
  

 

Abstract—There is a strong demand for autonomous ship 

navigation systems in maritime logistics. Such systems need to 

be able to forecast behaviors of other ships accurately to avoid 

collisions. Here, time-series of ship positions, called AIS data, 

can be used in apprenticeship learning (AL) by defining an 

object map created from the data as a state and the turning 

direction of the ship as an action. However, when we analyzed 1 

months’ worth of AIS data, none of the generated path data took 

actions in the same state pattern twice. This paper proposes to 

use a Co-Moving Frame (CMF), a local segment of the 

environment on a small timescale. CMF improved the 

effectiveness of the data usage, and as a result, AL forecast paths 

of ships with 81.2% accuracy when applying CMF. This result is 

29.2% better than that of a state transition model generated 

from the same dataset without applying CMF.  

 
Index Terms—Apprenticeship Learning, Neural Network, 

Q-learning, Ship, AIS  

I. INTRODUCTION 

There is trend in logistics to substitute human labor by 

artificial intelligence (AI). In maritime logistics, in particular, 

autonomous navigation of ships in various environments, 

ranging from crowded harbor areas to wide ocean areas [1], is 

seen as a way of reducing labor costs.  

The primary requirement of the navigation operation is to 

avoid collisions with surrounding ships. Therefore, it is 

necessary to forecast the behavior of surrounding ships in 

various situations for planning a safe path.  

The behavior of surrounding ships can be forecasted by 

using agent simulation incorporating behavior rules. Such 

behavior rules can be summarized from datasets consisting of 

path records of ships. Here, global open data, i.e., Automatic 

Identification System (AIS) data [2], are available for 

extracting time-series of ship positions.  

The objective of this study is to forecast the behavior of 

ships in various situations by using time-series position data. 

Various approaches to forecasting a ship’s behavior have 

been studied. In particular, Simsir et al. proposed to use an 

artificial neural network based decision support system to 

avoid ship collisions [3]. The method forecasts positions of 

multiple ships three minutes ahead. However, the system 

requires a predefined reference route for the environment and 

the accuracy of forecasting decreases when the ship is far 

from the route.  

Zhang et al. proposed to use a Bayesian network for ship 

navigation support [4]. The method analyzes parameters in 
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behavior rules based on the distance between and directions 

of two ships. It was shown to be applicable to large ocean 

areas with few ships nearby, but was not tested in more 

crowded environments with more than two ships.  

Gorge et al. proposed a grid-based statistical analysis of a 

ship’s behavior from a dataset of ship paths [5]. This method 

is applicable for analyzing crowded areas. However, the grid 

has limited resolution due to computational complexity, and 

the method is difficult to apply in an ocean environment. 

Shirai et al. analyzed differences in ship behavior in Tokyo 

Bay by categorizing the sizes of ships and constructing a 

traffic flow network [6]. However, the model they created is 

not useful for real-time forecasting.   

All of the existing approaches to forecasting the behavior 

of ships have difficulties. Therefore, it is reasonable to look 

for an approach from a different domain as a way to solve the 

problem.  

Abbeel et al. proposed apprenticeship learning (AL) for 

imitating experts’ behavior by statistically analyzing datasets 

of expert actions in certain situations [7].  

Sharifzadeh et al. extended AL to enable it to analyze 

driving behavior in a highway simulator [8]. Their method 

forms behavior rules with which car can avoid collisions in 

the simulator. It uses a Markov decision process (MDP) [9] 

based agent model. The MDP model is applicable to both 

crowded and wide open areas. 

We consider that application of AL by defining an MDP for 

ships’ behavior is a promising approach to achieving our goal. 

One typical way of designing an MDP based ship model is to 

make an object map from AIS data as a state and the ship’s 

turn in a certain direction as an action. 

However, such a method is not directly applicable to the 

maritime industry due to a difference in problem settings. A 

real bay area environment has too many possible patterns in 

any particular situation. For example, situations in a bay area 

may be classified into patterns of elements in the environment 

(called features), including distances and directions to land, 

the destination, and surrounding ships. In crowded 

environments, the numbers of combinations of features and 

corresponding situations are huge. Moreover, the quantity of 

AIS data available for analyzing real environments is too 

sparse. AL is applicable to datasets of path records fitting a 

certain situation, yet in a real environment, the same situation 

will likely never happen again. In addition, most of the grids 

are empty in a typical object map for a large environment. 

