
 

 

Abstract—This paper deals with the preprocessing needed for 

the optimal camera placement problem, which is stated as a 

unicost set covering problem (USCP). Distributed and 

massively parallel computations with graphics processing unit 

(GPU) are proposed in order to perform the reduction and 

visibility preprocessing respectively. An experimental study 

reports that a significant speedup can be achieved, and we give 

a general heterogeneous parallel approach that brings together 

these parallel computations. In addition to that, a set-based 

differential evolution (DE) method is applied to solve 10 

instances of the considered problem, and promising results are 

reported. 

 
Index Terms—Distributed computing, graphics processing 

unit (GPU), optimal camera placement problem, preprocessing, 

set-based differential evolution (DE) algorithm, unicost set 

covering problem (USCP).  

 

I. INTRODUCTION 

Intelligent video surveillance systems aim at monitoring 

areas of interest by using appropriate networks of cameras: 

the placement of these cameras is thus of great importance 

because of the requested quality of service and the 

deployment costs. Such an optimal camera placement 

problem can be stated as a decision problem in a discrete 

search space [1]: given the set of possible camera locations, 

find the optimal subset that can meet the operational 

requirements. In this work, the problem is modelled as a 

unicost set covering problem (USCP) together with a 

three-dimensional discretization of the monitored area. 

Firstly, the optimization process needs the following input 

data: the list of points to be covered, the list of possible 

camera locations, and the lists of points covered by each 

possible camera location. This so-called visibility 

preprocessing is performed according to the practical context, 

where the 3D setting avoids blind spot (with regard to a 2D 

model), but at the cost of a much larger computational effort 

[2]. For this reason, it is of high interest to design parallel 

approaches that can compute these input data within a 

reasonable time, so that larger problems can be optimized. 

Secondly, these input data can be reduced in order to speed 

up the optimizing process. The main reduction strategy is a 

variant of the so-called column domination test for 

non-unicost set covering problems [3] (sets that cover fewer 

points at the same cost can be removed, instead of those that 

cover the same points at a higher cost). It consists in 
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discarding the so-called dominated camera locations: for 

each possible camera location   , if another one    can cover 

the same points as    and some additional points, then    is 

said to be dominated by    and it can be removed from the set 

of available camera locations [4]. When the size of the input 

problem is increasing, this reduction preprocessing becomes 

quickly time-consuming and it would be interesting to 

perform it in a parallel way. 

Thirdly, the result of the reduction preprocessing is given 

as input data for the optimization process. Optimal camera 

placement is a topic of active research, and various 

approaches have been proposed to solve this problem [2], 

such as binary integer programming (BIP), particle swarm 

optimization algorithms (PSO), genetic algorithms (GA), and 

simulated annealing algorithms (SA). 

The main contribution of this paper is the design of a 

general heterogeneous parallel approach combining 

distributed and massively parallel computations on graphics 

processing units (GPU) in order to perform all the 

preprocessings needed to solve the optimal camera placement 

problem stated as a USCP. An experimental study shows that 

significant speedup can be achieved for the two afore 

mentioned preprocessings. The second contribution is the use 

of the set-based differential evolution (DE) approach defined 

in [5] for the optimization of the optimal camera placement 

problem. Two hybrid set-based DE algorithms are proposed 

and the relevance of this approach is experimentally 

demonstrated with promising results on 10 instances.  

The remainder of this article is organized as follows. 

Section II introduces the problem modelling and 10 problem 

instances. Section III presents in detail the visibility 

preprocessing and investigates to what extent it can be 

accelerated by a GPU implementation. Section IV explains 

how the reduction preprocessing can be performed in a 

distributed way and reports the resulting speedup according 

to the size of the cluster. Section V gives the general 

heterogeneous parallel approach for preprocessing an 

instance of the optimal camera placement problem. 

Section VI presents the set-based DE approach together with 

an experimental study for solving the 10 instances previously 

defined. Finally, concluding remarks and perspectives are 

given in Section VII. 

