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Abstract—We analyze a probabilistic variation on the classic 

robustness radius. Instead of measuring the distance to the 

closest destabilizing state, we look at a set of probability 

distributions around our initial state. The probabilistic radius is 

the radius of the largest sphere, for which none of the 

distributions supported within it takes the expected values of 

system parameters outside a prescribed set. We show that when 

the set of acceptable parameter values is closed and convex, the 

radius for the family of distributions which are nondecreasing 

with respect to distance reduces to the same radius for uniform 

distributions. We generalize this result for distributions of 

higher order convexity or concavity with respect to distance, 

obtaining an equal radius using a simple family of polynomials. 

 
Index Terms—Robustness radii, distributional robustness, 

decision analysis, control theory, aircraft control. 

 

I. INTRODUCTION 

The robustness radius is a classical tool for measuring 

local robustness of systems. When given a set of system 

states   equipped with a metric , and an initial state , the 

robustness radius is the smallest distance from   to an 

undesirable system state. The radius provides a worst-case 

estimate of how great an error is acceptable for the system to 

stay in a desirable state. Being a worst-case estimator, it is 

nonprobabilistic in nature. 

Depending on the application, alternate terms describing 

robustness radii or their special cases may be used, such as 

robustness margins or stability radii. Robustness radii are 

used for example in job scheduling [1], [2], and various 

control theory applications such as aircraft control [3],  [4]. 

While the sensitivity and nonprobabilistic nature of 

robustness radii is useful in some applications, it may also 

prove to be a limitation. If, for instance, we have some prior 

knowledge on how the initial state changes, the radius 

calculation may halt at an undesirable state that according to 

the prior information would be extremely unlikely. This 

problem is further exacerbated if the model for the system 

itself is also probabilistic. 

To answer this problem, we reformulate the robustness 

radius in terms of distributional robustness. Distributional 

robustness is concerned with analyzing robustness when, 

instead of a probability distribution, a set of possible 

probability distributions describing the change of the system 

is given. This makes it possible to incorporate known 

probabilistic limitations while still obtaining a simple 
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real-valued measurement of robustness. 

Similar distributional variations on the robustness radius 

and its various special cases have been studied before, in 

[5,6]. In this article, we provide a general definition for the 

concept, and afterwards show how to reduce the radius 

computation for some specific families of distributions to 

computing it for significantly smaller subfamilies. 

 

II. FORMULATION 

Given a system of interest, we denote the set of possible 

states for it by  , and fix a metric   in  . We assume a 

model   , which assigns every state       a value      

in    . The values of   are vectors of probabilities and 

expected values describing our system. This description 

works even in the deterministic case, as Boolean states can be 

described as probabilities of either   or   depending on the 

state of the system, and numerical metrics are merely 

expected values with no deviation. 

We assign the system an initial state of  , and then assume 

the system randomly changing into a final state    close to  . 

In order to define the probabilistic robustness radius, we 

select for every   a family of probability distributions     . 

Each element          is a possible probability distribution 

for the final state given an initial state x. The only assumption 

on      is for every probability distribution in it to be 

supported in a sphere of finite radius. 

For each one of these potential distributions for   , we can 

calculate the expected value of      , and check whether it 

is desirable. Desirability is defined by fixing a set   in    of 

desirable states. Our radius is the supremum of all        , 

for which all distributions of      which are supported in 

        yield a desirable expected value of       . The 

resulting radius is dependent on the selected point   , the 

family of selected distributions     , and the set of desirable 

expected values  . 

Next, we present a more formal definition of our concept. 

Throughout this paper we make the following assumptions: 

      is a (pseudo)metric space, and we have a measure µ on 

X, for which sets         are measurable and the inequality  

               holds for every   in   and every   in 

the interval      . Note that the measurability of         is 

equivalent with the fact that every function              

is measurable. In addition to this, we assume that our 

model   defines a measurable function from   to   , and 

that   is bounded on every        . Lastly, we denote by    

the map 
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 which maps probability distributions of    to 

values in   . 

Definition 1. For every element   of  , fix a family 

     of probability distributions on  , such that every   in 

     is supported in some        . In the case of general 

probability distributions this means that 

 

    
 

       

   

 

for some    . 

Given a value    , we may define the set 

 

                                 
 

We also define        to be empty. 

The probabilistic robustness radius    is given by 

 

                                  
 

with         in case the set is unbounded. 

A common way in literature to define probabilistic 

versions of robustness radii is to add a small acceptable 

probability of risk to the classical robustness radius. This is 

part of a line of research outlined by [7], and has been used to 

define robustness radii in for example [5]. The literary 

definition fixes a set of desirable system states    and a 

positive bound   describing the accepted level of risk. The 

radius is then obtained as the supremum of radii  , for which 

the probability of    being in    is at least     under all 

probability distributions of       . Definition 1 yields this as 

a special case by selecting the interval         as  , and 

the characteristic function of   , denoted by    
, as  . 