Therefore, using an object map is an inefficient way of 

expressing the situation. 

This paper proposes data management using a data 

structure conversion called Co-Moving Frame (CMF). CMF 

translates a record of a situation into various datasets based on 
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a partially observed situation from the viewpoint of the pilot 

or navigator of the ship. CMF conducts a local segmentation 

of the environment. By applying CMF, situational data can be 

converted into distances and directions to other features, such 

as surrounding ships, land, and the destination. By converting 

data into relative distances, the number of feature patterns can 

be limited. Thereby, CMF resolves the sparseness problem of 

the AIS data.   

The contributions of this study are summarized as follows. 

 A ship behavior model based on a Markov decision 

process was developed that is able to forecast paths of 

ships. 

 A data management methodology was devised to solve 

the data sparseness problem of AIS data.  

 An effective dataset for training the MDP agent model 

was created by apprenticeship learning. 

 

II. PREREQUISITES 

MDP is used for defining the ship behavior model. AL and 

a Deep Q Network (DQN) [10] are used for the behavior 

analysis. Following is the terminology of this research. 

A. Markov Decision Process 

In MDP, an agent takes an action: a for maximizing an 

accumulative reward: r  in certain states: s . The action of the 

agent is decided on the basis of a policy: )|( sa  at each time 

step: t . Agents transit their state in accordance with a state 

transition probability: ),|'( assP . By their actions, agents 

obtain a reward based on a reward function: ),( asR .  

B. Apprenticeship Learning 

AL estimates the optimum policy )|( sa from the state 

transition paths (namely episodes) of experts’ actions by 

fitting )|( sa . When a large number of states are available 

for the problem, each state is mapped into a lower dimension 

vector, called a feature vector )(s . )(s represents 

environmental conditions that may be components of the 

reward function. The estimated optimized reward function 

)(sR  weights the feature vector )(s  in accordance with the 

following equation, where ω represents a vector of weights for 

the feature values. 

 

)()( ssR   　           (1) 

 

AL uses the feature expectation value   to represent the 

accumulative feature value )(s  of an episode in the learning 

process. It minimizes the gap between the expectation value 

from the expert’s demonstration ( E ) and the expectation 

value from the estimated reward function ( )( ). These 

expectation values are calculated as follows. 
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Fig. 1. Traditional sort of environment mapping. 

 

C. Reinforcement Learning and Deep Q Network 

Reinforcement learning (RL) is a method to maximize the 

expectation value of cumulative ),( asR  (called ),( asQ ) by 

estimating the optimum policy )|( sa  from an episode, or 

the series of records which represent states and actions of the 

agent. The DQN estimates the result of RL by using a neural 

network. The input of the network is a feature vector )(s  of 

the environment, and the output is a ),( asQ  value for each 

available action. Due to its high accuracy and low 

computational complexity, DQN is widely used for solving 

problems in environments with many states. 

 

III. PROGRAM SETTING 

We used AL for analyzing the behavior of ships in the 

waters of Tokyo Bay, Japan. We used an AIS dataset [11] 

collected from  September 1st to September 30th, 2015 in sea 

areas between 139° 37' 4" - 140° 06' 0" East Longitude, and 

between 35° 20' 31" - 35° 32' 42" North Latitude (we call the 

region Area A). Area A is notorious for frequent collisions of 

ships [12]. To get to Area A from outside of the bay, all ships 

must go through the Uraga Channel [13], where ships are 

obliged to sail in formation. When ships arrive at Area A after 

passing through the channel, they are no longer obliged to 

form a line and can move freely towards their destination. The 

steering of ships in Area A becomes complicated because 

each ship must now avoid collision with other ships in the 

crowded environment. Because of the danger posed, local 

governments have demanded a means of forecasting the 

behaviors of ships in Area A. 