 

II. PROBLEM DESCRIPTION 

A. Problem Modelling 

In this paper, the optimal camera placement problem is 

stated as follows: given the camera specifications and a 

three-dimensional area to monitor, find a minimum set of 

camera locations (i.e. position and orientation angles) that 

ensures a full coverage of this area. 
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The monitored area is discretized by using a regular grid of 

points: the distance between two consecutive points in the 

grid is thus equal to 1 unit of length  . The technical 

specifications of the camera are its horizontal field of view   

(in degrees) and its maximal depth of view   (in units of 

length). The camera has a pyramid of vision (see Fig. 1): the 

height from the base to the apex is  , and the rectangular base 

has width         ( 

 
  

   
) and height    

 
, where 

      

    
 is the aspect ratio of a standard full HD camera. 

A point of the grid is said to be covered by a given camera, 

if it is inside the pyramid of vision of this camera. Then, a full 

coverage of this area means that each point of the grid is 

covered by at least one camera. 

A camera location is defined by a point in the grid that is 

above or at least on the top of the monitored area, and by two 

discrete angles (pan and tilt angles) that characterize the 

orientation of the camera. The pan angle   is the rotation 

angle along the   axis, and the tilt angle   is the rotation 

angle along the   axis (see Fig. 2). 

 

 
Fig. 1. Pyramid of vision with horizontal field of view   and height  . 

 

 
  Fig. 2. Camera location at point (        ) with pan angle   and tilt angle 

 . 

 

The pan and tilt angles are discretized by using a 

user-defined parameter  , so that the step size is fixed to the 

value  

 
. It follows that the pan angle   can take       

different values that range in ,    ,. Moreover, given that the 

cameras are placed above the points to be covered and are 

oriented downward, the values in -    , are not needed for 

the tilt angle  . Finally, any camera location with pan angle   

and tilt angle    

 
 will be identical to the camera location 

with pan angle        and tilt angle       . As a 

consequence, the tilt angle   can be limited to    ⌊  ⁄ ⌋  

  different values. 

The afore mentioned optimal camera placement problem 

can be easily stated as a unicost set covering problem (USCP) 

in the following way. The points of the monitored area are the 

set   of elements to be covered. Each camera location covers 

a subset of  , and we consider here the collection   of 

subsets of   that correspond to all possible camera locations. 

Thus, optimizing the camera placement comes down to find 

the minimum subset of   that covers  .  

At first, we define the decision variables: 

         {
     if                   is used 

    otherwise                
 (1) 

Then, the optimization problem can be written as follows: 

    ∑       (2) 

subject to  

 

      ∑             (3) 

         *   +. (4) 

 

The objective function (2) minimizes the total number of 

cameras. The set of constraints (3) ensures that each point is 

covered by at least one camera. Equation (4) gives the binary 

constraints for the decision variables (1). 

B. Problem Instances 

All experimentations reported in this article are conducted 

on the problem instances defined in Table I, where   ,   , 

and   refer to the size of the monitored area (in units of 

length), and    refers to the height (in units of length) where 

the cameras can be placed in the grid. 

 
TABLE I: LIST OF INSTANCES 

Instance                   

1 10 10 4 5 65 10 4 

2 20 20 4 5 65 10 4 

3 30 30 4 5 65 10 4 

4 40 40 4 5 65 10 4 

5 50 50 4 5 65 10 4 

6 10 10 4 5 65 20 4 
7 20 20 4 5 65 20 4 

8 30 30 4 5 65 20 4 

9 40 40 4 5 65 20 4 
10 50 50 4 5 65 20 4 

III. VISIBILITY PREPROCESSING 

Once the size of the monitored area and the camera 

specifications are known, the set of points visible from each 

possible camera location has to be computed, since it is the 

input data needed for solving the USCP defined in Section II. 

A. Visibility Test 

For each point of the monitored area and for each possible 

camera location, it has to be checked if this point lies or not 

inside the pyramid of vision of this camera. This visibility test 

is performed according to the method proposed in [6]. For 

each tested point   ,     - , new coordinates    
,        -  are computed by using the following geometric 

transformations: 

 

           (5) 

𝐷 

𝐻 

𝑂 𝑥 

𝑦 

𝑧 

𝛼 
𝛽 

𝑥𝑐  

𝑦𝑐  

𝑧𝑐  

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

34



 

where    [

    
    
    

          

] (6) 
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where   is a translation such that ,        -  are the 

coordinates of the considered camera  , and    and    are a 

rotation about the   axis by angle  , and a rotation about the 

  axis by angle  , respectively. 

