of the listed FOREX assets were calculated 

from the prices between 01/01/2003 and 12/30/2014 in 

intervals of 1 minute, obtained from the public knowledge 

base [38]. 

A framework is created, developed in Visual Studio .NET, 

Framework 4.6.2 [41], 64-bit, Windows Platform, for 

generation and selection of 3 new periodicities to execute the 

tests, with a quantity around 3000 values per series generated 

and selected, in intervals of 1 day, 1 hour and 15 minutes. 

Thereafter, using data mining algorithms, the data from the 

time series are treated by eliminating irrelevant data from the 

set of results to be processed which includes correcting in the 

data and adjusting in the formatting of the data. 

A function called of Price Tunneling, developed in the 

programming area of the Statistical Data Analysis R [42], 

version 3.1.2 of 10/31//2014, is used to check for price 

distortions in a given period of the series, by the percentage 

change ∆Pt of the current value of the price Pt in relation to the 

previous price Pt–1. Usually this percentage variation ∆Pt, 

adopted in the financial markets, is not more than 5% of the 

current price Pt both sides, up and down, over the previous 

price Pt–1. 

In this way, the variation ∆Pt, respecting the price tunnel, is 

expressed as: 0.95 < ∆Pt < 1.05. 

If the current price Pt is outside the price tunnel, the 

algorithm generates a random price Pt, from the previous 

price Pt–1, respecting the price tunnel boundaries. 

B. Tests and Experiments 

To prove that the markets are Hurst processes or biased 

random walks, the tasks were executed according to the 

method adopted, described above. 

The historical series of prices chosen contain approximately 

3000 values for the pairs of currency prices: AUD-JPY, 

CHFJPY, EUR-JPY, GBP-JPY and EUR-CHF, in intervals 

of 1 day, 1 hour and 15 minutes, generated by a framework 

developed in Visual Studio .NET, Framework 4.6.2 [41] 

64-bit, Windows Platform, obtained from a public knowledge 

base [38], with prices varying between 01/01/2003 and 

12/30/2014 in intervals of 1 minute. 

These historical series of prices were treated by the 

function Price Tunneling to eliminate distortions in the prices 

of the series and later  their log-returns were  divided 

. 
TABLE I: ESTIMATION VALUES OF THE HURST EXPONENT (H), USING THE 

R/S ANALYSIS, FOR THE RELATIONSHIP BETWEEN AUD-JPY CURRENCIES 

WITH 1 DAY INTERVALS. 

t M R/St x = log{t} y = log{R/St} 

3 1003 1.105242 1.098612 0.1000647 

5 602 1.716025 1.609438 0.5400103 

8 376 2.457615 2.079442 0.8991914 

13 231 3.361801 2.564949 1.2124767 

21 143 4.608474 3.044522 1.5278967 

34 89 6.25723 3.526361 1.8337377 

55 55 8.262083 4.007333 2.1116767 

89 34 10.58514 4.488636 2.3594511 

144 21 13.201705 4.969813 2.580346 

233 13 18.464635 5.451038 2.9158573 

377 8 22.790831 5.932245 3.1263583 

610 5 27.968833 6.413459 3.3310908 

987 3 29.541445 6.89467 3.3857942 

1597 2 40.33256 7.375882 3.6971591 

 
Fig. 3. Scatter plot with the values of log{R/St} in relation to the values of 

log{t}, for the relationship between AUD-JPY currencies with 1-day 

intervals, and its trend line. 

in 15 different values of t, periods or sub-series, to calculate 

the statistics R/St. 

Details of the algorithm Price Tunneling can be verified in 

the previous section. 

In order to obtain the mean (Em), the standard deviation (Sm) 

and the generation of the sub-series (Zi,m) three functions were 

used, developed in the programming area of the Statistical 

Data Analysis R [42], version 3.1.2 of 10/31/2014.  

For the normalization of the sub-series data (Zi,m), as well 

as the generation of the cumulative time series (Yi,m), the 

cumsum function (Cumulative Sums) was used, available in 

the standard libraries of the Statistical Data Analysis R [42], 

version 3.1.2 of 10/31/2014. 

