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Abstract—In the forging industry, like in many other 

economic sectors, it is common to simulate forming processes 

before executing experimental trials. An iterative simulation 

process is more economic than trials only but still takes a lot of 

time. A simulation with realistic parameters takes many hours. 

For an economical production the idea of predicting some main 

results of the simulation by Data mining was developed. Within 

this paper, the use of four different Data mining methods for 

the prediction of certain characteristics of a simulated flange 

forging process are presented. The methods artificial neural 

network, support vector machine, linear regression and 

polynomial regression are used to predict forming forces and 

the lack of volume. Both are important parameters for a 

successful simulation of a forging process. Regarding both, 

forging forming forces and lack of volume after the simulation, 

it is revealed that an artificial neural network is the most 

suitable.  

 
Index Terms—Data mining, artificial neural network, linear 

regression, polynomial regression, support vector machine. 

 

I. INTRODUCTION 

Today, it is common to use finite element method (FEM) 

simulations instead of trials within industry, especially the 

forging industry. The development of the software is well 

advanced so almost every forging process and its 

characteristics can be calculated with results very close to 

reality. However, the development and the design of a 

process chain for a new forging product still takes a lot of 

time and many attempts are needed until the desired result 

regarding for example process time, amount of flash and 

energy consumption is achieved. At first, the engineer 

designs a geometry with Computer Aided Design (CAD). 

Then he develops a suitable forging sequence to form the 

desired geometry. The tools and the initial billet are 

designed and afterwards implemented into FEM. The 

developed process chain is simulated and examined. In case 

the simulated result is not as desired, e. g. folds appear, the 

process has to be modified and simulated again. In practice, 

many iteration loops have to be done to achieve the final 

process chain, which is used to forge the part in reality. 

Therefore, the aim of the research project, ongoing at IPH 

Hannover in Germany, is to develop a method that is able to 

predict parts of the simulated result within seconds by use of 
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artificial intelligence algorithms. Based on a wide spectrum 

of investigated flange forging processes the method deals 

with six different input parameters that are varied. For 

predicting the result of a simulated forging process, two 

significant factors for a successful forging operation, the 

lack of volume and the forming forces are investigated. The 

corresponding process is a flashless flange forging process. 

No matter, if it is forged with or without flash, within 

simulations the parts volume afterwards is lower than at the 

beginning of the process. The single volume elements in 

which a part is divided into during the simulation have 

certain shape functions. If the volume element becomes too 

distorted the shape function are not valid anymore. Before a 

critical value of distortion is reached all volume elements of 

the billet are remeshed. Each remeshing decreases a little bit 

of volume to preserve the shape functions. Within this paper, 

the creation of an automatically executed simulation 

database is described and the first Data mining results are 

presented. 

 

II. STATE OF THE ART 

A.  Time Savings within Forging Process Design 

The quality of simulations is very high due to 

developments in the past years. However, a higher quality 

goes along with a significant increase of simulation duration 

to some extent. To shorten the duration of process and 

product development many approaches exist. Some 

examples are briefly presented in the following. 

SCHONGEN ET AL. proposed how to shorten the 

computing time without significant quality losses at a single 

FEM simulation by implementing a FEM/BEM (Boundary 

element method) application for the press-tool-workpiece 

interaction for a lateral extrusion process [1]. KNUST ET 

AL. developed an evolutionary algorithm for a cross wedge 

rolled preform of a connecting rod [2]. The aim was to avoid 

a lack of form filling and folds. Additionally, the amount of 

surplus material was reduced to a minimum. This leads to an 

optimized preform which needs less iterations loops and 

therefore shortens the simulation phase. SHAO ET AL. 

showed an approach by implementing a strain-based 

element addition and removal criterion within a 2D 

simulation to improve the material flow of a preform [3]. 

Within a small amount of iterations and therefore less time, 

a robust and suitable preform was generated. 

MOGHADDAMI ET AL. proposed an iterative algorithm 

for short circuit forces on the high current busbars of electric 

arc furnace transformers [4]. Compared to complex FEM 

algorithms the computational effort could be reduced by a 
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significant amount of time. 

In all the papers, no approach including Data mining was 

investigated. Furthermore, predicting parts of the simulated 

result by using Data mining was not addressed. 