Thus    is now in the coordinate system centered on the 

pyramid of vision of the considered camera (see Fig. 3), and 

   is visible from this camera if all the conditions given 

below are satisfied: 

 

        (9) 

 |  |  
 

 
 

  

 
 (10) 

 |  |  
 

 
 

  

 
 (11) 

 
Fig. 3. Coordinate system centered on the pyramid of vision of the camera. 

 

B. Sequential Implementation 

The simple sequential algorithm that performs the 

visibility preprocessing is given in Table II. This algorithm 

has been implemented on a computer with an Intel Core 

processor i5-3330 (3.00GHz) and with 4 GB of RAM. 

Table VI reports the run times (in seconds) observed for the 

instances defined in Table I. 

The first drawback of this sequential algorithm is that the 

geometric computations needed for the visibility test are 

costly and the number of visibility tests (given by | |  | |) 
grows quickly when the size of the instance is increasing. The 

second drawback is that, even without the geometric 

computations of the visibility test, the two nested loops 

needed to build   are time-consuming. 

On the one hand, all the visibility tests are independent, 

and on the other hand, GPU devices can execute 

computations in parallel on multiple data (thanks to their 

SIMD architecture). In the next section, we propose two GPU 

implementations of the visibility preprocessing in order to 

overcome the drawbacks listed above. 

 
TABLE II: SEQUENTIAL VERSION OF VISIBILITY PREPROCESSING 

 Input: The set   of possible camera locations. 

The set   of points to be covered. 

 Output: The collection   of subsets of   covered by the camera 

locations of  , i.e.   *   ( )    +, where 

         ( )  *      covers  +. 

1 For each      do 

2 For each     do 

3 Compute new coordinates of   according to (5), (6), (7) and (8). 

4 If conditions (9), (10), and (11) are satisfied 

5 Add   in    ( ). 

6 End if 

7 End for 

8 End for 

C. GPU Implementations 

GPU devices have a highly parallel SIMD architecture, 

and dedicated parallel computing platforms (like CUDA for 

NVIDIA GPU devices) allow to easily program general 

purpose computations with high-level languages. By using 

the CUDA platform, it is possible to perform heterogeneous 

parallel computations, where the CPU executes the main 

program from which parallel subprograms (so-called kernels) 

can be launched on the GPU. When called from the main 

program, the code of a kernel is duplicated on the GPU in 

order to be executed in parallel on multiple data. All these 

kernel duplicates are executed by CUDA threads, which are 

organized in groups (called blocks) that contain the same 

number of threads. 

Now, getting back to the optimal camera placement 

problem, the USCP input data provided by the visibility 

preprocessing can be presented as a zero-one matrix, where 

the rows are the elements of  , and the columns are the sets 

of  : a one in row   and column   indicates that the  -th set of 

  covers the  -th element of  . Two methods are proposed 

below in order to fill this matrix with parallel computations 

performed by threads on a GPU device. 

The first idea is to ask a kernel to generate a boolean 

matrix   in the global memory of the GPU so that each 

CUDA thread computes one visibility test. Then,   is copied 

to the RAM, and   is built sequentially by iterating through 

the matrix (see Table III). It is worth noting that, if the full 

boolean matrix can not be stored in the GPU global memory 

or in the RAM, then   (and thus  ) can be computed 

gradually in several iterations according to the available 

memory space. This method overcomes the first drawback of 

the sequential implementation and it allows an almost 5-time 

speedup, as shown by column GPUv1 of Table VI, which 

reports the run times (in seconds) and the speedup (within 

brackets). These experimentations have been performed on a 

computer with an Intel Core processor i5-3330 (3.00GHz), 

with 4 GB of RAM, and with a NVIDIA GeForce GTX680 

GPU device. 

 
TABLE III: FIRST GPU (GPU V1) 

 Input: The set   of possible camera locations. 

