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Abstract—The work deals with a numerical method for the 

kinematic analysis of the spatial multi-link mechanical systems 

(linkages). According to the proposed method, three specific 

points determine the spatial position and orientation of the 

central element of the mechanism (i.e. the rod). The kinematic 

equations system contains the geometric constraint equations 

and the rigid body conditions of the rod (i.e. constant distances 

between the three specific points). The corresponding non-linear 

system is solved by using the Newton-Kantorovich approach. 

The case study is developed by considering a complex wheel 

guiding mechanism used for vehicle suspension system.  

 
Index Terms—Multi-link mechanism, kinematic analysis, 

analytical algorithm, guiding linkage.  

 

I. INTRODUCTION 

The articulated mechanical systems (linkage mechanisms) 

are the most common types of mechanisms due to the multiple 

functions they can provide. There is practically no machine 

(mechanical, hydraulical, electrical, etc.) or equipment that 

does not integrate such mechanisms. As applications, the 

following can be pointed: working mechanisms, indicator 

mechanisms, lifting and transport mechanisms, actuators and 

controls, guiding mechanisms, etc., with various fields of use 

(automobiles, aircraft, fine mechanics, technological 

equipment, agricultural machinery, textile machinery, 

electrical devices etc.). 

A general systematization of the linkage mechanisms, 

which responds to the main technical problems solved with 

them, can be structured is the following way (figure 1): 

a. positioning (guiding) mechanisms, which perform a 

sequence of positions for a specific element of the mechanism, 

usually the central element - the rod (ex. dough kneading 

machine mechanism - a.1; forklift platform tipping 

mechanism - a.2; garage door moving mechanism - a.3); 

b. trajectory generating mechanisms, which generate the 

prescribed trajectory by some specific points of the 

mechanism (ex. projector film drive mechanism - b.1; sewing 

machines thread pulling & stretching mechanism - b.2; harbor 

crane mechanism - b.3);  

c. functions generating mechanisms, which achieve a 

certain functional dependence between the driving and driven 

elements of the mechanism (ex. writing machine mechanism - 

c.1; logarithm function generating mechanism - c.2; weighing 

mechanism - c.3). 
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Fig. 1. Representative types of mechanisms. 

 

The functional-kinematic design of the multi-link 

mechanisms usually involves the following steps: 

• establishing the concrete functional requirements that the 

mechanism must satisfy;  

• defining the geometric-kinematic model of the mechanism;  

• transposing the functional requirements into an appropriate 

algorithm (graphical, analytical), on the basis of which the 

kinematic synthesis is carried out;  
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• obtaining the mechanism (meaning the specific geometric 

parameters); 

• determining the kinematic functions achieved by the 

mechanism obtained from the synthesis process, and 

comparing their values with those imposed by the functional 

requirements, thus allowing to evaluate the deviations from 

the theoretical values; 

• optimizing the mechanism for obtaining the appropriate 

functions, if the deviations obtained in the previous step are 

not convenient. 

For the positional analysis of the multi-link mechanisms, 

vector-based methods (algebraic, matriceal) are frequently 

used for planar mechanisms [1]–[3]. In the case of spatial 

mechanisms, because of their complexity, the vector-based 

methods are difficult to apply, especially for the multi-loop 

(poly-contour) mechanisms, due to the large number of 

transformations would be required to express all the vectors 

attached to the elements in the base reference system. 

In this situation, the geometric methods, mainly based on 

analytical constraint conditions, represent a good solution for 

the kinematic analysis of the spatial multi-link mechanisms 

[4]–[8]. The use of such methods is also justified by the need 

to define the mechanisms by the geometric parameters that are 

read directly from the execution drawings of the elements, and 

from the overall drawing of the system. 

The scientific literature also presents mixed kinematic 

analysis algorithms, which combine geometric equations - to 

materialize the nature of the geometric constraints (joints) 

from the mechanism, and vectorial equations - by which the 

movement of the elements is modeled [9], [10]. 

On the other hand, powerful kinematic analysis algorithms 

are integrated in the commercial MBS (Multi-Body Systems) 

software environments, such as ADAMS of MSC.Software. 

Although these virtual prototyping tools provide important 

benefits, as pointed out in [11]–[15], their cost is still a major 

impediment, even in academic configurations. 

In these terms, the current work proposes a numerical 

method for the kinematic analysis of the spatial multi-link 

mechanisms, which can be applied in unitary way to most 

types of linkages (especially the guiding linkages). As case 

study, the method is applied for a complex wheel guiding 

mechanism used for a vehicle suspension system, thus 

proving its usefulness (viability).   

 

II. DEFINING THE PROPOSED METHOD 

The geometric model of the multi-link mechanisms is 

defined by the coordinates of some specific points on the 

mechanism rod (in the local technological frame of the rod) 

and on the base (in the global reference frame), as well by the 

lengths of the guiding links (bars) of the mechanism. 