Fig. 1 shows an image of the conventional MDP by 

mapping an environment onto a grid. Each shaded square in 

the figure represents a grid of the map. Each grid has a unique 

index and feature information. As shown in the Data Structure 

row in Fig. 1, the feature information can be either “None” or 

any defined feature. In this map, a state is a pattern of values 

stored in the grids, and an action is the transition through the 

grids of the ship being analyzed. This sort of map is widely 

used for behavior analysis of mobility because of its ease in 
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defining a model when something is able to move freely [14]. 

However, such a map is not effective for analyzing the 

behavior of ships moving in a large space. The key concept of 

AL is matching paths generated from the MDP with actual 

patterns observed in certain situations. If AL conducts path 

matching with an observation pattern summarized from only a 

few records of actual paths that ships took, the agent might 

learn from exceptional actions rather than common ones in 

that situation. Therefore, it is important to obtain a path 

dataset that contains multiple action records in the same state 

pattern for AL. When we analyzed AIS data, as discussed in 

Section 7, none of the generated path data took actions in the 

same state pattern twice. This was due to sparseness of data 

resulting from the huge number of possible combinations in 

the situation patterns. 

By denoting the category of features as M and the number 

of grids for analysis as N, the total number of combinations of 

patterns in the environment can be expressed as 

 

NMPatternAvailbaleTotal )1(__      (5) 

 

When applying AL to ship’s behavior analysis in Tokyo 

Bay Japan, we set M = 3 and N = 3.9 * 10
6
 (the calculation is 

in the Appendix). The equation shows that the combinations 

of patterns highly depends on N. The total number of 

available state patterns is quite large. Therefore, the chances 

of collecting path data on the same situation again are quite 

small. Therefore, the data sparseness problem appears when 

AL is used to analyze AIS data in Area A. 

 

IV. MDP-BASED SHIP MODEL 

We solve the data sparseness problem by converting the 

data and defining an MDP based ship model in relative terms.  

In particular, we propose a relative data format. As shown 

in the Data Structure row of Fig. 1, when analyzing a large 

environment with a few features, most of the grids in the map 

have the feature of “None”. Since the information “None” is 

not so valuable in the analysis, we can compress the 

information into a simpler form by converting the features 

into relative distances and directions. Accordingly, the total 

number of available patterns becomes 
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Here, X represents the categories of feature values and Y 

represents the types of value for each feature value. X and Y 

can be defined arbitrarily for the sake of balancing accuracy 

and computing complexity. Therefore, the total number of 

available patterns can be controlled regardless of the situation. 

This approach can alleviate the data sparseness problem. We 

call this data structure conversion Co-Moving Frame (CMF). 

Fig. 2 shows the flow of AIS data in the behavior analysis 

applying CMF. A traditional environment map data is 

converted into CMF data. To generate the traditional 

environment map, data cleansing and data management are 

applied to the AIS data. The data cleansing part removes 

defective data. The data management part generates path data 

by chronologically aligning the position data. After that, the 

environment dataset and path dataset are generated. The 

environment dataset contains information on features in the 

format of a grid map while the path dataset contains the grid 

transitions in the paths of ships. We use these datasets to 

generate the relative environment and action datasets of CMF. 

 

 
Fig. 2. Data flow for analyzing ship’s behavior with CMF. 

 

 
Fig. 3. Image of process of applying CMF to ship’s environment. 

 

In CMF, a state is defined as relative distances to features 

and an action is defined as a change in the status of motion of 

an agent, including rotations in heading. 

Fig. 3 shows an image of the process to apply concept of 

CMF into a ship’s driving navigation environment. In Step 1 

of the process, a local extraction of environment is extracted 

from the entire environment. In Step 2, local extraction is 

conducted by converting environmental information into 

relative distances and directions as CMF data format. By 

applying CMF, data structures for reflect different situations 

can be communized. Therefore, the extracted CMF can be 

used for statistically analyzing the behaviors of ships. 