We can also obtain the classical robustness radius as a 

special case. For this, denote the set of desirable states again 

by   . We set        , select    
 as our   , and define 

every      to consist of Dirac delta distributions    , for all 

      . The resulting    -value is the classical robustness 

radius. 

In order to keep  -values for different   comparable, one 

has to be careful in selecting the families     . Due to this, 

families      are often limited to symmetric distributions, 

for which the probability density depends only on the 

distance from  . For the rest of the paper we will focus on 

these distributions. However, it is noteworthy to mention the 

existence of research on probabilistic robustness radii using 

nonsymmetric distributions, for example in [8]. 

The definition we will be using is the following: 

Definition 2. Let   be a family of functions from       

into      . Assume that each   in   is bounded and 

supported in an interval       for some         . In 

addition to this, assume that      is  -integrable over   for 

every element   of  . 

Fix an     . For every     , we can calculate the 

integral 

       
 

  

If this is nonnegative, we may define a probability 

distribution function      as follows: 

 

              
 

 

  

      

 

Using these, we may define the set       as follows: 

 

                              
 

   

 

For a given    , define the set    by 

 

                       
 

Now, we have the following representation for        : 

 

                            

 

Note that         is defined to be empty. 

By definition 1, the set       defines a robustness radius 

   
   . We denote this radius by      . 

Note that if        is open in       for every    , we 

can formulate     in an alternate way: We define the sets 

         by 

 

                        
    

    

  

 

Since the supports are open, every distribution       

       is in some set         . Therefore, we may write out 

our radius as 

 

                                           

 

with         if the set we're taking the infimum over is 

empty. 

 

III. SUBFAMILIES 

We focus on the case where      is convex and closed. 

In this case, we obtain a way to simplify calculations of     

for suitable families  . We define a nonnegative linear 

combination of elements         to be a linear 

combination             , where each coefficient    is 

nonnegative. 

Lemma 3. Let    and     be families of functions as in 

definition 2, with     . Fix a point   from  . Assume that 

  is convex and closed, and that for every combination 

of          ,       and     , we have a nonnegative 

linear combination     
  of elements of          such that 

 

       
            

 

 

 

In this case, we obtain the equality 
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Note that     
  does not have to be a probability distribution, 

as it may integrate to something other than 1 over  . In fact, 

    
  is a probability distribution precisely when it is a convex 

combination of elements of         . 

Proof. 

Since     , it is clear that             . Now, fix an 

arbitrary    that is less than        . We show that    is at 

most      . The result follows from this being true for all   

defined as above. Hence, fix     . We want to show that 

         is in  . 

Fix an           . By our assumptions, we get a 

non-negative linear combination     
      

         
  

of elements of          fulfilling 

 

       
            

 

 

 

Since the integral of      over   is 1, the integral of     
  

over X is finite and positive. Hence we can define a 

probability distribution       
 , where    is a normalizing 

constant, for which the value of the integral of      
  over   

is 1. 

Since every    
  integrates to 1 over   ,           

equals 1. Since   and each    is also nonnegative,      
  is a 

convex combination of elements of          . Hence, 

        
   is in   . This is due to it being a convex 

combination of      
    all of which are in  , combined with 

the fact that   is convex. 

Next we make the following estimate: 

 

                
 

       
   

 

 

        
         

 

    
 

This results in an estimate of 

 

        
 

        
   

 

 

            
    

 

         
      

    
 

                
   

 

     
 

Consequently, we can find a sequence of probability 

distributions       with the following properties: Each     is 

zero outside         ,        is in    for every   , and the 

sequence      converges to      in the   -norm. Now, when 

restricted to the set of probability distributions that vanish 

outside        ,    is a continuous map from the   -space 

of distributions to the Euclidean space   . This is because    

is a linear operator which fulfills 

 

               
 
 

 

   

         
 

            
 

 

 

for all distributions    which vanish outside         . 

Here      is the upper bound of     on         guaranteed 

by our assumptions. 

From the fact that      converges to      , the continuity of 

the restriction of   , and the closedness of  , we conclude 

that          is in  . This concludes our proof.     

 In the next two chapters, we present a set of suitable 

families that this result can be applied on. 

 

IV. NONINCREASING FUNCTIONS 

One natural property to use in defining    is 

nonincreasingness. For this, we define the families    
  to 

consist of all nonincreasing functions                

supported in      . The set    is the union of these families. 