The set   of points to be covered. 

 Output: The collection   of subsets of   covered by the camera 

locations of  , i.e.   *   ( )    +, where 

         ( )  *      covers  +. 

1 Call the kernel that performs the visibility preprocessing 

and store the results in a boolean matrix  . 

𝑂 𝑥 

𝑦 

𝑧 
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2 Copy   from GPU global memory to CPU main memory. 

3 For each      do 

4 For each     do 

5 If   indicates that   covers   

6 Add   in    ( ). 

7 End if 

8 End for 

9 End for 

 

As we can see in Table III, geometric data about the points 

and the camera locations are not transferred from CPU main 

memory to GPU global memory before calling the GPU 

kernel. Actually, each point   of   (with integer coordinates 

,     - in the discrete grid) is labelled with an integer     by 

following the rule below: 

 

        (    )  (    )   

   (    )   

   (12) 

 

In this way, all points of the monitored area have 

consecutive identification numbers that are directly related to 

their geometric positions in the space. Thus the  -th line of   

corresponds the point   such that      . 

Then, the same method is used to label each possible 

camera location  : 

 

        (    )  (             )         

   (             )         

 (       )         

        

    (13) 

 

where       and       refer respectively to the minimal 

height and the maximal height (in units of length) allowed in 

the grid for any camera location, where   is placed at a point 

with integer coordinates ,     - in the discrete grid, and   is 

oriented with pan angle     

 
 and tilt angle     

 
, with 

   *        + and    {        }. It means that 

the  -th column of   corresponds the camera location   such 

that      . 
In addition to that, matrices can only be transferred in 

linear form between CPU main memory and GPU global 

memory. It means that the 2D matrix   is stored as a 1D 

matrix. Thus, the result of the visibility test regarding point   

and camera location   is stored in the    -th element of this 

1D matrix, where: 

 

     | |          (14) 

 

Now, when the kernel is executed, each thread knows the 

index of its block, and its own thread index in this block. It 

can thus easily compute the     of the visibility test it has to 

perform. Then, from (14), it can determine the corresponding 

    and    . Finally, it can retrieve all geometric information 

of   and   from (12) and (13). This allows to perform the 

visibility preprocessing without transferring to the GPU the 

geometric data of all points and camera locations. According 

to these explanations, the outline of the visibility 

preprocessing kernel is given in Table IV. 

 
TABLE IV: OUTLINE OF THE VISIBILITY PREPROCESSING KERNEL 

 Input: | |, | |,   ,   ,      ,      ,   ,   ,  ,  ,  . 

 Output: The boolean matrix  , in linear form. 

1 Compute     from thread index and block index. 

2 Compute     and     according to (14). 

3 Compute coordinates of   according to (12). 

4 Compute coordinates and orientation angles of   according to (13). 

5 Compute new coordinates of   according to (5), (6), (7), and (8). 

6 If conditions (9), (10), and (11) are satisfied 

7 Set element     of   to True. 

8 Else 

9 Set element     of   to False. 

10 End if 

 

The second idea is to save time when   is built by iterating 

through  . Actually,   is sparse and there is no need to 

iterate through the whole matrix in order to build the sets of  . 

To this aim, an integer matrix    is used instead of the 

boolean matrix  . Now, if a camera location   covers a point 

 , then the element    of    is set to     (instead of True), 

and to    otherwise (instead of False). Once the visibility 

preprocessing kernel terminates, another kernel is called in 

order to reduce in parallel each line of    to a list of camera 

location identification numbers. Each thread of this so-called 

reduction kernel deals with exactly 1 line of   , and it iterates 

through the line in order to make all encountered     adjacent, 

so that it forms a list starting at the beginning of the 

considered line and ending with a    value. Afterwards,    
is copied to the RAM, and the sets of   are built by iterating 

through the resulting lists contained in the lines of   , instead 

of iterating through the sparse lines of  . The outline of this 

second GPU version of the visibility preprocessing is given in 

Table V. This method overcomes the second drawback of the 

sequential implementation and it allows to achieve a 15-time 

speedup when compared to the sequential version (see 

column GPUv2 of Table VI). 