 

V. DEFINITION OF CMF FOR AIS DATA 

A. Data Cleansing and Data Management 

The Automatic Identification System (AIS) [2] is a system 

for informing ships of their conditions by using electrical 
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signals. AIS data consist of records of decoded AIS signals 

picked up by the receiver. The data includes the following 

data fields: 

1) Date and time when the information was sent 

2) Position of ship 

3) Direction of ship 

4) Velocity of ship 

5) Destination of ship 

6) Maritime Mobile Service Identity (MMSI) 

MMSI is the identification number of the AIS transmitter. 

The information is transmitted as electrical signals; 

occasionally some data are lost in a crowded area due to 

signal interference [15]. In addition, the destination 

information of AIS data typically contains many errors 

because it is inputted manually [16]. Thus, AIS data needs to 

be cleaned up before it is analyzed. 

 

--------------------------------------------------------------------------- 

Algorithm 1 Data cleansing & Data management in AIS Data 

--------------------------------------------------------------------------- 

Inputs: AIS dataset S_AIS, Geological Information S_GEO 

Outputs: Environment Dataset S_env, Path Dataset S_path 

1:  For each records in S_AIS:  

2:     Sort the records by date and MMSI and index them.  

3:     Generate an episode from the records, store it as S_path. 

4:  For each records in S_path:       

5:     Expand date expression into YY:MM:DD:h:m:s. 

6:     Make a grid environment by referring to Geohex  

7:     Amend the destination information in AIS data based on 

the actual port that ship arrived at in the future records.  

8:    Restore lost or missing data by interpolation. 

9:    Use a Kalman filter to reduce the amount of noise in the 

ship position data. 

10:  Amend the velocity information in accordance with the 

change in the ship’s position during the episode. 

11:  Append information on the future position  

12:  Refresh the values in S_path. 

13:  Store records of ships’ positions and geographical 

properties of the grid in S_env. 

14:  Export S_env and S_path datasets. 

-------------------------------------------------------------------------- 
Fig. 4. Data cleansing and data management algorithm. 

 

Fig. 4 shows the data cleansing and data management 

process. The input includes AIS datasets S_AIS and a 

geographic information dataset S_GEO. The output of the 

algorithm is the environment dataset S_env and path dataset 

S_path. Steps 1 through 3 apply the data management process 

to S_AIS in order to generate S_path. Steps 2 through 13 

apply data cleansing to S_path to update S_path and generate 

S_env simultaneously. These steps are explained in more 

detail as follows. In Step 2 and Step 3, the algorithm stores the 

position data of AIS into a path record of a ship until the ship 

arrives at certain port or the record of AIS data is not available. 

In Step 6, the algorithm uses Geohex [17] to index the 

environment into grids. A Geohex is a grid of hexagons with 

identical geocodes. In particular, we used a level 11 Geohex 

(nearly 14 meters between the centers of the grids) in the 

evaluations described later. In Steps 7 through 11, the 

algorithm fixes the defective data. In particular, in Step 7, the 

algorithm amends the destination information of the AIS data 

according to the name of the port the ship actually arrived at. 

In Step 8, the algorithm compensates for lost AIS data. In 

Steps 9 and 10, the algorithm recalculates the velocity and 

direction of the ship based on the actual position transition in 

the record. In Step 11, the algorithm appends information on 

the future position of the ship. In Steps 7 through 11, the 

algorithm fixes the defective data. In particular, in Step 7, the 

algorithm amends the destination information of the AIS data 

according to the name of the port the ship actually arrived at. 

In Step 8, the algorithm compensates for lost AIS data. In 

Steps 9 and 10, the algorithm recalculates the velocity and 

direction of the ship based on the actual position transition in 

the record. In Step 11, the algorithm appends information on 

the future position of the ship.  

B. Parameters of CMF 

For learning behaviors effectively, the actions that the ship 

can take should be limited into several discrete options. 

 

 
Fig. 5. Distribution of actions in real AIS data. 

 

 
Fig. 6. Definitions of parameters in CMF. 
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Fig. 7. Data structure of CMF in ship behavior analysis. 

 

Therefore, we set specific parameters for MDP based on 

the results of the analysis of the AIS dataset. 

