
  

 

Abstract—This paper developed an adaptive PID flight 

controller based on parameter optimization with fuzzy 

inference for controlling the altitude dynamics of the Aerosonde 

UAV. The online fuzzy inference is used as a self-adaptive 

mechanism for tuning the PID parameters. The proposed 

adaptive PID flight controller is compared with two other 

controllers. The first controller is the genetically-tuned PID 

controller, and the other is the fuzzy logic controller. The 

simulation results show the good performance characteristics 

and good robust stability for the proposed adaptive PID 

controller. 

 
Index Terms—PID control, fuzzy control, adaptive PID 

control, UAV. 

 

I. INTRODUCTION 

UAVs play important roles in critical missions. This is 

because of its low cost and also to protect the human crew in 

such dangerous missions. An autopilot is used for flight 

control to track a reference path. The autonomous flight 

control system has to promise the accuracy of the tracking 

path and the robustness to environmental disturbances in 

addition to the uncertainty in UAV model. Small UAVs are 

sensitive to environmental disturbances especially the wind 

since its magnitude may be similar to the UAVs speed [1]. 

 
Fig. 1. Aerodynamic force and moment in the body-axis reference frame. 

 

UAV motion in free flight is highly complicated [2] and 

contains three translation motions and three rotational 

motions. Two assumptions are assumed to reduce the 

complexity [3]: the UAV is assumed as rigid-body. In 

addition, the mass distribution of the UAV is symmetric 

relative to        plane as in Fig. 1, which implies that, the 

products     and     of inertia are equal to zero. 
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The UAV performance depends on the flight control 

system design, which is the heart system of UAV [4]. The 

traditional flight control system approach is PID algorithm 

due to its simplicity, easy for implementation in hardware 

and software, and does not require maintenance [5]. However, 

the resulting flight controller usually has lower adaptability 

and does not produce a good performance when tested in 

more realistic UAV environment [6], [7]. The traditional 

approach for enhancing the PID performance is to use PID 

with gain scheduling [8]. However, the switching between 

different controllers sometimes is not always smooth and it is 

urgent to design a single flight controller to run for a certain 

flight envelope [9], [10]. Different control techniques have 

been developed and verified successfully for UAVs flight 

control systems such as adaptive control, robust control, 

predictive control, optimal control, and intelligent control 

[11], [12]. 

Notwithstanding, the tuning of PID gains is still a 

promising investigation field and various techniques for 

tuning PID gains were developed [13]. The most well-known 

technique in this field is Ziegler-Nichols. In spite of its 

simplicity and easiness in tuning the PID gains, its 

performance is deficient in nonlinear systems [14]. Optimal 

control is also utilized to tune the PID gains. It is necessary to 

get an exact mathematical model, so it is difficult in practical 

implementation [15]. Another tuning technique based on 

genetic algorithms and differential evolution has been 

developed in [16]. A self-tuning technique, based on control 

performance evolution, was presented in [17] to improve 

transient and steady-state performance. A combination 

between traditional PID controller and the neural network 

was developed in [18] to provide strong adaptive and 

self-learning capability which enhances the traditional PID 

performance. The particle swarm optimization (PSO) 

technique was utilized in [19] to design self-tuning PID 

control. 

In this paper, an adaptive PID control of UAV altitude 

dynamics based on parameter optimization with fuzzy 

inference is developed. The proposed adaptive PID control is 

a combination of traditional PID and fuzzy logic control 

schemes. Two other controllers are designed to be compared 

with the proposed adaptive PID controller. The first 

controller is genetically-tuned PID and the second is the 

fuzzy logic controller. The autopilot performances have been 

studied with respect to each controller. A comparative study 

using simulation model of the Aerosonde UAV is held to 

decide which controller is the best in terms of performance 

analysis and robustness to external disturbances and model 

parametric uncertainty. 
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II. NONLINEAR DYNAMIC MODEL OF UAV  

In this section, a brief description of the UAV modeling is 

provided. UAV modeling is a basis of a simulation 

environment for development and evaluation of the 

performance of proposed flight control system. It is more 

useful to express the UAV motion in the body-axis frame 

compared to wind-axis frame. 