B.  Data Mining Methods for Forming Processes 

Data Mining methods describe a systematical way to find 

trends and patterns within a huge amount of data [5]. Some 

of the common methods are shown below. 

An artificial neuronal network (ANN) consists of a 

certain number of layers in which the single neurons are 

located [6]. Each neuron is a computing unit that is able to 

make a decision based on input information and calculates 

output information. In each layer, all neurons are connected, 

interact and work parallel. Each neuron can be connected to 

all other neurons while the knowledge is described by the 

weights of the connections. A neuron takes the input 

parameter or the result of a neuron of the previous layer and 

calculates a weighted sum. Within the training phase, the 

algorithm calculates the connections weights given [6]. The 

algorithm identifies mathematical rules that describe the 

data and applies them within the validation phase. At the 

validation the algorithms minimizes the squared error 

between the desired output parameter and actual output 

parameter by adjusting the rules learned before.  

The support vector machine (SVM) tries to find a 

separating hyper-plane that maximizes the margin between 

the hyper-plane itself and the closest input data points of 

each class [7]-[9]. If the input data cannot be separated 

linearly, kernel functions need to be implemented to the 

SVM. These kernels map the original data to a high 

dimensional feature space in which the problem becomes 

linearly separable. The classes and their mathematical 

borders that are built represent the output data. 

Linear regression algorithms consist of input and output 

parameter, which are connected by a linear equation [10]. 

The input parameters often each are multiplied with 

coefficients and added. In most cases, an absolute term – the 

regression residual – is added, too. Linear regression is 

suitable to describe short-time phenomena and less complex 

matters. 

If a linear regression does not apply, a polynomial 

regression can be executed [11]. The data then is described 

by a curve instead of a linear equation. This allows 

predicting patterns that are more complex. 

A perfect prediction would be equivalent to a correlation 

with the value 1 [6]. The degree of correlation decreases 

with decreasing values beginning from 1, which indicates if 

a certain method might or might not be suitable to predict 

the pattern. 

SEDIGHI and HADI executed simulations and used the 

results to train a neural network and a genetic algorithm to 

optimize the forging force of a closed die forging process 

[12]. The ANN gained a correlation of 0.997 regarding the 

forging force. The optimized results prove that a reduction 

of a forging force of 50 % could be achieved in comparison 

with an initial preform with 10 % extra volume. 

MARINKOVIC proposed an approach to model the flash 

land by use of an ANN and compared it with a regression 

method [13]. As a basis, 34 data sets with a wide spread of 

input parameters were chosen. With the developed 

three-layered ANN a higher correlation of 0.971 is achieved 

than with the regression method (0.946). SHAKIB ET AL. 

developed a predictive flow stress model for martensitic 

steel at hot temperatures based on experimental research 

[14]. The model showed deviations at the Hopkinson 

Pressure bar tests why an ANN was implemented. The 

results dramatically improved the prediction through the 

model at a range of parameters beyond the tests up to 

r
2 
= 0.997. 

DEHUAI ET AL. employed a prediction model based on 

SVM to predict the temperature changing during resistance 

furnace sintering [15]. They compared two approaches, 

SVM with particle swarm optimization and SVM with 

simulated annealing, with the existing sintered furnace 

temperature law. The second approach proved to be a 

promising alterative to the law. To optimize the quality 

control of complex parts TSENG ET AL. trained a SVM to 

predict binary whether the part is good or not [16]. The 

highest testing quality of 93 % was achieved, when using 

linear, polynomial and special kernels within the SVM. 

PANDA ET AL. investigated surface quality 

characteristics and afterwards predicted the results by using 

several multiple linear regressions [17]. The measured 

arithmetic surface roughness average Ra was influenced by 

par example depth of cut and feed rate and could be 

predicted with a correlation between 0.918 and 0.953. 

BUSTILLO ET AL. compared abrasive wear at different 

designs of a threading tool for cold forged steel [18]. The 

applied data models like multilayer perceptrons, SVMs, 

regression trees and rotation forest. Rotation forest 

combined with regression trees led to the most suitable 

results and therefore is recommended for a long-lasting-tool 

life.  

In all the papers, no approach was shown to predict 

forming forces and the lack of volume based on a CAD 

model. In addition, none of the papers found addressed the 

replacement of FEM by using Data mining instead. 

