



Abstract—Fuzzing is an efficient testing technique to expose

bugs and vulnerabilities, and fuzzers extended with coverage

information can generate interesting results and find potential

bugs in programs. However, previous coverage-based fuzzers,

such as American Fuzzy Lop (AFL), fail to realize the

importance of the order of input test cases or they are unable to

adopt significant and useful coverage information, so some of

them suffer from dramatically poor performance. Meanwhile,

the main idea of test case prioritization (TCP) in the field of

software testing is to rank the test cases according to a certain

rule, helping expose bugs and vulnerabilities. Thus our work

concentrates on complementing AFL with the characteristics of

TCP and improving the performance of the original AFL.

In this paper, we present a brand-new fuzzing technique

combining essential and practical coverage information and

prioritization properties commonly used in TCP, which funda-

mentally enhancing the process of creating new test cases and

finding bugs. We implement our method by extending state-of-

the-art fuzzer AFL with TCP techniques and evaluate it on 6

widely-used and open source programs from GNU. We conduct

experiments on 6 target programs to illustrate our performance

on bug detection. On all of these experiments, improvement of

our method is witnessed and significantly better outcomes are

generated.

Index Terms—AFL fuzzing, test case prioritization, coverage

information, software se.

I. INTRODUCTION

Software security is attracting increasing attention these

days. Although experts spare no efforts in increasing the reli-

ability of software against security problems, vulnerabilities

in software are still common [1]. However, many classes of

vulnerabilities, such as functional correctness bugs, are

difficult to find without executing a piece of code. With

regard to the problem of code executing, there has been much

debate about the efficiency of symbolic execution versus

more lightweight fuzzers[2]. Symbolic execution tools are

able to automatically generate tests with high code coverage

on a large set of intricate and complicated programs [3].

While fuzzing is the process of finding security vulnerabilities

in input-parsing code by repeatedly testing the parser with

modified, or fuzzed inputs.

Symbolic execution is very effective because each test case

typically executes the target program along a certain path.

However, this effectiveness is the result of a huge amount of

constraint solving and program analysis [2]. It triggers a large

number of paths in the target program and will result in path

explosion. However, with regard to fuzzing, today most

Manuscript received October 30, 2017; revised December 12, 2017.

The authors are with the College of Computer, National University of

Defense Technology Changsha, Hunan, China (e-mail:

zhanggen12@hotmail.com, zhouxu@nudt.edu.cn).

vulnerabilities are exposed by particularly lightweight fuzzers

that do not leverage any program analysis [4]. For the above

reasons, in this paper, we give up classic symbolic execution

and focus on extending a stage-of-the-art fuzzer American

Fuzzing Lop (AFL).

There are three main types of fuzzing techniques in use:

black-box fuzzing [5], white-box fuzzing [6] and grey-box

fuzzing [7]. Black-box fuzzing is a technique of software

testing without any knowledge of the internal architecture of

the target program. It only examines the fundamental aspects

of the system, which treats the software as a “Black Box”.

White-box fuzzing is based on analysis of internal structure of

the target program and is very effective and efficient in

validating design and assumptions. White-box fuzzing is

performed based on the knowledge of how the system is

implemented. Grey-box fuzzing tests the program with

limited knowledge of the structure of an application. It

provides combined benefits of black-box and white-box

fuzzing techniques and the tester can design excellent test

scenarios.

Since grey-box fuzzing is efficient for real world programs

and its combined benifits, it is widely applied in software

testing. These methods do give up the time-consuming pro-

gram analysis, they suffer from low testing accuracy. And we

observed that there are two main drawbacks of these grey-

box fuzzers: (1) They take test cases as input in the default

given order and fail to realize the importance of the order of

test cases; (2) They adopt imprecise and low-accuracy cover-

age information for the fuzzing loop, thus existing grey-box

fuzzers have been effective mainly in discovering superficial

bugs, close to the surface of software, while struggling with

more complex ones. On top of all these reasons, we focus on

extending state-of-the-art grey-box fuzzer AFL.