A. Dynamic Model of UAV  

Submit your manuscript electronically for review. 

The dynamics of the UAV in motion can be given by 

Newton’s 2nd law which is suitable in the inertial frame. A 

complete 6-DOF non-linear Aerosonde UAV dynamic model 

(with body fixed frame) [20] is demonstrated in the 

forthcoming discussion. The Aerosonde UAV is a system 

with six degrees of freedom [21], its nonlinear model is 

described by 12 dynamic variables: body frame velocities 

(     ), Euler angles (     ), angular velocities (     ), 
and inertial positions (       ), on the other hand, the model 

depends on external forces (        ) and moments (     ). 

The dynamic model is summarized in (1)-(4). 

Force equations: 
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Kinematic equations: 
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Moment equations: 
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Navigation equations: 

 

 
 
 

 
 
                                      

                         

                                      

                         

                                                       

   

(4) 

 

where          are functions of moments of inertia (        ). 

The forces (        ) and moments (     ) that acts on the 

UAV are mainly due to three sources: gravity, aerodynamics, 

and propulsion. These variables depend on UAV mass    , 
gravity    , Euler angles, density of air    , airspeed 

              , surface area of the wing    , angular 

velocities, angle of attack          
 

 
  , side slip angle 

         
 

  
  , control surface configuration 

                                   , engine acceleration 

    , area, aerodynamic coefficient and torque of the 

propeller, the efficiency of the engine, and the aerodynamic 

coefficients (see [22] for details). 

For guidance purpose, the three main variables to be 

controlled are a longitudinal speed     , altitude     , and 

heading angle      . The two first variables handle the 

longitudinal movements of the UAV and the last one the 

lateral movements.  

B. Uncertainty Analysis in UAV Model 

Uncertainty in UAV model comes from two sources [10], 

[23]: stochastic nature of the environment as unpredictable 

external disturbances and internal UAV model error due to 

incomplete knowledge of the model. External disturbances 

are always out of control, such as the high-frequency noise of 

sensors and gust disturbance. Internal model error of UAV 

contains measuring error of moment of inertia:             , 

and approximation error of aerodynamic force and moment.  

The difficulty of controlling uncertain systems is to design 

a fixed controller which assures the design requirements in 

the presence of significant uncertainties which mentioned to 

as the robust control problem [24]. Adaptive control 

technique, unlike a fixed gain controller, is able to achieve 

good performance in the presence of significant parametric 

uncertainties, and even without the full knowledge of the 

plant [25]. 

 

III. STRUCTURE AND CONFIGURATION OF CONTROLLER 

A controller is a device or logical unit used to adjust the 

output to a reference value. The main role of the controller is 

to minimize a specific error value. In this section, three 

feedback control schemes are proposed and described in 

detail which is PID, Fuzzy logic, and adaptive PID based on 

parameter optimization with fuzzy inference for controlling 

the altitude dynamics of UAV. 

A. PID Controller and Its Performance with Parameter 

Selection 

The PID control law consists of three basic feedback 

control actions, namely proportional, integral, and derivative. 

The related gains are    ,  , and   . The mathematical 

representation of PID controller is in (5): 

                        
 

  
    

 

 
            (5) 

where     is the controller output and      is the error. 

The proportional gain diminishes the error responses to 

disturbances, the integral gain removes the steady-state error, 

and finally, the derivative gains dampen the dynamic 

response and enhances the system stability. The difficulty in 

the PID controller is to select the three gains to be suitable for 

the controlled plant [26]. The performance of the system can 

be enhanced by adapting the value of the controller gains. 

B. Fuzzy Logic Control 

Fuzzy control is a design of many-value logic that nearly 

human language. Fuzzy control is more robust than PID 

control since it can include a wider range of operating 

conditions and can perform with disturbances and noise. The 

fuzzy logic control comprises four main components: 

rule-base, inference engine, fuzzification, and defuzzification 

as in Fig. 2. 
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Fig. 2. Fuzzy logic control. 