Fig. 5 shows the distribution of ship behaviors when a ship 

sails for 5 minutes in Area A, as obtained from our statistical 

analysis of the cleansed AIS episode data. In 5 minutes, the 

maximum angle change that a ship can perform is limited to 

around 45°. The angle disperses when the ship sails for 10 

minutes. Therefore, we decided to set the episode length to be 

30 minutes and extracted records for 5 minutes from each 

episode to analyze CMF (we call it a data frame).  

Fig. 6 shows how parameters in CMF are defined. We 

assume that the ship is piloted with considering two factors. 

One is to avoid obstacles, another is to arrive at the goal. 

Therefore, for the data field of the ship’s behavior, we 

defined two main categories of relative environment data: 

partially observable sections for obstacle avoidance (we call it 

surround_info) and the destination port (we call it goal_info). 

The relative action is calculated from the change in heading of 

the analyzed ship in 5 minutes (we call it act_info).  

For convenience of analyzing in angle space, we define an 

angle index for categorizing the relative angles in the relative 

environment data, and an action index for relative action data.  

We define θ as the relative angle with respect to the heading 

of the analyzed ship in the clockwise direction (e.g., θ = 5° 

means 5° right, θ = -5° means 5° left). For the angle index, 

each angle index subtends an angle of 10 degrees. (e.g., 

[Index 0: -5° < θ < 5°, Index -1: -15° < θ < -5°, index 1: 5° < θ 

< 15°, etc...]) For the action index, each action index subtends 

an angle of 15 degrees. (e.g., [Index 0: -7.5° < θ < 7.5°, Index 

-1: -22.5° < θ < -7.5°, etc…]).   

Fig. 7 shows the data structure of CMF. The data structure 

of surround_info, goal_info and act_info is explained below. 

 Surround_info 

For analyzing surround info, the observation of the 

surrounding environment is set to the nearest feature elements 

in the observable range. Observable angle range is defined as 

-45° < θ < 45°. (The index varies from -5 to 5) and is 

separated into observable sections by the angle index.  

The observable distance range is limited to 10 [km] from 

the analyzed ship. We assign [sea], [land], [ship] and 

[destination port] as types of features. If [land], [ship] and 

[destination port] are not in the observable distance range of 

an observable section, the feature type of the observable 

section is set as [sea]. The quantified feature is expressed as a 

one hot vector. The distance to the features is quantified using 

a distance conversion function, as follows. 
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The distance to the features is quantified for each 

observable section. If the observed feature type is [sea], value 

is set to 0. 

 Goal_info 

The goal_info is calculated for range of -180 < θ < 180°, 

separated by the angle index over an observable range of 60 

kilometers. Goal_info calculates the angle gap and distance 

between the analyzed ship and its destination. The angle gap 

is the angle between the direction of the analyzed ship’s 

heading and the destination and it is quantified by a one-hot 

vector of angle indexes. If the distance to the destination 

exceeds the maximum range: 60 kilometers, the feature value 

is set to 0. The distance to the destination is 

--------------------------------------------------------------------------- 

Algorithm 2 Making CMF from cleansed AIS dataset 

--------------------------------------------------------------------------- 

Input: Environment Datasets S_env, Path Datasets S_path 

Output: Relative Environment Dataset S_relative_env, 

               Relative Action Dataset S_relative_action  

function CMF: 

1: for Episode Data in S_path: 

2:   dataFrameList =  

extractDataFrame(S_path, dataFrameLength)  

3: for each dataFrame for dataFrameList: 

4:    Position_ship = getPosition(dataFrame) 

5:    Destination_ship = getDestination(dataFrame) 

6:    goal_info = goal_calc(Position_ship,  

Destination_ship) 

7:    for each environmentElements in S_env: 

8:       Position_elements, Type_elements =  

getInfo(environmentElements)  

9:       Distance = calculate_distance(Position_ship, 

Position_elements) 

10:     Surround_dict[Type_elements].append 

(get_Surround_Info(Distane, Type_elements))  

11:   surround_info = getMinimumfeatures(Surround_dict) 

12:   Feature_value = [goal_info, surround_info] 

13:   S_relative_env.append(Feature_value) 

14:   Position_future = getFutureCoord(dataFrame) 

15:   action_info = getActionInfo(Position_ship, 

 Position_future) 

16:   S_relative_action.append(action_info) 