AFL is a brute-force fuzzer coupled with an exceedingly

simple but rock-solid instrumentation-guided genetic

algorith-m. And in previous works, AFL is proved to have

high accuracy and able to reveal deeper bugs in programs [2].

However, the process loop of AFL uses very rough and

imprecise coverage information to guide the fuzzing process:

1) AFL measures a certain block transition (or a branch)

with a ˆ (XOR) operation of current execution location

CurLoc and previous execution location PrevLoc.

However, it simply adopts randomly generated values to

represent current location CurLoc, which is imprecise

and may cause duplicate locations.

2) And AFL determines a new state by checking the change

of branch bitmap after a certain execution using an &

(AND) operation. However, this kind of method cannot

measure the extend of the change in branch bitmap

coverage. And the above 2 drawbacks of AFL makes it

very hard to provide precise coverage information for

the fuzzing loop. And as discussed above, similar to

AFL Extended with Test Case Prioritization Techniques

Gen Zhang and Xu Zhou

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

41DOI: 10.7763/IJMO.2018.V8.622

other grey-box fuzzers, (3) AFL fails to realize the

importance of the order of the test cases. Enlightened by

the idea of TCP, in this paper, we integrate useful

prioritization properties and coverage measurement

widely used in TCP into AFL to enhance the process of

generating coverage information, selecting test cases

and finding bugs. On all of our experiments,

performance of our method is witnessed and

significantly better outcomes are generated.

The main contribution of this paper is as follows:

• We aggregate specific and fundamental prioritization

properties of TCP into AFL and we adopt more practical and

precise coverage information widely used in TCP to guide the

generation of more interesting test cases.

• We implement our proposed method by extending a

state-of-the-art grey-box fuzzing tool, American Fuzzy Lop,

which is efficient in processing and easy for implementation.

• We evaluate our proposed model on 6 real-world appli-

cations and conduct intensive comparison experiments.

Experiment result shows that our method outperforms

traditional fuzzers with regard to the ability to find bugs and

detecting vulnerabilities.

II. BACKGROUND

A. American Fuzzy Lop

Coupled with a significantly simple but sound coverage-

guided fuzzing algorithm, American Fuzzy Lop (AFL) is a

well-known fuzzing tool. It adopts a instrumented edge

coverage to detect new changes in the program execution

trace [8].

The overall algorithm can be summed up as:

• (1) Load starting test cases into the fuzzing queue,

• (2) Take next test case from the fuzzing queue,

• (3) Try to minimize the test case to the smallest size that

doesn’t affect the program trace,

• (4) Mutate the test case using a well-designed mutation

strategies,

• (5) If any of the mutations resulted in a new program

trace, add this mutation as a new entry in the fuzzing queue.

• (6) Go to (2).

AFL does not focus on any acknowledged principle and it

is not designed according to any theory. While AFL can be

thought of as a collection of effective and practical hacks.

And it has been implemented in the simplest, most rock-solid

way [4]. Thus extension on AFL can give us a high level

platform to start with.

B. White-, Grey- and Black-box Fuzzing Techniques

Fuzzing techniques can be classified according to the

knowledge acquired from program. Typically, white-box

fuzzer has full information of the target program and can use

traditional program analysis techniques to uncover properties

of the target. White-box fuzzers including SmartFuzz [9],

BuzzFuzz [10] and Vuzzer [11] achieve expected

performance and can be applied to real-world scenarios.

While grey-box fuzzer uses specific feedback information to

enhancing the process of ”blind” fuzzing. This kind of fuzzing

tries to maintain the simplicity of black-box while improving

the effectiveness of fuzzers by adopting additional

information. AFL and AFLFast [2] are the most successful

representation of grey-box fuzzers. Meanwhile, black-box

fuuzer does not have any information of the target program at

all. Recently new ideas are put into black-box fuzzers and

Radamsa [12], zzuf [13] and peach [14] did remarkable work

in this field.

This kind of classification of fuzzers are based on the

interaction with the target program, while it can also be

classified into non-kernel and kernel fuzzers depending on

weather it can be used to fuzz kernels [15].

