
  

 

Abstract—We present a technique to learn large human 

motion data captured with optical motion capture system, 

represent it in a low dimensional latent space, so as to generate 

natural and various human motions from it. To extract human 

motion features we use a convolutional autoencoder, and to 

represent the extracted features as a probability density 

function in a latent space we use a variational autoencoder. 

Motion generator is modeled as a map from a latent variable 

sampled in the latent space to a motion capture data. We stack 

the convolutional decoder on top of the variational decoder, 

which can sample a latent variable and produce a motion. As a 

result, our system can generate natural and various human 

motions from a 32-dimensional latent space. 

 
Index Terms—Character animation, convolutional 

autoencoder, motion generative model, variational 

autoencoder.  

 

I. INTRODUCTION 

Human motion control, edit, and synthesis are important 

tasks to create 3D computer graphics video games or movies, 

because some characters act like humans in most of them. 

Key frame interpolation method is useful for producing 

human motion. But the user has to set a lot of parameters of 

human joints in some key frames manually, and the produced 

motion is less realistic than the data captured with motion 

capture system. Therefore motion capture data-driven 

method is used for motion control, edit, and synthesis, and 

many techniques have been proposed [1]. 

Deep neural networks have been used in human motion 

control. Holden et al. [2] used convolutional autoencoders to 

learn human motion manifold from a large motion dataset 

captured with an optical motion capture system. And they [3] 

stack deep neural networks on top of the autoencoders, which 

can map from high level parameters to the motion manifold. 

The proposed system can synthesize character motion from 

given trajectories over the floor that the character should 

follow, and can edit motion by optimizing in the motion 

manifold with some constraints. 

On the other hand, some generative models using deep 

neural networks have been proposed. Kingma et al. [4], [5] 
proposed variational autoencoder, and applied it for image 

generation. The proposed system can generate natural and 

various images. Radford et al. [6] proposed deep generative 

adversarial networks, which can also generate natural and 
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various images. Bowman et al. [7] proposed RNN-based 

variational autoencoder for natural language sentences, 

which can generate diverse sentences that interpolate 

between learned sentences. Fabius et al. [8] proposed 

variational recurrent autoencoder, which can be applied to 

time series data. The proposed method can generate MIDI 

format music data. Sabaththe et al. [9] used LSTM-based 

variational autoencoder for automatic music composition and 

it can generate various music pieces that represent some 

musical characteristics and properties. 

In this paper we propose a human motion generative model 

using convolutional autoencoder and variational autoencoder, 

which can represent motion capture data in a low dimensional 

latent space and can generate natural and various human 

motions from it. 

 

II. MOTION DATA 

In this section we describe human motion dataset and 

preprocessing of it for learning motion generative model. 

We use the CMU Graphics Lab Motion Capture Database 

[10], which consists of 2,505 recordings of human motion 

captured with an optical motion capture system. We 

downsample this original data with 120 fps to 30 fps.  

The original motion data is represented as 3-DOF local 

rotations of 19 joints and 3-DOF global translation of root 

joint (hip) as shown in Fig. 1. We convert them into the 

global positions   
( )

( ), where   is a joint and   is time. 

Given the global position of hip   
( )

( ) , left shoulder 

   
( )

( ), and right shoulder    
( )

( ) in time  , the forward 

vector of body   ( ) is calculated as 
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The basis vectors of local coordinate system at time   are 

calculated as 
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The rotation matrix at time   is represented as 
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Let       
( )

( ) be the minimum of  -coordinate over all 

joints in the initial frame, which indicates the floor height if 

one of joints is on the ground in the initial frame. We set the 

origin in local coordinate system at time   as a point on the 

ground where the root joint position is projected onto. The 

translation matrix at time   is represented as 
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where     
( )

( ) and     
( )

( ) are  -coordinate and  -coordinate 

of the root joint at time   respectively. The transformation 

matrices between local coordinate system and global 

coordinate system are represented as 

 

   ( )     ( )   ( ) 

   ( )     
 ( )   

  ( ), 

 

and the local positions of joints at time   is calculated as 

  
( )( )     ( )  

( )
( ). 

