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Abstract—Fuzzing is an efficient testing technique to expose 

bugs and vulnerabilities, and fuzzers extended with coverage 

information can generate interesting results and find potential 

bugs in programs. However, previous coverage-based fuzzers, 

such as American Fuzzy Lop (AFL), fail to realize the 

importance of the order of input test cases or they are unable to 

adopt significant and useful coverage information, so some of 

them suffer from dramatically poor performance. Meanwhile, 

the main idea of test case prioritization (TCP) in the field of 

software testing is to rank the test cases according to a certain 

rule, helping expose bugs and vulnerabilities. Thus our work 

concentrates on complementing AFL with the characteristics of 

TCP and improving the performance of the original AFL. 

In this paper, we present a brand-new fuzzing technique 

combining essential and practical coverage information and 

prioritization properties commonly used in TCP, which funda- 

mentally enhancing the process of creating new test cases and 

finding bugs. We implement our method by extending state-of- 

the-art fuzzer AFL with TCP techniques and evaluate it on 6 

widely-used and open source programs from GNU. We conduct 

experiments on 6 target programs to illustrate our performance 

on bug detection. On all of these experiments, improvement of 

our method is witnessed and significantly better outcomes are 

generated. 

 
Index Terms—AFL fuzzing, test case prioritization, coverage 

information, software se. 

 

I. INTRODUCTION 

Software security is attracting increasing attention these 

days. Although experts spare no efforts in increasing the reli- 

ability of software against security problems, vulnerabilities 

in software are still common [1]. However, many classes of 

vulnerabilities, such as functional correctness bugs, are 

difficult to find without executing a piece of code. With 

regard to the problem of code executing, there has been much 

debate about the efficiency of symbolic execution versus 

more lightweight fuzzers[2]. Symbolic execution tools are 

able to automatically generate tests with high code coverage 

on a large set of intricate and complicated programs [3]. 

While fuzzing is the process of finding security vulnerabilities 

in input-parsing code by repeatedly testing the parser with 

modified, or fuzzed inputs. 

Symbolic execution is very effective because each test case 

typically executes the target program along a certain path. 

However, this effectiveness is the result of a huge amount of 

constraint solving and program analysis [2]. It triggers a large 

number of paths in the target program and will result in path 

explosion. However, with regard to fuzzing, today most 
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vulnerabilities are exposed by particularly lightweight fuzzers 

that do not leverage any program analysis [4]. For the above 

reasons, in this paper, we give up classic symbolic execution 

and focus on extending a stage-of-the-art fuzzer American 

Fuzzing Lop (AFL). 

There are three main types of fuzzing techniques in use: 

black-box fuzzing [5], white-box fuzzing [6] and grey-box 

fuzzing [7]. Black-box fuzzing is a technique of software 

testing without any knowledge of the internal architecture of 

the target program. It only examines the fundamental aspects 

of the system, which treats the software as a “Black Box”. 

White-box fuzzing is based on analysis of internal structure of 

the target program and is very effective and efficient in 

validating design and assumptions. White-box fuzzing is 

performed based on the knowledge of how the system is 

implemented. Grey-box fuzzing tests the program with 

limited knowledge of the structure of an application. It 

provides combined benefits of black-box and white-box 

fuzzing techniques and the tester can design excellent test 

scenarios. 

Since grey-box fuzzing is efficient for real world programs 

and its combined benifits, it is widely applied in software 

testing. These methods do give up the time-consuming pro- 

gram analysis, they suffer from low testing accuracy. And we 

observed that there are two main drawbacks of these grey- 

box fuzzers: (1) They take test cases as input in the default 

given order and fail to realize the importance of the order of 

test cases; (2) They adopt imprecise and low-accuracy cover- 

age information for the fuzzing loop, thus existing grey-box 

fuzzers have been effective mainly in discovering superficial 

bugs, close to the surface of software, while struggling with 

more complex ones. On top of all these reasons, we focus on 

extending state-of-the-art grey-box fuzzer AFL. 

AFL is a brute-force fuzzer coupled with an exceedingly 

simple but rock-solid instrumentation-guided genetic 

algorith-m. And in previous works, AFL is proved to have 

high accuracy and able to reveal deeper bugs in programs [2]. 

However, the process loop of AFL uses very rough and 

imprecise coverage information to guide the fuzzing process: 

1) AFL measures a certain block transition (or a branch) 

with a ˆ (XOR) operation of current execution location 

CurLoc and previous execution location PrevLoc. 

However, it simply adopts randomly generated values to 

represent current location CurLoc, which is imprecise 

and may cause duplicate locations. 