 

III. P  

A. Automatic Creation of FEM Preprocessor-Data 

A process chain for a forging part is developed from the 

final geometry backwards to the initial billet. Therefore, the 

first thing needed is a geometry with a clear defined 

parameter field in which the geometry is to be varied. In Fig. 

1, the CAD models of the billet and its formed flange 

geometry are shown. 

The flange consists of two cylindrical sections, each with 

one diameter and one height. The dimensions are chosen 

according to the ones mostly used for industrial flanges and 

vary from to 25 mm to 500 mm for the diameters Da and Di 

and from 5 mm to 50 mm for the heights Ha and Hi (see 

table 1). To investigate the influence of the billet geometry, 

especially the ratio of the billet diameter and height, are 

varied, too. Apart from this, the billet temperature as a 

significant parameter that influences the forming forces at 

the forging process is varied. 
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Fig. 1. CAD model of investigated billet (left) and flange (right) with their 

dimensions. 

TABLE I: VARIED DIMENSIONS OF FLANGE, BILLET AND TEMPERATURES 

AT THE SIMULATIONS 

Da 

[mm] 
Ha 

[mm] 
Di [mm] Hi [mm] Dr [mm] T [°C] [mm] 

50 5 25 5 Dr min 900 

100 10 50 10 Dr min +0,25*(Dr max - Dr min ) 1000 

200 20 100 20 Dr min +0,5*(Dr max - Dr min ) 1100 

300 30 150 30 Dr min +0,75*(Dr max - Dr min ) 1200 

400 40 200 40 Dr max 1250 

500 50 250 50 
  

 
The investigated flange has no radii or other 

characteristics to simplify the geometry. In addition to the 

flange, the billet and dies have to be defined. Cylindrical 

billets are chosen, because they can be defined by a 

diameter (Dr) and a height (Hr is shown in Fig. 1 only), too. 

The billets have the same amount of material as the flange 

because only flashless forging operations are investigated. 

The equations below show how the minimum value for the 

billet diameter can be calculated from the flange volume. 

                
  

 
 
 

                   (1) 

         
          

      

 
             (2) 

The height of the billet can be calculated based on the 

volume of the flange and the chosen value for Dr. In forging 

processes the billet must stay within certain proportions or 

otherwise the billet is not upset into a flange but bends to the 

side instead. Hence, the height has a maximum of 1.95 times 

the diameter. The resulting minimum for Dr is shown below. 

As a maximum value Dr max = 0.9 Da is chosen for Dr , thus 

the billet diameter is always smaller than the larger diameter 

which guarantees a proper placement within the tool. 

The tool consists of an upper and a lower die. The lower 

die is designed as the invers geometry of the flange while 

the upper die only consists of a plate. The billet and the 

tools are constructed with the CAD program and saved as a 

group so the geometric relations between the three parts are 

saved, too. This group now serves as a template, which is 

modified by a VBA macro. The macro needs to receive a 

range and increments for the parameter field for the named 

four flange parameters by the constructor. The user also has 

to define a range and increments for the temperature. After 

this, the macro creates the CAD models for the billet and the 

tools for each flange in the stl file format. Flange variants 

that are not flanges but a block because the two diameters 

have the same value are filtered out. In this project, 901 out 

of 1296 combinations that describe a flange were generated. 

Along with the stl files, a VBA script is created for each 

flange variant. It is compatible with the FEM program and 

contains all the data needed for the simulations e.g. the 

material file for the billet. Each script contains an allocation 

of the flange geometry to the five different billets and five 

different temperatures (see Table I and Table II). When 

loaded into the FEM program Forge NxT each script creates 

25 different simulations. The net size of the billet is 

calculated automatically according to the setting “fine net”; 

the smallest billet therefore has a mesh size of 1.8 mm while 

the largest has a mesh size of 13.8 mm. This leads to 

roughly the same amount of elements for each flange size 

and guarantees the same quality of the investigated values 

independently from the flange size. 

TABLE II: SETTINGS AT THE SIMULATIONS 

FEM parameters 

Material 42CrMo4 

Net size billet (edge length) 1.8 – 13.8 mm 

Net size tool (edge length) 10 mm 

Temperature billet 900 °C – 1250 °C 

Temperature tools 250 °C 

Friction m = 0,3, µ = 0,15 

Plasticity of the tool rigid 

 
To shorten the duration of a simulation only a quarter of 

the rotation symmetrical billet was simulated. Because of 

this only a quarter of the flange has been simulated which 

reduced the duration of the simulation about 60 %. For 

22,525 simulations (five times 901), the reduced time adds 

up to several weeks. 