We use  -coordinate of the root joint, and    -coordinates 

of the other 18 joints. We also use velocity in the    plane 

and angular velocity around the   axis, which are calculated 

from the matrix   ( ), which is 

 

  ( )     (   )   ( ). 

The motion data at each frame is a 58-dimensional vector. 

We separate each sequence of frames into windows of 120 

frames (about 4 seconds), overlapped by 60 frames. Finally 

we get 14,122 motions, and we subtract the mean from them 

and divide them by the standard deviation to standardize the 

data. 

 

 
Fig. 1. Joint structure in motion data. 

 

III.  CONVOLUTIONAL AUTOENCODER FOR MOTION 

FEATURE EXTRACTION 

Holden et al. [2], [3] use convolutional autoencoder to 

construct a human motion manifold which includes of 

various types of human motion. We use convolutional 

autoencoder to extract various motion features. In this section 

we describe the structure of the convolutional autoencoder. 

A. Network Structure 

We use one-layer convolutional autoencoder. An overview 

of the network structure is shown in Fig. 2. 

The        dimensional motion vector is convolved 

with 32 spatiotemporal filters, the size of which is       

and the stride is (    ), and it is put through the ReLU 

function. And temporal max pooling is used to get       

motion feature vector. Given a motion vector  , the 

convolution operator  , max pooling operator  , filter 

weights   and biases  , the convolutional encoder is 

represented as 

 

 ( )   (    (     )). 

 

And the       motion feature vector is upsampled in 

temporal axis, and it is convolved with    filters, the size of 

which is       and the stride is (1, 32), to get        

motion vector. Given an encoded feature vector  , 

upsampling operator   , filter weights    and biases   , the 

convolutional decoder is represented as 

 

  ( )    ( )       . 

 
Fig. 2. Structure of convolutional autoencoder. 

B. Training 

Given a training set    ( )(       ), to minimize 

the cost function  (           ), which is mean square 

error between input vectors and the outputs of the 

convolutional autoencoder with parameters          , 

 (           )  ∑‖ ( )    ( ( ( )))‖
 

 

   

  

 

We estimate the network parameters          . The 

number of the training data is 12,710, and the number of the 

test data is 1,412. We use gradient descent with Adam 

optimization algorithm, the batch size is 100, and the 

optimization is performed for 200 epochs. 

 

IV. VARIATIONAL AUTOENCODER FOR MOTION 

REPRESENTATION 

Kingma et al. [4], [5] proposed variational autoencoder, 

which can represent high dimensional data in a low 
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dimensional latent space. We use the variational autoencoder 

to represent the motion features as a probability density 

function in a latent space. 

A. Network Structure 

Let   and   be a motion feature vector and a latent 

variables vector, respectively. As shown in Fig. 3 and 4, we 

assume that probabilistic encoder   (   ) and probabilistic 

decoder   (   )  are normal distributions. The parameters 

     
  of the encoder   (   )  are modeled by neural 

networks with the weights   . And the parameters      
  of 

the decoder   (   ) are modeled by neural networks with 

the weights   . The encoder and decoder are represented as 

  (   )   (    (    )     (  
 (    ))), 

  (   )   (    (    )     (  
 (    ))). 

 

 

 

 

 
Fig. 3. Variational encoder (sampling). 

 

 

 

 

 

 
Fig. 4. Variational decoder. 

 

As shown in Fig. 5, the neural networks as a model of 

  (   ) have one hidden layer, and the number of units in 

the input and hidden layers is 1,920 and 256 respectively. 

And the output layer has 32 units for   , and 32 units for   
 . 

Each unit in a layer is connected with each unit in the next 

layer, the activation function in the hidden layer is ReLU. 