To explain the specifics of the method, the spatial 

multi-link mechanism shown in figure 2 is considered. The 

mechanism assures the guiding (in terms of spatial movement) 

of the central element / rod (2) by using three specific points, 

in this case the centers of the spherical joints B, C and D to the 

adjacent elements (1, 3, 4), which are guided on two circles 

(with the revolute axes A-A‟ and E-E‟) and one sphere (with 

the center in F). The constraints of the points through which 

the rod is guided in the spatial movement consist of the 

requirements that they be permanently on the support curves 

and /or surfaces, with centers on the mechanism base. The 

local reference frame of the rod X2Y2Z2 has the origin in the 

rod center O, Y2 is the longitudinal axis of the rod, X2 - the 

transversal axis, while Z2 is directed for obtaining a 

tri-orthogonal system. 

 

 

Fig. 2. The structural model of a spatial multi-link mechanism. 

 

The method proposed here is based on the premise that the 

spatial movement of the rod is completely defined by three 

non-collinear specific points, namely the two extremities of 

the rod (M and N), to which a third point P on the rod is added 

(see figure 2). The spatial positioning of the rod is defined by 

the set of positions of the three specific points, which 

determine the location and the orientation of the rod reference 

frame X2Y2Z2 relative to the global reference frame XYZ 

attached to the fixed base of the mechanism.  

In the technological frame of the rod, the three specific 

points have the following local coordinates (which are input 

data for analysis): M(0, YM(2), 0), N(0, YN(2), 0), P(XP(2), YP(2), 

ZP(2)). In the global reference frame attached to the fixed base 

of the mechanism, the points have the global coordinates 

(which are to be determined through the kinematic analysis): 

M(XM,YM, ZM), N(XN,YN, ZN), P(XP, YP, ZP). 

Between the three specific points, there can be defined 

three relationships, which are based on the corresponding 

constant distances equations (the rod is assumed to be rigid): 
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where the distances |PN|, |PM|, |NM| are computed in 

accordance with the local coordinates of the points (in the rod 

reference frame X2Y2Z2): 
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By considering as independent parameter (generalized 

coordinate) for the kinematic analysis one of the global 

coordinates of the specific points (one that is more 
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appropriate, depending on the type of mechanism), to 

completely define the spatial positioning of the rod, besides 

equations (1), other five equations are still needed, and these 

equations are defined by considering the geometric 

constraints to which the rod is subjected (in correlation with 

the connections / joints to the adjacent elements of the 

mechanism). The following constraint equations correspond 

to the spatial multi-link mechanism shown in figure 2: 

• for the guidance on sphere with center in F of the point D  

belonging to rod: 

      ,02
4

222
4  lZZYYXXF FDFDFD       (2) 

• for the guidance on circle of the rod point B, considering the 

revolute axis defined by the pair of points A - A‟: 
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• for the guidance on circle of the rod point C, considering the 

revolute axis defined by the pair of points E - E‟: 
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The global coordinates of the points A - A', E - E' and F in 

the global reference frame are input data for the kinematic 

analysis (known parameters that define the geometric model 

of the mechanism). 

In this way, a non-linear system of eight equations is 

obtained, the unknowns being the global coordinates of the 

three specific points M, N, and P, excepting the independent 

coordinate, which is the imposed kinematic parameter. In the 

first three functions F1, F2, F3 (eq. 1), the eight unknowns 

appear explicitly, while in the other functions F4 , ..., F8 (eq. 2 

- 4) they appear implicitly through the coordinates of the rod 

joints (in this case, B, C, and D).  

The relationship between the rod joints and the three 

specific points that define its position and orientation is 

defined by the conditions that the distances between each 

joint and the specific points are constant (the rod being a rigid 

body). As example, for the spherical joint B, there are the 

following constant distance equations: 
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where the distances |BM|, |BN| and |BP| are computed in 

correlation with the local coordinates of the points in the rod 

reference frame (which are known input data):  
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The non-linear system of three equations with three 

unknowns (XB, YB, ZB) was solved by subtracting the first 

equation from the other two, resulting two linear equations in 

XB and YB as functions of ZB, as follows: 

 

.bZaY,bZaX BBBB 2211          (6) 

 

 These functions are replaced in the first equation of the 

system (5), resulting in this way a quadratic equation in ZB 

with the well-known solution  
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The coefficients a1,2,3, b1,2,3 and c3 depend on the global 

coordinates of the three specific points (M, N, P) and the 

corresponding distances (|BM|, |BN|, |BP|). The coordinates 

XB and YB are then obtained from eq. (6). 

The non-linear system (5) is written for each joint of the rod 

(namely B, C and D for the multi-link mechanism shown in 

figure 2), thus resulting the coordinates for all of them, which 

will be then included / integrated in the constraint equations 

system of the mechanism F4, ..., F8 (eq. 2 - 4). 