17: return S_relative_env, S_relative_action 

--------------------------------------------------------------------------- 

Fig. 8 AIS data relation calculation algorithm 
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 Act_info 

The act_info is calculated for a range of -180 < θ < 180°, 

separated by the action index. The action direction of the 

analyzed ship at t = 0 minute is calculated from the position 

of the analyzed ship at t = 5 minutes. Here, we assume that 

there is a change in action (e.g., turn 15° right, do not turn, 

etc…) for the analyzed ship at t = 0 and simulate its expected 

position. By comparing the expected position with the 

observed one, we categorize the action taken by the analyzed 

ship at t = 0 on the basis of the action index.  

C. Data Conversion  

Fig. 8 lists the algorithm to make CMF data from the output 

of Algorithm 1. This algorithm takes as input the environment 

datasets S_env and path datasets S_path. It outputs the 

relative environment dataset S_relative_env and relative 

action dataset S_relative_action. The CMF data is created 

from consecutive records, i.e., data frames. In Step 1 and Step 

2, the data in the path database is converted into data frames. 

In Steps 3 through 16, data is extracted from data frames 

instead of episodes. In Steps 4 through 6, the relative angle 

and relative distance to the destination port is calculated as 

goal_info. In Steps 7 through 9, the relative angle and relative 

distance to features around the analyzed ship are calculated 

and stored in a temporal dictionary, called Surround_dict. 

The type and distance to the closest features in the partial 

observation range for the analyzed ship is extracted from 

Surround_dict in Step 11. In Step 12 and Step 13, goal_info 

and surround_info are integrated and stored in a list. In Steps 

14 through 16, action_info is calculated from the change in 

the angle of the ship’s heading. In this algorithm, data 

cleansing is applied to the data frame instead of to the episode 

data in the S_path itself. By using data frames, the actions of 

the analyzed ship can be efficiently categorized into a limited 

number of options and thereby the quantity of data that can be 

dealt with is enlarged. Also, by simply using the information 

of the nearest features in observable sections, the number of 

state patterns in MDP is limited. Therefore, the effectiveness 

of the data analysis is increased. 

 

VI. EVALUATION  

We applied CMF to a dataset of AIS data in Area A. We 

forecast the behaviors of ships by forecasting the way of the 

ship ([turn left, keep straight, turn right]) and exact angle of 

the way by using the action index ([Action Index -3 , Action 

Index -2, ... Action Index 3]).  

We developed a DQN to forecast behaviors of ships. The 

neural network takes surround_info as input and goal_info in 

CMF as feature values )(s  of the environment and outputs 

the estimated Q(s,a) value for each action option regularized 

in the range of 0 to 1 by using the softmax function. The 

dimension of the output layer is 3 nodes for the way 

forecasting problem and 7 nodes for the angle forecasting 

problem. action_info in CMF is used as an answer in the 

training of the angle forecasting problem. For the way 

forecasting problem, an action index of -3 to -1 is categorized 

as [turn left], and an action index of 1 to 3 is categorized as 

[turn right]. There are four hidden layers in the DQN. All of 

the nodes in the hidden layers are fully connected. The 

dimensionalities of the hidden layers are 500, 250, 250, and 

50, where the hidden layer with 500 nodes is connected to the 

input layer. Each activation function in the neural network is a 

Rectifier Linear Unit (ReLu), except that the first hidden layer 

uses a sigmoid function.  

To examine the effect of CMF, we compared forecasting 

accuracy in our method with a state transition (ST) model 

developed from the dataset generated by applying only data 

cleansing and data management to the AIS dataset taken from 

Area A. The ST model applied a level 11 Geohex.  

The system using our proposed method was 85% accurate 

on the way forecasting problem and 81.2% accurate on the 

angle forecasting problem. The system using the ST model 

had 52% accuracy. Thus, our method improved accuracy in 

angle forecasting by 29.2%. 

VII. DISCUSSION 

This section discusses why CMF raises the accuracy of 

forecasting compared with traditional datasets. 

 

 
Fig. 9. Data duplication distribution after applying CMF. 