B.  Analysis of the Simulations 

Each finished simulation now contains data concerning 

the forming force and the amount of volume at the end of 

the forging process. The two files, which included the 

information and their position within the file, were detected 

each. Afterwards the information was written by another 

VBA-macro into a Microsoft Excel table that contained 

every single combination that was simulated in one line. The 

macro systematically went through the single simulation 

result files determined before and transferred the required 

value into Excel. In Excel, the forging forces were 

multiplied with factor 4 because only a quarter was 

simulated. In this way, a table with all input and output data 

was created. This table is the basis for the Data mining 

algorithms. 
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IV. RESULTS FOR PREDICTING THE FORMING FORCE 

For Data mining the program RapidMiner is used. The 

input parameters are the four dimensions of the flange Da, Di, 

Ha and Hi as well as the billet diameter Dr and the billet 

temperature T. After this, the output parameter is determined; 

the maximum forming force and the flange volume at the 

end of the forging process. One line within the table 

represents one simulation with its input and output 

parameters. According to many researchers in the past, 80 % 

of the data is used for training, the rest for validation. This is 

a common relation, which proved to be suitable for many 

different patterns in the past, and therefore leads to 

comparable results. The lines within the table are 

randomized so the training for the Data mining model is 

independent from the order of the executed simulations. The 

training data now includes a wide spread of input 

parameters. The Data mining models used in the following 

are according to the state of art; namely ANN, SVM, linear 

regression and polynomial regression. 

For the Data mining method an ANN, a three-layered 

back propagation algorithm, is used. Fig. 2 shows the 

relation between the measured values, namely the simulated 

forming forces and the predicted forming forces by the Data 

mining method. The values roughly follow a line but show 

scattering. A correlation of 0.911 was achieved, which is 

low for an ANN algorithm. In case of a perfect result, 

namely a correlation of 1, all the points would lay on one 

line without any scattering. The correlation within the 

pictures is measured by the amount of scattering so an 

increasing scattering leads to a decreasing correlation. 

To investigate the reason for the scattering the table with 

the data is filtered by the billet diameter Dr being higher or 

lower than the flange diameter Di. Then the Data mining is 

executed again. The filtered results are shown for Dr < Di in 

Fig. 3 and for Dr > Di in Fig. 4. The figures reveal that the 

scattering lowers dramatically for Dr < Di. Depending on 

which value is higher, the billets position inside the tools is 

different (Fig. 5). The material flow therefore differs and 

causes other forming forces. Hence, two figures for each 

Data mining method are presented in the following. The 

scattering for Dr > Di can be explained by the amount of 

billet material which is in contact with the plane between Ha 

and Hi. An investigation of the forming forces depending on 

the material flow is not part of this paper. The correlation 

for ANN at Dr > Di is 0.932 while it is 0.996 for Dr < Di. 

The correlation values for ANN are close to 1 for Dr < Di, 

which means that ANN is generally suitable to predict the 

forming force of a forging process.  

 

 

Fig. 2.  Predicted forming force with ANN. 

 

Fig. 3. Predicted forming force with ANN for Dr < Di. 

 

Fig. 4.  Predicted forming force with ANN for Dr > Di. 

 
Fig. 5.  Direction of the different material flows at forming. 

 
The linear regression calculates a balance line from the 

FEM data. The correlation, as before at the ANN is based on 

the distance from a single value to the balance line. For the 

linear regression at Dr < Di the correlation is 0.888 (Fig. 6) 

and 0.741 for Dr > Di (Fig. 7). The higher value for 

correlation for Dr < Di goes along with the observations 

made in Fig. 3 and Fig. 4. 

The polynomial regression calculates a curve instead of a 

linear function. The correlation for Dr < Di is 0.889 (Fig. 8) 

and 0.662 for Dr > Di (Fig. 9). The correlation values 

however are lower than with the linear regression. This and 

the increased scattering can both be explained by the 

complexity of the polynomial function, which predicts less 

precise if the data correlates linearly. 