 
TABLE V: SECOND GPU VERSION OF VISIBILITY PREPROCESSING (GPUV2) 

 Input: The set   of possible camera locations. 

The set   of points to be covered. 

 Output: The collection   of subsets of   covered by the camera 

locations of  , i.e.   *   ( )    +, where 

         ( )  *      covers  +. 

1 Call the kernel that performs the visibility preprocessing 

and store the results in an integer matrix   . 
2 Call the reduction kernel that transforms the lines of    into lists. 

3 Copy    from GPU global memory to CPU main memory. 

4 For each     do 

5 For each     in line     of    do 

6 Add   in    ( ). 

7 End for 

8 End for 

 
TABLE VI: RUN TIMES OF VISIBILITY PREPROCESSINGS 

Instance | | | | CPU GPUv1 GPUv2 

1 605 2 904 0.236  0.078 (3.03)  0.037 (6.38) 

2 2 205 10 584 2.912  0.623 (4.67)  0.250 (11.65) 

3 4 805 23 064 13.701  2.825 (4.85)  0.988 (13.87) 

4 8 405 40 344 41.742  8.568 (4.87)  2.725 (15.32) 

5 13 005 62 424 99.780  20.377 (4.90)  6.287 (15.87) 

6 605 2 904 0.228  0.051 (4.47)  0.035 (6.51) 

7 2 205 10 584 2.920  0.637 (4.58)  0.271 (10.78) 

8 4 805 23 064 13.765  2.892 (4.76)  1.057 (13.02) 

9 8 405 40 344 41.952  8.762 (4.79)  2.902 (14.46) 
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10 13 005 62 424 100.268  20.687 (4.85)  6.583 (15.23) 

IV. REDUCTION PREPROCESSING 

A. Description 

The visibility preprocessing of Section III provides the 

input data needed for solving the optimal camera placement 

problem as a standard USCP. However, before the 

optimization process, the size of   can be reduced by 

removing dominated sets of  . Actually, any possible camera 

location   corresponds to a set    ( ) of  : if there exists 

another camera location    such that    ( )     (  ), then 

  and    ( )  are said to be dominated by    and    (  ) 

respectively. In practice, it means that camera location   is 

not interesting since camera location    covers the same 

points as  , and even more. Thus   should not be considered 

as a possible camera location, and    ( ) can be removed 

from   before the optimization process. 

B. Sequential and Parallel Implementations 

The proposed sequential algorithm of the reduction 

preprocessing is given in Table VII. Firstly, each set    ( ) 

of   is marked as dominated if we can find a larger set 

   (  )  of S such that    ( )     (  ) , as depicted by 

lines 1 to 9 in Table VII. Then, we iterate through   in order 

to build the collection     of non-dominated sets of   (see 

lines 10 to 14 in Table VII ). The most time-consuming part 

of this algorithm is obviously the two nested loops of lines 2 

and 3, since there can be  (| | ) iterations in the worst case. 

 
TABLE VII: SEQUENTIAL VERSION OF THE REDUCTION PREPROCESSING 

 Input:  . 

 Output: The collection    of non-dominated sets of  . 

1 Compute the list   of all sets of   sorted by increasing order  

of their cardinality. 

2 For each element    ( ) in   do 

3 For each element    (  ) after    ( ) in   do 

4 If    ( )     (  ) 

5 Mark    ( ) as dominated. 

6 Break for loop 

7 End if 

8 End for 

9 End for 

10 For each element    ( ) in   do 

11 If    ( ) is not dominated 

12 Add    ( ) in    
13 End if 

14 End for 

 

For this reason, a distributed version of this algorithm has 

been implemented, where the iterations of the first for loop 

(line 2 in Table VII) are distributed to   computers of a 

cluster by using the standard message passing interface 

(MPI). Since this loop iterates though the list   of all sets of   

sorted by increasing order of their cardinality, it is worth 

noting that the work load will be significantly different from 

iteration to another. That is why each iteration   of this loop is 

executed by the (       )-th computer of the cluster: it is a 

simple way to regularly distribute the work load to the nodes 

of the cluster. 