The remaining of the tasks described in the method for the 

calculation Rm and the mean of the Rm/Sm were obtained by 

conventional mathematical operations and functions. 

Table I summarizes the values of t, M, R/St, x = log{R/St} 

and y = log{t}, for the log-return of the historical prices of the 

asset FOREX AUD-JPY, in intervals of 1 day, where log is 

the e base logarithm, and (x, y) are the points of the graph 

plotted with scatter values of log{R/St}, shown in Fig. 3. 

Fig. 3 exhibits the scatter plot of the values of log{R/St} in 

relation to the values of log{t}, for the relationship between 

AUD-JPY currencies, in intervals of 1 day. Fig. 3 also shows 

the trend line obtained through the lm (Fitting Linear Models) 

and abline (Add Lines to a Plot) functions, available in the 

standard libraries of the Statistical Data Analysis R [42]. 

The values for the estimation of the intercept b and the 

slope, for the line of the graph contained in the Fig. 3, are 

respectively -0.2481167 and 0.5534713. This slope 

represents the estimated value of the Hurst exponent ( H ). 

These values were obtained by the lm (Fitting Linear Models), 

summary (Summary of the Results of Model Fittings) and 

coef (Extracts Model Coefficients from Modeling Function) 

functions, also available in the standard libraries of the 

Statistical Data Analysis R [42]. 

The significance test, as suggested by de Couillard and 

Davison [7], using the statistic p–value < 0.001, is equal to 

9.345983e-06. This value is obtained by the t.test (Student’s 

t-Test) function, available in the standard libraries of the 

Statistical Data Analysis R [42].  
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C. Results 

Table II summarizes the results obtained, where H is the 

estimated value for the Hurst Exponent, I is the Intercept, t is 

the t-statistic and p is the p.value. 

As observed by Mandelbrot [4], who developed his studies 

based on Hurst’s works [5], a Brownian motion has H = ½, 

while a persistent process has H > ½ and an anti-persistent 

process has H < ½. Therefore, from table II, is possible to 

confer that the historical series of prices for the pairs of 

currency prices, presented in this table, are shown as 

persistent processes, that is, H > ½, except for the parity 

between the currencies EUR-CHF, where it was not possible 

to confirm the Hurst Exponent in periods of 1 hour and 15 

minutes. This is due to the fact that this series have data with 

low volatility between the data prices for periods of 1 hour 

and 15 minutes, and that the prices in these last two periods 

are almost constant. 

Another fact, highlighted in the table II, containing the 

summarized results, is that the Hurst Exponent was constant 

between the intervals of 1 day, 1 hour and 15 minutes, which 

shows that the Hurst Exponent can be considered valid for the 

historical series presented in this table. 

Fig. 4 displays the graphs of the historical series of prices 

for the pairs of currency prices: AUD-JPY, CHF-JPY, 

EURJPY and GBP-JPY, in periods of 1 day, 1 hour and 15 

minutes, according to the periods presented in table 4. 

Lam [14] suggests that time series can be examples of 

fractals. One of the questions proposed by this paper was to 

verify if the financial time series could use the properties of 

fractals, in particular the property of self-similarity, where 

parts of an object or process is similar to the object [43]. 

Fig. 4 shows that the similarity property, present in the 

fractals, is observed in the graphs of the historical series of 

prices for the pairs of currency prices: AUD-JPY, CHF-JPY, 

EUR-JPY and GBP-JPY, in periods of 1 day, 1 hour and 15 

minutes, according to the periods presented in table II, which 

can corroborate with the proposition of Lam [14]. 

Fig. 5 demonstrates the values of log{R/St} in relation to the 

values of log{t} for the historical series of prices for the pairs 

of currency prices: AUD-JPY, CHF-JPY, EUR-JPY and 

GBP-JPY, in periods of 1 day, 1 hour and 15 minutes, 

according to the periods presented in table II. 