C. Test Case Prioritization Techniques

Elbaum et al. [16] first defined the test prioritization prob-

lem. Assuming that P (T) denotes the set of permutations of a

given test suite T , and f denotes a function from P (T) to real

numbers, a TCP problem is to find T ∈ P (T), that

[17]. In the field of TCP techniques, total and additional

schedules are recognized as representative test prioritization

techniques due to their effectiveness and are taken as the

control techniques in the evaluation of existing work [18].

Meanwhile, most existing TCP techniques guide their

prioritization process based on coverage information, which

refers to whether any structural unit is covered by a test. TCP

techniques can be distinguished by the source code elements

they seek to cover: statements (S), branches (B) and methods

(M) [19]. Moreover, previous work has already shown that

statement-level coverage is at least as effective as other

coverage types [20].

Test case prioritization is an important field of software

testing and debugging. First introduced by Rothermel et al.

[21], it mainly focuses on various strategies or algorithms

used in test prioritization. The most widely used TCP

techniques are total and additional strategies [21]. By

extending total and additional strategies, various of related

work are presented these years. Li et al. [18] first uses the idea

of search algorithm to solve the TCP problems. And Jiang et

al. [22] proposed the famous adaptive random test (ART)

prioritization, which selects a test case farthest from the

already selected tests. While Nguyen et al. [23] presented an

algorithm to prioritize tests based on information retrieval

(IR). Furthermore, Saha et al. [24] also proposed a more

advanced technique, named REPiR, based on IR.

TCP techniques can be classified into different criteria

based on different standard. Henard et al. [19] conducted an

intensive experimental study on white-box TCPs and black-

box TCPS. While Luo et al. [17] compared the difference

between dynamic TCPs and static TCPs.

III. EXPERIMENT SETUP

A. Adopted Methodology

In this section, we will discuss the TCP techniques adopted

in our proposed method. According to previous works [19] in

this field, Additional Branch (AB), Additional Spanning

Statements (ASS) and Additional Spanning Branches (AS-B)

produce the best detection results in source-code-aware

techniques. While Input Test Set Diameter (I-TSD), t-wise

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

42

(t-W) and Input Model Diversity (IMD) achieve the highest

detection rate in source-code-agnostic techniques. The details

of the above techniques are as followed:

• Additional Branch: Covering the maximum number of

uncovered branches [25].

• Additional Spanning Statements: Covering the

maximum uncovered dominating statements [26].

• Additional Spanning Branches: Covering the maximum

uncovered dominating branches [26].

• Input Test Set Diameter: Maximizing the NCD distance

between multi-sets of inputs [27].

• t-wise: Covering the maximum interactions between t

model inputs [28].

• Input Model Diversity: Maximizing the Jaccard distance

between model inputs [29].

B. Tools and Target Programs

We compile the target programs with gcc 4.7.1 and acquire

statement-, branch- and method- coverage information of all

initial test cases with the built-in gcov tool [30].

As for the target programs, following previous works, we

select 6 real-world and open source programs, Bash, Flex,

Grep, Gzip, Make and Sed, which are available online.

IV. MODEL OVERVIEW AND IMPLEMENTATION

In this section, the whole process of our method will be

presented and we will describe our proposed model in detail.

As shown below, generally our proposed model consists of

these separate parts:

• (1) At first step, we rank the initial test cases with the

techniques mentioned in Section III-A to form a queue of

inputs.

• (2) Later, function flip bit() is processed to generate

different mutations originate from one previous test case.

• (3) And we still follow the design of AFL and function

common fuzz stuff() is processed to perform a single loop of

fuzzing with the inputs in the queue.

• (4) We abandon the imprecise coverage measurement in

AFL and modify has new bits() with our coverage

measurement. Mutations covering new areas of programs will

be added to a new entry in the queue to Step (2) and processed

for a new loop of fuzzing.

• (5) Go to (2).

In the following sections, we will discuss the additional and

modified functions of our model in detail.

A. Rank the Initial Test Cases with Prioritization

Techniques

This prioritization step will form a queue QI of ordered test

cases as inputs for the first run. In this step, we will adopt the

three source-code-aware techniques (AB, ASS and ASB) and

three source-code-agnostic techniques (I-TSD, t-W and IMD)

separately, generating QPAB, QPASS, QPASB, QPI- T SD, QPt---W

and QPIMD accordingly. This kind of experiment design will

lead to 6 sub-experiments and we will discuss the results of

them in detail in Section V.