Table VIII shows the size of the resulting    for all 

instances, the run times (in seconds) and the speedups (within 

brackets) for   *         +. Firstly, these experimentations 

confirm the high importance of the reduction preprocessing 

for the optimal camera placement problem, since Table VIII 

shows that between 25 % and 80 % of the possible camera 

locations are dominated (for instances 5 and 7 respectively), 

and can thus be discarded. Secondly, the run times reported 

here correspond to the time spent in the two nested loops of 

lines 2 to 9 in Table VII, so that it clearly shows the benefit 

due to the parallel implementation: for    , a speedup 

greater than 6 times (in average, depending on the instance) 

can be achieved by the proposed distributed approach. 

 

V. GENERAL PARALLEL APPROACH FOR THE 

PREPROCESSINGS 

This section aims at combining some additional sequential 

preprocessings with the two parallel methods presented in 

Section III and Section IV, in order to provide a general 

parallel approach for the preprocessing of optimal camera 

placement problems. 

Firstly, before removing the dominated camera locations 

as proposed in Section IV, it can be interesting to discard the 

so-called blind camera locations, i.e. camera locations that 

can not cover any point of the monitored area. It means that 

all the empty sets of   have to be removed, and it can be done 

sequentially in linear time by iterating through  . 

Secondly, if a point   of   is covered by only one set 

   ( )  of   (i.e. a so-called mandatory set), then   and 

   ( )  can be removed from   and   respectively, since 

   ( ) is necessarily part of the final solution: the problem 

can thus be optimized without   and    ( ) , and   and 

   ( )  will be added in the solution at the end of the 

optimization process. This preprocessing can also be 

performed sequentially in a time linear with the coverage data, 

and we can note that there is no mandatory set for the 

problem instances provided in Table I. 

Finally, a general heterogeneous parallel approach can be 

designed for accelerating the preprocessing computations by 

using a cluster of computers with GPU devices. Table IX 

presents the outline of this general method. To the best of our 

knowledge, it is the first parallel approach combining 

distributed and GPU computing that is proposed for the 

preprocessing of optimal camera placement problems.  

 

VI. OPTIMIZATION WITH A SET-BASED DIFFERENTIAL 

EVOLUTION ALGORITHM 

This section first presents the original differential 

evolution algorithm. Then, it introduces a set-based version 

of this algorithm from the literature, which is designed to 

solve general combinatorial optimization problems. Finally, 

it investigates the efficiency of this approach in order to solve 

the optimal camera placement problems from Table I. 

A. DE for Continuous Optimization 

Differential evolution (DE) is an evolutionary algorithm 

designed for solving continuous optimization problems [7]. 

According to [8], it is able to provide high-quality solutions 

for various theoretical and real-world optimization problems. 

DE aims at converging on the global best solution by using a 

population of individuals (i.e. candidate solutions), which are  
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TABLE VIII: RUN TIMES OF REDUCTION PREPROCESSINGS 

Instance | | |  |                     

1 2 904 1 401 0.078  0.045 (1.73)  0.023 (3.39)  0.016 (4.88)  0.012 (6.50) 

2 10 584 6 778 0.989  0.540 (1.83)  0.315 (3.14)  0.185 (5.35)  0.153 (6.46) 

3 23 064 16 180 5.313  2.813 (1.89)  1.712 (3.10)  0.969 (5.48)  0.913 (5.82) 

4 40 344 29 549 19.989  10.591 (1.89)  6.718 (2.98)  3.595 (5.56)  3.400 (5.88) 

5 62 424 46 907 54.332  27.996 (1.94)  18.020 (3.02)  9.379 (5.79)  9.056 (6.00) 

6 2 904 1 292 0.080  0.046 (1.74)  0.023 (3.48)  0.016 (5.00)  0.012 (6.67) 

7 10 584 2 179 1.823  0.947 (1.93)  0.531 (3.43)  0.325 (5.61)  0.267 (6.83) 

8 23 064 7 889 10.656  5.507 (1.93)  3.172 (3.36)  1.951 (5.46)  1.581 (6.74) 

9 40 344 16 864 35.199  18.213 (1.93)  10.688 (3.29)  6.169 (5.71)  5.586 (6.30) 