 
TABLE II: VALUES OBTAINED ACCORDING TO THE METHODOLOGY 

DEVELOPED BY MANDELBROT AND WALLIS [4] BASED ON THE WORKS OF 

HURST [5]. 

Time Series Intervals H I t p 

AUD-JPY 

1 day 0.57 -0.26 7.0 9.8e-6 

1 hour 0.56 -0.30 6.9 1.1e-5 

15 min. 0.54 -0.19 7.3 6.0e-6 

AUD-JPY 

1 day 0.57 -0.29 6.9 1.1e-5 

1 hour 0.56 -0.29 6.9 1.1e-5 

15 min. 0.55 -0.27 7.1 8.3e-6 

EUR-CHF 

1 day 0.55 -0.44 21.7 1.4e-11 

1 hour 0.17 1.40 53.2 1.3e-16 

15 min. 0.27 0.59 39.0 7.4e-15 

EUR-JPY 

1 day 0.57 -0.31 6.9 1.1e-5 

1 hour 0.54 -0.22 7.1 7.9e-6 

15 min. 0.57 -0.30 6.9 1.1e-5 

GBP-JPY 
1 day 0.58 -0.32 6.8 1.2e-5 

1 hour 0.56 -0.28 6.9 1.0e-5 

15 min. 0.53 -0.17 7.8 2.8e-6 

 

 
Fig. 4. Historical series for the pairs of currency AUD-JPY, CHF-JPY, 

EUR-JPY and GBP-JPY, with 1 day, 1 hour and 15 minutes intervals. 

VII. CONCLUSION 

This paper emphasized the applicability of Hurst Exponent 

(H), adopting the R/S Analysis, in the classification of the 

time series, particularly FOREX Securities, by giving a 

concrete information on correlation and persistence, 

certifying that this exponent is an excellent index for studying 

complex processes such as the financial time series.  

Additionally, the paper reviewed the Fractal Theory in 

relation to the traditional Theory of Capital Markets, arguing 

about the hypothesis of the existence of a Fractal Market. 

The inability to predict recurrent economic crises and the 

ineptitude to avoid the large losses resulting from this fact, 

jeopardize the efficiency of the current model of risk 

management, in this way evidencing the necessity to perfect 

the models. From this perspective, the fractal analysis 

emerges as an appropriate alternative, since it offers greater 

robustness to the elements of risk management, through more 

admissible assumptions. 

There is already enough empirical evidence on the 

presence of the fractals, particularly in financial time series, 

and the more consistent perception of the Financial Market 

oscillations, recognizing patterns of persistence in the 

historical series, which allows the creation of effective 

policies in the identification of market risk. 

Therefore, the initial assumption that the fractal behavior of 

the markets is capable of allowing an improved modeling of 

the Efficient Markets Hypothesis to explain the price 
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movements has been ratified. 

 

 
Fig. 5. Graphic with the values of log{R/St} in relation to the values of log{t}   

for the pairs of currency AUD-JPY, CHF-JPY, EUR-JPY and GBPJPY, with 

1 day, 1 hour and 15 minutes intervals. 

Added to this is a recommendation to market participants to 

address carefully with this theme, reviewing their bases and 

promoting the improvement of the methodology used to 

control the risks assumed. 

However, it is noticed that the researches are still in the 

initial stage of the hypothesis corroboration, in which 

different conceptual approaches are used with the application 

of several statistical methods, with some results clearly 

indicating the presence of fractals in the financial time series. 

Even with the confirmation of the assumption, the present 

study does not exhaust the subject, and opens space for 

discussion and development of new academic researches to 

ensure that it reaches maturity and can realize its full potential. 

Some research may increase the contributions of this work, 

such as comparative studies between hybrid models using 

Hurst Exponent (H) and Machine Learning or comparatives 

studies between traditional mathematical models, such as 

Autoregressive Integrated Moving Average (ARIMA) and 

Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) models, or researches with others time series, 

such as commodities, appear as relevant themes of future 

research. 
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