The global coordinates of the rod reference frame origin 

(the center of the rod axis MN) are defined in the following 

way: 
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The general non-linear system F1, ..., F8 (eq. 1 - 4) is 

solved by using the Newton-Kantorovich iterative method, 

starting from the following known initial solution:  
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The solving is performed in the following steps sequence: 

a. Establishing the initial solution (eq. 9) of the system. 

b. Computing the coordinates of the rod reference frame 

origin (eq. 8), and the coordinates of the connection points 

(joints) of the rod (eq. 5), corresponding to the initial position 

of the mechanism; 

c. Establishing the Jacobian of the system, by deriving the 

functions Fi in relation with the unknown parameters Xi: 
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The partial derivatives of the first three functions F1, F2, F3 

are directly obtained by deriving the rigid body conditions of 

the rod (eq. 1) in relation with the coordinates of the three 

specific points, which are explicitly found in these equations. 

For the other functions F4 - F8, in which the unknowns are 

implicitly found, there are also considered the partial 

derivatives in relation with the coordinates of the rod joints, 

which are obtained by deriving the eq. (5).  

d. Establishing the new solution of the system (in the first 

iteration) by using the Gauss-Jordan elimination, which is 

based on converting the corresponding matrix into reduced 

row echelon form.  

e. testing the corresponding error: 
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where  is the admissible error.  

If expression (11) is satisfied, then „1‟ is retained as the 

solution of the system; otherwise, the iterative process is 

repeated from point/step „b‟, assuming as the initial solution 

of the system in the new iteration the values of the unknowns 

from the previous iteration. The iterative process „a - d‟ ends 

when the difference between the values of the unknowns in 

two consecutive iterations „m-1‟ and „m‟ reaches the required 

precision: 
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the solution of the system being {XP, YP, ZP, XM, YM, ZM, XN, 

YN, ZN}m . 

For a current position of the mechanism, the non-linear 

system is solved in similar way, by considering the solution 

obtained in the previous position of the mechanism as new 

initial solution. In this way, the kinematic behavior can be 

determined for the whole motion range (domain) of the 

mechanism. 

 

III. CASE STUDY 

The method proposed for the kinematic analysis of the 

spatial multi-link mechanisms was tested on various types of 

linkages. For this paper, the application was developed by 

considering the guiding linkage shown in figure 3, which is 

frequently used in vehicle wheel suspension systems. In this 

case, the central element (i.e. the rod) of the mechanism is 

represented by the wheel carrier (6), which is guided in the 

relative motion to car body/chassis (the fixed base of the 

mechanism) by a set of five binary links (1-5), with spherical 

joints at both ends.  

 
Fig. 3. The wheel guiding mechanism by five points - on five spheres (5S). 

 

The five geometric constraints that describe the 5S-guiding 

mechanism are similar to that defined by eq. (2), as follows: 
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where j=1…5 corresponds to the specific guiding links of the 

mechanism. 

 The three specific points that define the spatial position and 

orientation of the wheel carrier have been selected in the 

following way: the two extremities of the wheel carrier 

spindle (M - the wheel center, and N), the third point (P) being 

located in the longitudinal - vertical plane of the wheel carrier 

reference frame X6Y6Z6. 

 The numerical algorithm for the kinematic analysis was 

transposed in computer code by using an object oriented 

programming language (Delphi). For this work, the kinematic 

study was performed by considering the passing over bumps 

regime, the independent kinematic parameter being the 

vertical coordinate of the wheel center M, with the following 

motion domain ZM[-80, +80] mm.  

Among the results obtained by running the program, figure 

4.a shows the variation of the camber angle of the wheel, 

while figure 4.b shows several graphical simulation frames in 

the transversal - vertical plane YZ of the vehicle. 

 

 
a. 

 
b. 

Fig. 4. Results of the kinematic analysis for the 5S-guiding mechanism. 

 

 The camber angle represents the angle between the vertical 

axis of the wheel used for steering and the vertical axis of the 
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vehicle, being analytically defined in the following way: 
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where 0 is the initial value of the camber angle, when the 

vehicle is in stationary position, corresponding to ZM = 0. 

  

IV. CONCLUSIONS 

When designing a mechanism, after performing the 

synthesis, it is necessary to evaluate the behavior of the 

mechanism in order to identify the deviations from the 

imposed functional requirements. For the positional 

(kinematic) analysis of the spatial multi-link mechanisms, the 

paper proposes a general and unitary method, which can be 

applied to both mono-contour and poly-contour mechanisms. 

By appropriate customization, the method can be also applied 

to the planar multi-link mechanisms, in which case the 

position of the central element (i.e. the rod) of the mechanism 

is defined by only two specific points. 

By reference to other methods from literature, the 

numerical algorithm proposed in this work brings several 

important benefits for the kinematic analysis of the multi-link 

mechanisms, such as the degree of applicability, the fast 

convergence of the non-linear system used to model the 

kinematic behavior of the mechanism, the accurate selection 

of the initial solution from which is going to solve the system. 

The built in-house made computer program can be easily 

adapted to most of multi-link mechanism, the main 

advantages in relation to the commercial software products 

being the flexibility, and the greatly reduced costs. 
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