10 62 424 29 071 87.244  44.647 (1.95)  26.937 (3.24)  14.941 (5.84)  13.457 (6.48) 

 

Evolving from generation to generation with the help of 

three evolutionary operators. A mutation operator is firstly 

applied: it generates a mutant individual by adding weighted 

differences to a reference individual. The basic DE mutation 

strategy, so-called DE/rand/1, is given hereafter. For each 

variable   of each individual   of the population    : 

 

                  (               ) (15) 

 

where     refers to the mutant population,    ,    and    to 

three randomly chosen integers such that           , 
and   ,   -  to the DE scaling factor. Then, the classical 

so-called binomial crossover operator is applied to each 

current individual and its corresponding mutant individual in 

order to generate a new trial individual. Finally, the selection 

operator compares each current individual with its 

corresponding trial individual, and it keeps the best of both 

(according to the considered continuous objective function). 

 
TABLE IX: GENERAL PARALLEL PREPROCESSING APPROACH 

 Input: Problem instance number. 

 Output: The collection    of non-blind, non-dominated, and 

non-mandatory sets of  . 

The subset    of   that contains the points covered by the 

sets of   . 

 On each node of the cluster:  

1 Set the instance problem to be processed. 

2 Perform the GPUv2 visibility preprocessing, so that each node has 

his own copy of  . 

3 Remove all the empty sets from  , i.e. those corresponding to 

blind camera locations. 

4 Compute the list   of all sets of   sorted by increasing order  

of their cardinality. 

5 Decide if the sets of   are dominated or not, by using the 

distributed approach described in Section VIII. 

6 Send the results of step 5 to the master node. 

 On the master node of the cluster: 

7 Aggregate the results of step 5 sent by the other nodes. 

8 Build    according to lines 10 to 14 of Table VII. 

9 Remove all mandatory sets from   . 
10 Build    from   . 

 

B. Set-Based DE for Combinatorial Optimization 

Several adaptations of DE to combinatorial optimization 

have already been proposed, but most of them can only solve 

permutation-based combinatorial optimization problems. 

Only a few works are able to deal with general combinatorial 

optimization problems and, among them, the set-based 

approach from [5] seems to be the most interesting to tackle 

the optimal camera placement problem formulated as a 

USCP. Furthermore, this approach has been already applied 

on the traveling salesman problem [5] and the capacitated 

centered clustering problem [9] with promising results. 

By applying this approach to the optimal camera 

placement problem, a solution is defined as a subset of all the 

possible camera locations, and the mutation operator is 

adapted as follows. Arithmetic operations in (15) are replaced 

with operations on sets, so that for each individual   of the 

population    : 

 

                (           ) (16) 

 

where         is a randomly generated feasible solution, 

  and    are randomly chosen such that        , and   

is the XOR operator on sets. In [5], it is suggested to set the 

value of   in order to control the size of      by using one of 

the strategies proposed in [10]. However, in the 

experimentations reported in the next section,   is set to  , 

which means that it has no impact on the size of     , 

whatever the strategy chosen. 

Then, the crossover operator consists in picking some sets 

from           in order to get a new trial solution. Thus, 

the crossover operator comes down to solve a subproblem 

with a lot fewer possible camera locations, and the authors 

suggest using exact algorithms to get good trial solutions.  

C. Experimentations 

In the experimental study, the problem instances from 

Table I are used to compare the CPLEX optimizer, the greedy 

algorithm from [11] (Greedy, for short), and the set-based DE 

approach hybridized with CPLEX and Greedy as crossover 

operators (called DEset-CPLEX and DEset-Greedy 

respectively). 

CPLEX 12.7.0 is used together with ILOG Concert 

Technology, and the CPLEX optimizer is set up so as to use 

only one thread: the algorithm is thus deterministic and runs 

sequentially [12]. Since Greedy is also deterministic, CPLEX 

and Greedy only need one run for each instance. 