B. Start Fuzz and Detect New Behavior

This part of our model mainly complete the fuzzing process

in common fuzz stuff() and detect new behavior of the target

program in has new bits(). The basic idea of this part is to

detect weather a test case achieve new areas of the target

program. And the original AFL uses rough and imprecise

method to measure the coverage information. This will lead to

false positives in the fuzzing loop and may retain the useless

test cases while giving up the interesting ones. However, our

proposed model measure coverage information of the target

with precise and compile-level tool gcov. The recordings of

gcov actually reflect the behavior of the running program pre-

cisely and this kind of implementation will not give away any

useful test cases in the queue. And thanks to the mechanism of

gcov (it only requires compiling the target program with gcov

parameters for once), we are able to insert gcov into AFL

while maintaining the properties of AFL.

We implement our code coverage measurement with gcov,

and the difference between the original version and our

modification is that we abandon the coverage results of the

original method as described in Section I and we use coverage

results of gcov in our modification. Our modified function has

new bits() basically calculates the coverage information of a

test case and decides whether it brings new behavior by

comparing it to history coverage information. Test cases with

new behavior will be retained and pushed back to the queue

for later mutation and useless ones will just be abandoned.

In addition, basic procedure of our model is illustrated in

Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we will present the experiment results of our

method and discuss the improvement over the original version

of AFL. We ran our experiments on an Ubuntu 14.04 LTS

system equipped with a 64-bit 8-core Intel CPU and 32 GB

RAM. And 6 target programs from GNU are included: Bash,

Flex, Grep, Gzip, Make and Sed. The experiments are aimed

to illustrate the ability to detect potential bugs and

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

43

vulnerabilities of our model.

For each of our target programs, we measure the

performance of the 6 TCP techniques with the original AFL.

And we run each experiments on our host for 24 hours to get

the results. We illustrate the results of unique crashes in Table

I. In the definition of AFL, unique bugs is the main indicator

of the ability to detect potential bugs and vulnerabilities. As

shown in Table I, the first column contains the 6 target

programs described in Section III-B and the second to seventh

column are the 6 TCP techniques described in Section III-A.

While the last column is the performance of the original

version of AFL. In the same time, each single experiment is

conducted 20 times in order to get the values that occur the

most frequently (mode) to avoid the effect of other factors.

However, due to lack of input model data, experiments on the

row Bash and column t-W, IMD cannot be conducted. And

they are marked as “-”.

Furthermore, as shown in Figure 1, we collect crashes over

time in Gzip for our 6 proposed methods compared with AFL.

We can see that after 24 hours execution, the curve of AFL is

already flat, while our proposed 6 methods all have an upward

trend, which means our proposed model is able to reveal

deeper bugs and branches hidden in the program that AFL

cannot.

 Fig. 1. Crashes over time in Gzip for our 6 proposed methods (solid line) vs. AFL (dashedline).

As shown in Table I, three obvious conclusions can be

made. First, AFL extended with the 6 TCP techniques out-

performs the original AFL in all experiments, even in cases

like Make, where the original AFL cannot find any unique

crashes. In terms of unique crashes exposed, our proposed

model presents more potential ability in detecting bugs and

vulnerabilities. Then, according to the table, ASB catches the

most unique bugs in 4 out 6 target programs. But compared to

other techniques, the difference in unique crashes is small. At

last, in all test cases, source-code-aware techniques outper-

forms source-code-agnostic techniques in detecting bugs and

vulnerabilities. This is in accordance with common sense that

source-code-aware techniques is able to adopt more informa-

tion in the target programs. Furthermore, Table II shows the

maximal and minimal result of our 20 times experiments.

This is the Mode Result of Our 20 Times Repea ted

Experiments and Mode Means the Value Occurs the Most

Frequently in Them.