2) And AFL determines a new state by checking the change 

of branch bitmap after a certain execution using an & 

(AND) operation. However, this kind of method cannot 

measure the extend of the change in branch bitmap 

coverage. And the above 2 drawbacks of AFL makes it 

very hard to provide precise coverage information for 

the fuzzing loop. And as discussed above, similar to 
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other grey-box fuzzers, (3) AFL fails to realize the 

importance of the order of the test cases. Enlightened by 

the idea of TCP, in this paper, we integrate useful 

prioritization properties and coverage measurement 

widely used in TCP into AFL to enhance the process of 

generating coverage information, selecting test cases 

and finding bugs. On all of our experiments, 

performance of our method is witnessed and 

significantly better outcomes are generated. 

The main contribution of this paper is as follows: 

• We aggregate specific and fundamental prioritization 

properties of TCP into AFL and we adopt more practical and 

precise coverage information widely used in TCP to guide the 

generation of more interesting test cases. 

• We implement our proposed method by extending a 

state-of-the-art grey-box fuzzing tool, American Fuzzy Lop, 

which is efficient in processing and easy for implementation. 

• We evaluate our proposed model on 6 real-world appli- 

cations and conduct intensive comparison experiments. 

Experiment result shows that our method outperforms 

traditional fuzzers with regard to the ability to find bugs and 

detecting vulnerabilities. 

 

II.  BACKGROUND 

A. American Fuzzy Lop 

Coupled with a significantly simple but sound coverage- 

guided fuzzing algorithm, American Fuzzy Lop (AFL) is a 

well-known fuzzing tool. It adopts a instrumented edge 

coverage to detect new changes in the program execution 

trace [8]. 

The overall algorithm can be summed up as: 

• (1) Load starting test cases into the fuzzing queue, 

• (2) Take next test case from the fuzzing queue, 

• (3) Try to minimize the test case to the smallest size that 

doesn’t affect the program trace, 

• (4) Mutate the test case using a well-designed mutation 

strategies, 

• (5) If any of the mutations resulted in a new program 

trace, add this mutation as a new entry in the fuzzing queue. 

•  (6) Go to (2). 

AFL does not focus on any acknowledged principle and it 

is not designed according to any theory. While AFL can be 

thought of as a collection of effective and practical hacks. 

And it has been implemented in the simplest, most rock-solid 

way [4]. Thus extension on AFL can give us a high level 

platform to start with.  

B. White-, Grey- and Black-box Fuzzing Techniques 

Fuzzing techniques can be classified according to the 

knowledge acquired from program. Typically, white-box 

fuzzer has full information of the target program and can use 

traditional program analysis techniques to uncover properties 

of the target. White-box fuzzers including SmartFuzz [9], 

BuzzFuzz [10] and Vuzzer [11] achieve expected 

performance and can be applied to real-world scenarios. 

While grey-box fuzzer uses specific feedback information to 

enhancing the process of ”blind” fuzzing. This kind of fuzzing 

tries to maintain the simplicity of black-box while improving 

the effectiveness of fuzzers by adopting additional 

information. AFL and AFLFast [2] are the most successful 

representation of grey-box fuzzers. Meanwhile, black-box 

fuuzer does not have any information of the target program at 

all. Recently new ideas are put into black-box fuzzers and 

Radamsa [12], zzuf [13] and peach [14] did remarkable work 

in this field. 

This kind of classification of fuzzers are based on the 

interaction with the target program, while it can also be 

classified into non-kernel and kernel fuzzers depending on 

weather it can be used to fuzz kernels [15]. 

C. Test Case Prioritization Techniques 

Elbaum et al. [16] first defined the test prioritization prob- 

lem. Assuming that P (T ) denotes the set of permutations of a 

given test suite T , and f denotes a function from P (T) to real 

numbers, a TCP problem is to find T ∈  P (T ), that 

[17]. In the field of TCP techniques, total and additional 

schedules are recognized as representative test prioritization 

techniques due to their effectiveness and are taken as the 

control techniques in the evaluation of existing work [18]. 

Meanwhile, most existing TCP techniques guide their 

prioritization process based on coverage information, which 

refers to whether any structural unit is covered by a test. TCP 

techniques can be distinguished by the source code elements 

they seek to cover: statements (S), branches (B) and methods 

(M) [19]. Moreover, previous work has already shown that 

statement-level coverage is at least as effective as other 

coverage types [20]. 

Test case prioritization is an important field of software 

testing and debugging. First introduced by Rothermel et al. 

[21], it mainly focuses on various strategies or algorithms 

used in test prioritization. The most widely used TCP 

techniques are total and additional strategies [21]. By 

extending total and additional strategies, various of related 

work are presented these years. Li et al. [18] first uses the idea 

of search algorithm to solve the TCP problems. And Jiang et 

al. [22] proposed the famous adaptive random test (ART) 

prioritization, which selects a test case farthest from the 

already selected tests. While Nguyen et al. [23] presented an 

algorithm to prioritize tests based on information retrieval 

(IR). Furthermore, Saha et al. [24] also proposed a more 

advanced technique, named REPiR, based on IR. 