 
TABLE I: SUMMARY OF RESULTS 

Database Forecasting 

Accuracy 

Data Usage Rate 

Without CMF 52 [%] 27.9 [%] 

With CMF 81.2 [%] 62.1 [%] 

 

From the 7307679 records of AIS dataset gathered in 1 

month at Area A, we collected 16222 episodes. In this data, 

6849 out of 16222 episodes were not observed again within 1 

month. In this data, episodes applicable for state 

transitionmodel are amounted to 4542 episodes. The data 

usage rate was only 27.9%. These episodes do not have the 

same situation patterns in them. Thus, the data is not suitable 

for AL. 

By applying CMF, as a result of compressing the available 

state patterns, relative environment dataset contains similar 

situations for certain data. We got 150238 data frames from 

the episodes. 93324 of these data frames contain data in the 

same situation at least twice. Thus, 62.1% of the data could be 

used for the analysis. Because multiple actions were 

observable for the same situation, we can expect that applying 

CMF will improve the accuracy of AL. Fig. 9 shows the 

counts of duplicated data for the AIS data set after applying 

CMF. The X axis of the figure represents the number of times 

the data is observed in the situation and the y axis shows the 

patterns collected from the 1-month AIS dataset. For more 

than 10 situation patterns, we observed over 20 data frames in 

the same situation. For the most frequent situation, we got 
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12609 data frames. 

To evaluate the accuracy of our system with alternative 

technology, we compared experiment results of our system 

with a system using human expert knowledge [18].  

According to [18], the experimenter obtained peer-to-peer 

location information transmitted from ships nearby by Zigbee 

to forecast their way, and forecasted the ways of the 

surrounding ships with 80% accuracy. The accuracy of our 

system (85%) at forecasting the ways of the surrounding ships 

was superior to that of the human expert using local 

information from Zigbee. Thus, our method has the potential 

to support unmanned shipping in crowded bay areas by 

forecasting the paths of surrounding ships. 

 

VIII. CONCLUSION 

We proposed data management using a data structure 

conversion named Co-Moving Frame (CMF). Apprenticeship 

learning (AL) can use CMF to analyze the behaviors of ships 

as recorded in sparse AIS data because CMF solves data 

sparseness problem by compression. By applying AL, we 

successfully forecast paths of ships with 81.2% accuracy on a 

dataset to which CMF was applied. The forecast was 29.2% 

more accurate than a state transition model developed from 

the same dataset without applying CMF. Applying CMF 

increases data usage effectiveness from 27.9% to 62.1%, by 

increasing the quality of the data.  These results indicate the 

possibility of creating a support system for unmanned 

shipping by forecasting the behavior of surrounding ships in 

crowded sea. 

APPENDIX. APPROXIMATE THE AMOUNT OF GRIDS IN AREA A 

The distance between hexagonal grids at level N Geohex at 

a latitude of θ is formulated as 

 

])[cos(
3

5190219423.2570813
m

N
       (9) 

 

By assuming N = 11 and θ=35.4 North, the distance is 

approximately 14 meters. This size is quite close to a typical 

width of the ship. Therefore, we decided to use level 11 

Geohex for making grids for Tokyo Bay. 

The distance of the sea region in Area A used in the 

evaluation can be calculated from Heubeny’s equation, with 

the following result.  

Width: 43707 meters at North bound 

  43817 meters at South bound 

   Length:  

22523 meters 

The width varies because the shape of the Earth is elliptical. 

Because the Geohex grid is hexagonal and two sides of the 

grid are parallel to the Equator, the grid in a certain area can 

be calculated as follows. 

 

3

2

tan
__ 

ceHexDis

Width
ValuenExpectatioWidth   (10) 

 

3

2

tan
__ 

ceHexDis

Length
ValuenExpectatioLength  (11) 

 

Assuming a Hex Distance of 14 meter, the expectation 

values of the width and lengths of grids inside Area A are as 

follows.  

 

2083
3

2

14
__ 

Width
ValuenExpectatioWidth   (12) 

 

1858
3

2

14
__ 

Length
ValuenExpectatioLength  (13) 

 

The expected number of available grids in Area A is thus  

 
610*9.3387021418582083      (14) 
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