TABLE I: PERFORMANCE ON DETECTING BUGS OF OUR MODEL

Name Mode of unique crashes

 AB ASS ASB I-TSD t-W IMD AFL

Bash 291 301 320 290 - - 255

Flex 71 75 71 70 69 68 58

Grep 80 79 81 78 79 75 61

Gzip 127 129 133 125 125 124 101

Make 40 43 41 40 39 39 0

Sed 93 95 101 91 90 91 79

TABLE II: PERFORMANCE ON DETECTING BUGS OF OUR MODEL

Minimal and maximal of unique crashes

AB ASS ASB I-TSD t-W IMD AFL

Bash 285/296 294/307 311/322 286/293 - - 249/258

Flex 67/73 69/77 68/73 68/71 65/69 64/69 55/58

Grep 77/82 74/80 79/83 75/79 75/79 72/77 59/62

Gzip 121/129 123/130 131/135 119/126 120/125 119/125 95/105

Make 36/42 38/45 37/42 37/42 35/40 35/39 0/0

Sed 85/95 88/97 95/104 85/93 85/90 86/92 71/81

This is the Minimal and Maximal Result of Our 20 Times Repeated Experiments.

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

44

In conclusion, our proposed method outperforms the

original AFL both in the ability to detect bugs and time cost.

The internal reason is that, as described above, AFL fails to

adopt a precise coverage measurement method and it uses

rough and unrepresentative coverage information from the

target program. While our model aggregate TCP techniques

into AFL and avoids the above drawbacks by modifying these

unwell-designed parts of AFL and achieve a relatively better

performance.

VI. CONCLUSION

In this paper, in all the implementation of fuzzing, we

concentrate state-of-the-art AFL to make extension for its

promised characteristics. Furthermore, in order to get rid of

the internal drawbacks of AFL, we combine the properties of

AFL and test case prioritization techniques and aim to achieve

better performance. And we present a brand-new fuzzing

technique combining essential properties and practical

coverage information commonly used in TCP, which

fundamentally enhancing the process of creating new test

cases and finding bugs. And by conducting experiments on 6

target programs to illustrate our performance both on

detecting bugs, improvement of our method is witnessed and

significantly better outcomes are generated.

ACKNOWLEDGMENT

The work is supported by The National Key Research and

Development Program of China (No. 2016YFB0200401).

REFERENCES

[1] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y.

Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting

fuzzing through selective symbolic execution,” in Proc. the Network

and Distributed System Security Symposium, 2016.

[2] M. Bo ḧme, V. T. Pham, and A. Roychoudhury, “Coverage- based

greybox fuzzing as markov chain,” in Proc. the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pp.

1032–1043, ACM, 2016.

[3] C. Cadar, D. Dunbar, D. R Engler et al., “Klee: Unassisted and

automatic generation of high-coverage tests for complex systems

programs,” OSDI, vol. 8, pp. 209–224, 2008.

[4] M. Zalewski. American fuzzy lop (afl) fuzzer-technical details.

[Online]. Available: http://lcamtuf.coredump.cx/afl/technical

details.txt. Accessed: September 1

[5] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force

Vulnerability Discovery, Pearson Education, 2007.

[6] P. Godefroid, M. Y Levin, D. A Molnar et al., “ Automated whitebox

fuzz testing,” NDSS, vol. 8, pp. 151–166, 2008.

[7] M. E. Khan, F. Khan et al., “A comparative study of white box, black

box and grey box testing techniques,” International Journal of

Advanced Computer Science and Applications (IJACSA), vol. 3, no. 6,

2012.

[8] M. Zalewski. American fuzzy lop (afl) fuzzer-readme. [Online].

Available: http://lcamtuf.coredump.cx/afl/README.txt

[9] D. Molnar, C. L. Xue, and D. A. Wagner, “Dynamic test generation to

find integer bugs in x86 binary linux programs,” in Proc. Conference

on Usenix Security Symposium, pp. 67–82, 2009.

[10] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox

fuzzing,” in Proc. IEEE International Conference on Software

Engineering, pp. 474–484, 2009.

[11] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,

Vuzzer: Application-Aware Evolutionary Fuzzing, 2017.

[12] A. Helin. A general-purpose fuzzer. https://github.com/aoh/radamsa.