TCP techniques can be classified into different criteria 

based on different standard. Henard et al. [19] conducted an 

intensive experimental study on white-box TCPs and black- 

box TCPS. While Luo et al. [17] compared the difference 

between dynamic TCPs and static TCPs. 

 

III. EXPERIMENT SETUP 

A. Adopted Methodology 

In this section, we will discuss the TCP techniques adopted 

in our proposed method. According to previous works [19] in 

this field, Additional Branch (AB), Additional Spanning 

Statements (ASS) and Additional Spanning Branches (AS-B) 

produce the best detection results in source-code-aware 

techniques. While Input Test Set Diameter (I-TSD), t-wise 
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(t-W) and Input Model Diversity (IMD) achieve the highest 

detection rate in source-code-agnostic techniques. The details 

of the above techniques are as followed: 

• Additional Branch: Covering the maximum number of 

uncovered branches [25]. 

• Additional Spanning Statements: Covering the 

maximum uncovered dominating statements [26]. 

• Additional Spanning Branches: Covering the maximum 

uncovered dominating branches [26]. 

• Input Test Set Diameter: Maximizing the NCD distance 

between multi-sets of inputs [27]. 

• t-wise: Covering the maximum interactions between t 

model inputs [28]. 

• Input Model Diversity: Maximizing the Jaccard distance 

between model inputs [29]. 

B. Tools and Target Programs 

We compile the target programs with gcc 4.7.1 and acquire 

statement-, branch- and method- coverage information of all 

initial test cases with the built-in gcov tool [30]. 

As for the target programs, following previous works, we 

select 6 real-world and open source programs, Bash, Flex, 

Grep, Gzip, Make and Sed, which are available online. 

 

IV. MODEL OVERVIEW AND IMPLEMENTATION 

In this section, the whole process of our method will be 

presented and we will describe our proposed model in detail. 

As shown below, generally our proposed model consists of 

these separate parts: 

• (1) At first step, we rank the initial test cases with the 

techniques mentioned in Section III-A to form a queue of 

inputs. 

• (2) Later, function flip bit() is processed to generate 

different mutations originate from one previous test case. 

• (3) And we still follow the design of AFL and function 

common fuzz stuff() is processed to perform a single loop of 

fuzzing with the inputs in the queue. 

• (4) We abandon the imprecise coverage measurement in 

AFL and modify has new bits() with our coverage 

measurement. Mutations covering new areas of programs will 

be added to a new entry in the queue to Step (2) and processed 

for a new loop of fuzzing. 

•   (5) Go to (2). 

In the following sections, we will discuss the additional and 

modified functions of our model in detail. 

A. Rank the Initial Test Cases with Prioritization 

Techniques 

This prioritization step will form a queue QI of ordered test 

cases as inputs for the first run. In this step, we will adopt the 

three source-code-aware techniques (AB, ASS and ASB) and 

three source-code-agnostic techniques (I-TSD, t-W and IMD) 

separately, generating QPAB, QPASS, QPASB, QPI- T SD, QPt---W 

and QPIMD accordingly. This kind of experiment design will 

lead to 6 sub-experiments and we will discuss the results of 

them in detail in Section V. 

B. Start Fuzz and Detect New Behavior 

This part of our model mainly complete the fuzzing process 

in common fuzz stuff() and detect new behavior of the target 

program in has new bits(). The basic idea of this part is to 

detect weather a test case achieve new areas of the target 

program. And the original AFL uses rough and imprecise 

method to measure the coverage information. This will lead to 

false positives in the fuzzing loop and may retain the useless 

test cases while giving up the interesting ones. However, our 

proposed model measure coverage information of the target 

with precise and compile-level tool gcov. The recordings of 

gcov actually reflect the behavior of the running program pre- 

cisely and this kind of implementation will not give away any 

useful test cases in the queue. And thanks to the mechanism of 

gcov (it only requires compiling the target program with gcov 

parameters for once), we are able to insert gcov into AFL 

while maintaining the properties of AFL. 

We implement our code coverage measurement with gcov, 

and the difference between the original version and our 

modification is that we abandon the coverage results of the 

original method as described in Section I and we use coverage 

results of gcov in our modification. Our modified function has 

new bits() basically calculates the coverage information of a 

test case and decides whether it brings new behavior by 

comparing it to history coverage information. Test cases with 

new behavior will be retained and pushed back to the queue 

for later mutation and useless ones will just be abandoned. 

In addition, basic procedure of our model is illustrated in 

Algorithm 1. 