The SVM used within this paper is the LIBSVM, which is 

a common variant of SVMs that uses quadratic functions 

within its algorithm to solve usually binary problems. The 

current case is not a binary problem because six different 

input parameters are varied and therefore all of them 

influence the output parameter “forming force”. The 

correlation for the LIBSVM at Dr < Di is 0.923 (Fig. 10) 

and 0.852 for Dr > Di (Fig. 11). The reason for the 

scattering at Fig. 10, as before is the influence of the 

material flow depending on how much billet surface is in 
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contact with the lower die. 

 

 
Fig. 6. Predicted forming force with linear regression for Dr < Di. 

 

 

Fig. 7. Predicted forming force with linear regression for Dr > Di. 

 

Fig. 8.  Predicted forming force with polynomial regression for Dr < Di. 

 
Fig. 9. Predicted forming force with polynomial regression for Dr > Di. 

 

Fig. 10. Predicted forming force with LIBSVM for Dr < Di. 

 
Fig. 11. Predicted forming force with LIBSVM for Dr > Di. 

The ranking of the result can be explained by the 

complexity of the methods. Complex methods mostly lead 

to predictions that are more accurate. The data is split for the 

prediction of the forming force, which improves the results 

significantly. The reason for this is not an inaccurate Data 

mining process but different directions of the material flow, 

which highly influence the forming forces.  

 

V.  RESULTS FOR PREDICTING THE VOLUME 

Data mining was executed again for the prediction of the 

volume lack after the simulated forming process. As before, 

the figures all show the relation between the values 

measured by the FEM software on the x-axis and the 

predicted values by a certain Data mining method on the 

y-axis.  

Regarding the prediction of the lack of flange volume by 

using ANN, Fig. 12 reveals a correlation close to 1, namely 

0.998. The lack of volume, as written above, results from 

critical values within the algorithm of the FEM software 

during the forming process. Critical values within the FEM 

should be avoided to receive a result, which is closer to the 

forging process in reality. The lack of volume is a 

significant factor at the FEM and therefore predicted. The 

scattering as seen in chapter 4 is not evident. The material 

flow influences the forming forces but not the volume, 
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which is the reason the data is not split. The predicted 

volume using linear regression is shown in Fig. 13 and has a 

correlation of 0.91. The polynomial regression, shown in 

Fig. 14, shows similar characteristics but slightly more 

scattering. The reason for the increased scattering is the 

same as at the forming forces. The style of the function 

follows a curve and not a line, which is not favorable when 

a linear relation of the measured data is assumed. However, 

the correlation still is 0.891. The LIBSVM shows a 

completely different prediction than the other methods 

because the LIBSVM is the only method that tries to 

separate the data given into clusters. The volume of the 

flange roughly increases linearly with increasing values for 

Da, Di, Ha and Hi. The huge number of data with values that 

are close to one another cannot be divided by the LIBSVM 

because the distances between the single values are almost 

the same. As a result only two possibilities exist: one cluster 

for each value or one cluster for all values. As shown in Fig. 

15 the LIBSVM algorithm calculates one single cluster and 

predicts single value. Therefore, the LIBSVM is not suitable 

to predict the flange volume. 

 
Fig. 12. Predicted flange volume with ANN. 

 
Fig 13. Predicted flange volume with linear regression. 

 
Fig. 14. Predicted flange volume with polynomial regression. 

 
Fig. 15. Predicted flange volume with LIBSVM. 

 

VI. CONCLUSION 

It can be stated, that the ANN is suitable to predict the 

forming forces and the lack of volume of a flange forming 

simulation because the correlation of the measured and the 

predicted values was nearly 1. LIBSVM still produces 

acceptable predictions with a correlation up to 0.923. Linear 

and polynomial regression prove to be less suitable. The 

data is split to differentiate two different material flows. 

Regarding the prediction of the lack of volume at the end of 

the simulation the results reveal that the accuracy of the 

ANN is the best with a correlation of 0.998 while linear and 

polynomial regression shows similar correlations of 0.91 

and 0.891. The LIBSVM is shows only a spot because the 

method is not able to separate the data and therefore is not 

recommended for this pattern.  

As further investigations, the authors recommend the use 

of other SVM methods and the prediction of forged parts 

that are more complex than a flange by all the Data mining 

methods used within this paper. 
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