 

The rule base is the main component, based on if-then 

rules, and holds the knowledge of how best to control the 

system. Inference engine evaluates which control rules are 

related at the current time. Fuzzification is the process of 

transforming crisp input values into grades of membership 

functions. Defuzzification is a method for providing the 

output of the fuzzy controller as a crisp input to the plant. 

In this design, two input variables (    ,     ) and the 

output      are expressed over the interval from -10 to 10. 

There are five linguistic terms: negative big (NB), negative 

small (NS), zero (Z), positive small (PS), and positive big 

(PB). Membership functions are Triangular form and the 

fuzzy rules are as in Table I. 

 
TABLE I: FUZZY RULES FOR FUZZY CONTROLLER 

 

NB NS Z PS PB 

NB NB NB NB NS Z 

NS NB NB NS Z PS 

Z NB NS Z PS PB 

PS NS Z PS PB PB 

PB Z PS PB PB PB 

 

C. Adaptive PID Controller Based on Parameter 

Optimization with Fuzzy Inference 

Adaptive PID controller based on parameter optimization 

with fuzzy inference means that the three gains   ,   , and 

   of PID controller are adjusted online by using fuzzy logic 

control [27]-[29]. Online tuning gains of PID controller lead 

to enhance the adaptive performance of PID controller. The 

structure of the proposed adaptive PID controller is as in Fig. 

3. 

 
Fig. 3. The architecture of adaptive fuzzy PID controller. 

 

In this paper, the improved PID controller is designed 

based on the traditional PID algorithm. The initial setting 

values of PID gains are set and the added values are obtained 

online using fuzzy control. The final gains of the adaptive 

PID controller can be calculated from (6) to (8). 

                                             (6) 

                                             (7) 

                                            (8) 

 

where    ,     , and     are initial values of the proportional, 

integral, and derivative gains; respectively.  

   ,    , and     are the proportional, integral, and 

derivative gains calculated using online fuzzy control; 

respectively.   ,   , and     are final values of the 

proportional, integral, and derivative gains; respectively. 

Two inputs are considered for fuzzy control,      and      . 
In addition, three output are obtained from the fuzzy 

inference include    ,    , and    . For the inputs, 7 levels 

are assumed which are negative big (NB), negative medium 

(NM), negative small (NS), zero (Z), positive small (PS), 

positive medium (PM), positive big (PB). The ranges for 

these inputs are from -3 to 3 as in Fig. 4. 

 
Fig. 4. Input membership function for    ,   , and   . 

 

For the output, 3 levels are assumed which are negative 

(N), zero (Z), and positive (P). The ranges of the outputs are 

from -3 to 3 for     as in Fig. 5 and from -1 to 1 for     and 

    as in Fig. 6. 

 

 
Fig. 5. Output membership function for    . 

 

 
Fig. 6. Output membership function for     and    . 
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The fuzzy rules of three outputs are presented in Tables II 

to Tables IV. The fuzzy rules are designed based on human 

experience and are a criterion for making decisions about the 

system. 

 
TABLE II:     FUZZY RULES  

 
NB NM NS Z PS PM PB 

NB P P P P P P P 

NM Z P P P P P Z 

NS N Z Z P Z Z N 

Z N N N Z N N N 

PS N Z Z P Z Z P 

PM Z P P P P P Z 

PB P P P P P P P 

 

TABLE III:     FUZZY RULES  

 
NB NM NS Z PS PM PB 

NB P P P P P P P 

NM Z Z P P P Z Z 

NS N Z Z P Z Z N 

Z N N N Z N N N 

PS N Z Z P Z Z P 

PM Z Z P P P Z Z 

PB P P P P P P P 

 

TABLE IV:     FUZZY RULES  

 
NB NM NS Z PS PM PB 

NB N N N N N N N 

NM P Z N N N Z P 

NS P P Z N Z P P 

Z N P P Z P P P 

PS P P Z N Z Z N 

PM P Z N N N Z P 

PB N N N N N N N 

 