Accessed: September 1, 2017.

[13] Sam Hocevar. zzuf. [Online]. Available:

https://github.com/samhocevar/zzuf

[14] P. Tech. Peach. [Online]. Available: https://www.peach.tech

[15] Thgarnie. Syzkaller. [Online]. Available:

https://github.com/google/syzkaller

[16] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test

cases for regression testing,” Software Engineering IEEE

Transactions, vol. 27, no. 10, pp. 929–948, 2000.

[17] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical

comparison of static and dynamic test case prioritization techniques,”

in Proc. ACM Sigsoft International Symposium on Foundations of

Software Engineering, pp. 559–570, 2016.

[18] Z. Li, M. Harman, and R. M. Hierons, “ Search algorithms for

regression test case prioritization,” IEEE Transactions on Software

Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[19] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon,

“Comparing white-box and black-box test prioritization,” in Proc.

International Conference on Software Engineering, pp. 523–534,

2016.

[20] H. Mei, D. Hao, L. M. Zhang, L. Zhang, J. Zhou, and G. Rothermel,

“A static approach to prioritizing junit test cases,” IEEE Transactions

on Software Engineering, vol. 38, no. 6, pp. 1258–1275, 2012.

[21] R. Gregg, U. Roland, C. Chengyun, and H. M. Jean, “Test case

prioritization: An empirical study,” pp. 179– 188, 1999.

[22] B. Jiang, Z. Y. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random

test case prioritization,” in Proc. IEEE/ACM International Conference

on Automated Software Engineering, pp. 233–244, 2009.

[23] C. D. Nguyen, “Alessandro marchetto, and paolo tonella, test case

prioritization for audit testing of evolving web services using

information retrieval techniques,” in Proc. IEEE International

Conference on Web Services, pp. 636–643, 2011.

[24] R. K. Saha, L. M. Zhang, S. Khurshid, and D. E. Perry, “An

information retrieval approach for regression test prioritization based

on program changes,” in Proc. International Conference on

Software Engineering, pp. 268–279, 2015.

[25] S. Elbaum, A. G Malishevsky, and G. Rothermel, “ Test case

prioritization: A family of empirical studies,” IEEE Transactions on

Software Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[26] M. Marr and A. Bertolino, “Using spanning sets for coverage testing,”

IEEE Transactions on Software Engineering, vol. 29, no. 11, pp.

974–984, 2003.

[27] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter:

Quantifying the diversity of sets of test cases,”pp. :223–233, 2015.

[28] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for

pair-wise coverage with seeding and constraints,” Information and

Software Technology, vol. 48, no. 10, pp. 960–970, 2006.

[29] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.

Traon, “Bypassing the combinatorial explosion: Using similarity to

generate and prioritize t-wise test con- figurations for software product

lines,” IEEE Transactions on Software Engineering, vol. 40, no. 7, pp.

650–670, 2014.

[30] GNU. Gcov. [Online]. Available:

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[31] M. Zalewski. Afl fuzzing strategies. [Online]. Available:

http://lcamtuf.blogspot.com/

2014/08/binary-fuzzing-strategies-what-works.html

Gen Zhang was born in China, 1993. He is a current master

student in College of Computer, National University of

Defense Technology, Changsha, Hunan, China, 410073.

His major is in computer science and software analysis,

and he got his bachelor’s degree in 2016 and is going to get

his master’s degree in 2018.

 He published one paper, Similarity based Matrix Factorization for

Recommender Systems, in ISCID 2017. His current research interests are

fuzzing, software analysis and binary analysis.

 Mr. Zhang received Extraordinary Student Awards in 2015 in College of

Computer for his good performance.

Xu Zhou was born in China, 1985. He is an assistant

researcher in College of Computer, National University of

Defense Technology, Changsha, Hunan, China, 410073.

His major is in computer science and parallel, and he got

his doctor’s degree in 2013 in NUDT.

He published papers on PPoPP and several top

transactions on parallel and his research interests are

computer system and parallel. Mr. Zhou is a fellow member of IEEE.

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

45

http://lcamtuf.blogspot.com/