 

 

V.   EXPERIMENTAL RESULTS 

In this section, we will present the experiment results of our 

method and discuss the improvement over the original version 

of AFL. We ran our experiments on an Ubuntu 14.04 LTS 

system equipped with a 64-bit 8-core Intel CPU and 32 GB 

RAM. And 6 target programs from GNU are included: Bash, 

Flex, Grep, Gzip, Make and Sed. The experiments are aimed 

to illustrate the ability to detect potential bugs and 
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vulnerabilities of our model. 

For each of our target programs, we measure the 

performance of the 6 TCP techniques with the original AFL. 

And we run each experiments on our host for 24 hours to get 

the results. We illustrate the results of unique crashes in Table 

I. In the definition of AFL, unique bugs is the main indicator 

of the ability to detect potential bugs and vulnerabilities. As 

shown in Table I, the first column contains the 6 target 

programs described in Section III-B and the second to seventh 

column are the 6 TCP techniques described in Section III-A. 

While the last column is the performance of the original 

version of AFL. In the same time, each single experiment is 

conducted 20 times in order to get the values that occur the 

most frequently (mode) to avoid the effect of other factors. 

However, due to lack of input model data, experiments on the 

row Bash and column t-W, IMD cannot be conducted. And 

they are marked as “-”. 

Furthermore, as shown in Figure 1, we collect crashes over 

time in Gzip for our 6 proposed methods compared with AFL. 

We can see that after 24 hours execution, the curve of AFL is 

already flat, while our proposed 6 methods all have an upward 

trend, which means our proposed model is able to reveal 

deeper bugs and branches hidden in the program that AFL 

cannot. 

 
        Fig. 1. Crashes over time in Gzip for our 6 proposed methods (solid line) vs. AFL (dashedline). 

 

As shown in Table I, three obvious conclusions can be 

made. First, AFL extended with the 6 TCP techniques out- 

performs the original AFL in all experiments, even in cases 

like Make, where the original AFL cannot find any unique 

crashes. In terms of unique crashes exposed, our proposed 

model presents more potential ability in detecting bugs and 

vulnerabilities. Then, according to the table, ASB catches the 

most unique bugs in 4 out 6 target programs. But compared to 

other techniques, the difference in unique crashes is small. At 

last, in all test cases, source-code-aware techniques outper- 

forms source-code-agnostic techniques in detecting bugs and 

vulnerabilities. This is in accordance with common sense that 

source-code-aware techniques is able to adopt more informa- 

tion in the target programs. Furthermore, Table II shows the 

maximal and minimal result of our 20 times experiments. 

This is the Mode Result of Our 20 Times Repea ted 

Experiments and Mode Means the Value Occurs the Most 

Frequently in Them. 

 
TABLE I: PERFORMANCE ON DETECTING BUGS OF OUR MODEL  

Name Mode of unique crashes 

 AB ASS ASB I-TSD t-W IMD AFL 

Bash 291 301 320 290 - - 255 

Flex 71 75 71 70 69 68 58 

Grep 80 79 81 78 79 75 61 

Gzip 127 129 133 125 125 124 101 

Make 40 43 41 40 39 39 0 

Sed 93 95 101 91 90 91 79 

 

TABLE II: PERFORMANCE ON DETECTING BUGS OF OUR MODEL 

 

 

Minimal and maximal of unique crashes 

 
 

AB ASS ASB I-TSD t-W IMD AFL 

Bash 285/296 294/307 311/322 286/293 - - 249/258 

Flex 67/73 69/77 68/73 68/71 65/69 64/69 55/58 

Grep 77/82 74/80 79/83 75/79 75/79 72/77 59/62 

Gzip 121/129 123/130 131/135 119/126 120/125 119/125 95/105 

Make 36/42 38/45 37/42 37/42 35/40 35/39 0/0 

Sed 85/95 88/97 95/104 85/93 85/90 86/92 71/81 

 

This is the Minimal and Maximal Result of Our 20 Times Repeated Experiments. 
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In conclusion, our proposed method outperforms the 

original AFL both in the ability to detect bugs and time cost. 

The internal reason is that, as described above, AFL fails to 

adopt a precise coverage measurement method and it uses 

rough and unrepresentative coverage information from the 

target program. While our model aggregate TCP techniques 

into AFL and avoids the above drawbacks by modifying these 

unwell-designed parts of AFL and achieve a relatively better 

performance. 

 

VI. CONCLUSION 

In this paper, in all the implementation of fuzzing, we 

concentrate state-of-the-art AFL to make extension for its 

promised characteristics. Furthermore, in order to get rid of 

the internal drawbacks of AFL, we combine the properties of 

AFL and test case prioritization techniques and aim to achieve 

better performance. And we present a brand-new fuzzing 

technique combining essential properties and practical 

coverage information commonly used in TCP, which 

fundamentally enhancing the process of creating new test 

cases and finding bugs. And by conducting experiments on 6 

target programs to illustrate our performance both on 

detecting bugs, improvement of our method is witnessed and 

significantly better outcomes are generated. 
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