IV. SIMULATION EXPERIMENT RESULTS AND COMPARATIVE 

ANALYSIS  

An adaptive PID control is designed based on parameter 

optimization with fuzzy inference system for controlling the 

altitude dynamics of UAV. To show the effectiveness of the 

proposed adaptive PID control, it is compared with both 

genetically-tuned PID control and fuzzy logic control. The 

simulation results for the three different controllers based on 

the full nonlinear model are analyzed from performance and 

robustness points of view. This nonlinear model takes into 

account the complexity of the aerodynamic forces and 

moments. Moreover, the controllers were designed in 

Matlab/Simulink with a sampling time of 0.02s, using the 

Runge-Kutta solver. Finally, external disturbances 

represented by the wind in the X-Y plane are taken into 

consideration to verify the robustness of each controller. 

Comparison between an optimally-tuned PID by GA, 

fuzzy logic, and adaptive PID controller was done through 

the simulation. The optimal PID tuned using GA produced 

the following parameters:          ,         , and 

         . The fuzzy control produced the following 

parameters:          ,          , and          .  

The response of the autopilot of the longitudinal motion of 

the UAV is plotted in Fig. 7. The figure shows approximately 

similar response for the three types of controllers when the 

UAV is not subjected to wind disturbance or any uncertainty. 

 

 Fig. 7. Autopilot response for longitudinal motion. 

 

Fig. 8 shows the three autopilot responses for tracking a 

reference altitude. Fig. 8 shows approximately identical 

responses for altitude tracking for the three autopilots. In 

each step up or down the speed is affected instantaneously 

because of the coupling effect. 

 

 
Fig. 8. Autopilot response for altitude tracking. 

 

A. Advantages in Disturbance Rejection 

The effect of crosswind disturbance in the X-Y plane is 

studied in this subsection. The UAV is subjected to 

crosswind disturbance in the X-Y plane. The desired altitude 

has to be tracked by the Aerosonde UAV autopilot. 

From Fig. 9 it should be noted from a robust performance 

point of view, the best autopilot controller is the adaptive PID 

controller since it produces less overshoot and less settling 

time. 

B. Well Performance to Overcome Uncertainties 

The robustness of the designed flight controller in the 

0 5 10 15 20 25 30 35 40 45 50
200

201

202

203

204

205

206

 time [sec]

 a
lt

it
u

d
e
 [

m
]

 

 

 

reference altitude

PID control

fuzzy logic control

adaptive PID control

0 200 400 600 800 1000 1200 1300
190

195

200

205

210

215

220

 time [sec]

 a
lt

it
u

d
e
 [

m
]

 

 

 

reference altitude

PID control

fuzzy logic control

adaptive PID control

International Journal of Modeling and Optimization, Vol. 6, No. 4, August 2016

249



  

presence of UAV parametric uncertainties is validated and 

tested in this subsection. From Fig. 10, the autopilot utilized 

adaptive PID controller provides best robust performance and 

robust stability point of view. 

 

 
Fig. 9. Autopilot response for altitude tracking in the presence of wind. 

 

 
Fig. 10. Autopilot response for altitude tracking in the presence of parametric 

uncertainties. 

V. CONCLUSION AND REMARKS  

An adaptive PID controller based on parameter 

optimization with fuzzy inference system is designed for 

Aerosonde autopilot as a fixed wing UAV. The online fuzzy 

inference is used as the fine tuning mechanism for PID 

controller. This controller is compared with genetically-tuned 

PID controller. It is also compared with fuzzy logic controller. 

The comparison based on simulation results obtained from 

Aerosonde UAV model. The comparison is done from three 

points of view; tracking performance, robustness to wind 

disturbances, and parametric uncertainty of the UAV. 

The simulation results show approximately similar 

autopilot performances when the UAV is not subjected to any 

external disturbances. The autopilot controlled by adaptive 

PID achieves an excellent performance when dealing with 

external wind disturbances and UAV parametric uncertainty. 
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