The neural networks as a model of   (   ) have one hidden 

layer, and the number of units in the input and hidden layers 

is 32 and 256 respectively. And the output layer has 1,920 

units for    and 1,920 units for   
 . Each unit in a layer is 

connected with each unit in the next layer, the activation 

function in the hidden and output layer is ReLU. 

 

 
Fig. 5. Neural network structure in variational autoenoder. 

 

B. Training 

Given the training set    ( )(       ) , the 

reconstruction error  (       )  is represented as a log 

likelihood: 
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As shown in Fig. 3,   is a random variable and is generated 

from a sampling process. Therefore we cannot calculate the 

gradient of the reconstruction error. As shown in Fig. 6, we 

express the random variable   as a deterministic variable:  

 

 ( )    ( ( )   )      
 ( ( )   )  

   (   )  

where   is an element-wise product operator.  

 

 
Fig. 6. Variational encoder (deterministic). 

 

And KL Divergence  (     ) between   (   ) and the 

prior distribution  ( ) is represented as 
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when the prior is normal distribution. 

We set a cost function  (       ) as summation of the 

reconstruction error and the KL divergence: 

 

 (       )   (       )   (     )  

 

To minimize the cost function  (       ), we estimate 

the weights      . The number of the training data is 

12,710, and the number of the test data is 1,412. We use 

gradient descent with Adam optimization algorithm, the 

batch size is 100, and the optimization is performed for 200 

epochs.  

 

V. EXPERIMENT 

In this section we describe a motion generation experiment 

to evaluate the constructed generative model. 

We sample a latent variable  ̃  from standard normal 

distribution: 

 ̃   (   )  

… …

…
…
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and decode it with the variational decoder and the 

convolutional decoder: 

 

 ̃    (  ( ̃   )      )  
 

Fig. 7 shows 64 motions decoded from 64 randomly 

sampled latent variables  ̃  with our generative model. 

Natural and various motions can be generated from our 

model. 

 

 
Fig. 7. 64 randomly generated motions. 

 
Fig. 8. Controlled motions along the 2nd axis in the latent space. 

 

We sampled a 32-dimensional latent vector  ̃, chose one 

element of the vector   ̃ , and changed the element whose 

cumulative probability  (     ̃) is from 0.1 to 0.9 with step 

size of 0.1. And we decoded the latent vectors with our 

decoder. Fig. 8 and 9 show controlled motions along one axis 

(the 2nd and 24th axis in our model) in the latent space. A 

row in each figure shows 9 motions generated by controlling 

a randomly sampled motion in the latent space. The heights 

of arms (hands and elbows) in more right motions in each 

row of Fig. 8 are larger than the ones in more left motions. 

And the angles of knees and the stance of legs in more right 

motions in each row of Fig. 9 are larger than the ones in more 

left motions. Some axes in the latent space have some 

meanings such as controlling arms or legs. 

 

 
Fig. 9. Controlled motions along the 24th axis in the latent space. 

 

VI. CONCLUSIONS 

We constructed a human motion generative model using 

convolutional autoencoder for feature extraction and 

variational autoencoder for motion representation in a latent 

space. The model can represent human motions in the 

32-dimensional latent space. And the model can generate 

natural and various motions, and some axes in the latent 

space have some meanings such as controlling arms or legs. 

But some of the generated motions are not natural. 

Especially the global position and direction sometimes don't 

match the body motion. We used 58-dimensional vector to 

represent human motion at each frame, three of them are 

velocity in the    plane and angular velocity around the   

axis, and the rest of them are local joints' positions. We 

convoluted them with the same filters. But we should use 

different filters for different measurements. 

Our model generates motion with a fixed window size, but 

motion itself is a sequence of joints' positions or rotations 

with a different length. We will apply RNN-based or 

LSTM-based variational autoencoder for motion generation, 

which will be able to represent sequences of variable length. 
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