For hybridization with the set-based DE approach, CPLEX 

has a time limit of 10 seconds: thus, either it solves the 

subproblem, or it provides a feasible solution. On the 

contrary, there is no time limit for Greedy because it cannot 

provide a feasible solution before it terminates. Actually, it 

starts from an empty solution and then, it iteratively adds the 

best camera location (i.e. the one which covers the maximum 

number of so far uncovered points) until all points are 

covered. The parameters of the set-based DE are the 

following: the population size is set to 20 individuals, and 

   . Moreover, since set-based DE algorithms are not 

deterministic, 30 runs per instance are performed to get 

significant statistics. 
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All algorithms are executed on a computer with an Intel 

Core i5-3330 processor (3.00GHz) and 4 GB of RAM, with a 

time limit of 1 000 seconds. Table X shows the results: best 

values are depicted in bold font, and columns Solution, Mean, 

and Best report the size of the solutions, i.e. the number of 

cameras needed to cover the monitored area. 

CPLEX is able to find the optimal solution of instances 1, 6, 

7, and 8 within the time limit. For instances 2, 3, 9, and 10, it 

can provide reasonable feasible solutions, but for instances 4 

and 5, it gives no better solution than the number of possible 

camera locations available after the reduction preprocessing: 

unsurprisingly CPLEX can not be used for large problem 

instances. Greedy gets quickly a solution for each instance, 

but they are of poor quality in comparison with the other 

algorithms. DEset-Greedy is neither competitive with 

CPLEX on small instances, nor with Greedy on the largest 

ones. DEset-CPLEX, conversely, gets the better results: it 

beats the other algorithms for all instances, except for 

instances 2 and 9 where it is still competitive with CPLEX. 

 

VII. CONCLUSION 

In this paper, the optimal camera placement problem is 

stated as a USCP. The visibility preprocessing is presented in 

detail in order to propose an effective parallel version by 

using massively parallel computations on GPU and a 

significant 15-time speedup is achieved. It is also shown how 

 

TABLE X: RESULTS AND STATISTICS FOR CPLEX, GREEDY, DESET-CPLEX, AND DESET-GREEDY 

 CPLEX Greedy DEset-CPLEX DEset-Greedy 

Instance Solution Lower bound Time Solution Time Mean Best Std Mean Best Std 

1 7 7.00 0.40 10 0.01 7.00 7 0.00 7.87 7 0.35 

2 21 17.52 1 000.00 32 0.12 21.53 21 0.57 29.10 28 0.71 

3 56 35.30 1 000.03 63 0.56 48.07 45 1.76 71.60 70 0.77 

4 29 549 0.00 1 002.24 109 1.82 92.80 90 1.37 131.13 126 1.91 

5 46 907 0.00 1 002.32 164 4.46 155.80 150 2.57 202.73 197 3.19 

6 7 7.00 1.10 9 0.01 7.00 7 0.00 7.00 7 0.00 

7 5 5.00 1.29 5 0.05 5.00 5 0.00 5.00 5 0.00 

8 9 9.00 26.85 12 0.38 9.00 9 0.00 9.37 9 0.49 

9 14 12.64 1 000.03 19 1.29 14.97 14 0.49 18.90 18 0.61 

10 26 18.86 1 000.11 30 3.39 23.43 23 0.50 32.97 32 0.76 

to perform the reduction preprocessing with distributed 

computations and the proposed method leads to a 6-time 

speedup with a cluster of 8 nodes. A general heterogeneous 

approach is then given in order to bring together this 

preprocessings in an efficient way. Afterwards, 10 instances 

of the optimal camera placement problem are solved by two 

hybrid set-based DE algorithms, and this method gets 

promising results in comparison with CPLEX and a greedy 

algorithm. 

For the USCP preprocessing, a first perspective would be 

to perform less visibility tests by first detecting (and 

discarding) blind cameras according to their geometric 

coordinates and orientation angles. It can also be considered 

to improve the reduction preprocessing by identifying 

dominated camera locations in a smaller neighborhood 

related to the considered camera location. Regarding the 

proposed optimization method, a deeper experimental study 

should be conducted in order to see the impact of the 

user-defined parameters (especially  ). It will be interesting 

as well to compare this set-based approach with other 

efficient state-of-the art algorithms dealing with the optimal 

camera placement problem or the USCP. 
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