Note that nonincreasing functions are Borel, so       is 

guaranteed to be  -measurable for every      and     . 

Our next goal is to provide an easier way to compute    . 

Previous research on distribution families, such as [7], has 

shown a connection between the families of uniform 

distributions and nonincreasing symmetric distributions. 

Similarly to these previous results, we conclude that the 

subfamily of all uniform distributions on spheres yields 

exactly the same probabilistic robustness radius. 

Theorem 4. Assume that   is convex and closed under the 

Euclidean metric of    . Let     denote the set of 

characteristic functions                  . Then for all 

    one obtains that 

 

              

               
    
       

          
     

 

The latter form results from the fact that the supports of 

functions of     are open in       , combined with the 

set            containing exactly one function for each 

positive  . Almost no assumptions are made on the model  , 

the only ones being its measurability and boundedness on all 

spheres of finite radius. 

We prove this result by use of Lemma 3 on families    
and 

   . For this, the following result is required. 

Lemma 5. 

Let   be an element of   
 . Fix      and    . Then 

there is a nonnegative linear combination            

         such that each    is in   
   and 

 

              
 

  

 

Proof. For the sake of notational convenience, we 

abbreviate         as      . In addition to this, we denote 

by   the integral 

 

       
 

  

 

By the previously established notation, we can write 

out      as        . 
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Denote           by   . By our assumptions    is finite. 

Now, define the function               by       

       . The below-continuity of measures implies the 

left-continuity of  . In addition to this,   is nondecreasing, so 

it is continuous outside a countable amount of jump 

discontinuities, the positions of which we denote 

by          . Clearly these jump discontinuities are of the 

size          , where    equals     
       . 

We denote by     the interval        and by      the 

subset         of    . By previous observations,       is a 

countable union of disjoint intervals    
                 , 

where the upper endpoint may also be included. The lower 

endpoints of these intervals, on the other hand, are always 

in   , due to left-continuity of  . 

Now, fix an integer     such that              . We 

divide       into intervals         , starting from      , as 

follows: Observe the points         , where        . 

These points all lie in    . Starting from     and proceeding 

inductively, if our current    is in   , we select as the next   

the largest element of     mapped to     by  . This element is 

well defined due to the left-continuity of  . Afterwards, we 

move on to      . If     is not in    , it has to be in some 

interval    
. If no prior   maps to the lower endpoint of    

, we 

select the greatest value mapping to it as our next  . In any 

case, we move on to the next  -point that is not in the 

interval    
. 

We denote the collection of points    for a given   by   , 

and the value         by   . From the above procedure it is 

clear that     . In addition to this,      and    
  , by 

the definition of    and the fact that        . Note that 

     equals zero. 

Define the function            as follows: 

 

                              
   

  

   

  

 

We set            . Clearly    is a nonnegative linear 

combination of elements of   
 . Also, since       is at least 

      for every   in [0, ∞],    is at least      in every point 

of     . 

Next, we estimate the integral of the difference: 

 

            
 

                     
             

    

   

  

 

Fix a value of   and observe the corresponding integral on 

the right hand side. The measure of the set of integration 

is              . If this measure is at most    , the fact 

that    is nonincreasing results in an upper bound 

of                       for our integral. 

If the measure is greater than    , the function   has to 

have a jump discontinuity    at      . In this case, the value 

of                  is at most    . We divide         

      into two disjoint parts:                 and 

              . As we have stated earlier, the former set has 

measure    . Therefore, using our earlier estimate and the 

-additivity of measures, the latter set has a measure of at 

most    . In addition to this, the value of      in the former 

set is a constant value of         . Hence, the integral of 

              over                  is zero, and again, 

we attain the upper bound of                       for 

our integral. 

We have obtained an estimate of: 

 

            
 

  
    

 
                

    

   

 
        

 
    

                        

Now, Theorem 4 follows directly via use of Lemma 3 on 

families    and   . 

 

V. CONVEX FUNCTIONS OF ORDER   

Due to the sets            being singletons, the 

computation of        reduces to analyzing a single real 

function              
 . This is due to     being of the 

form where, for every     , it contains exactly one     

with              . 

A set of simple families that also have this property is 

given by 

 

                                

 

where    goes through all natural numbers. Note that 

for    , this essentially gives us    . Hence, we denote 

these families by     respectively. We are interested in 

finding large distribution families containing    that yield 

the same robustness radius. For this, we require a 

generalization of convex functions called convex functions of 

order  . 

We use definitions similar to those used in [9]. Given a real 

function f and a set of distinct points         , one may 

calculate the divided difference           . This difference 

is defined inductively with respect to  , using the following 

formulae: 

 

                         

            
                       

     

  

 

The definition easily results in the following representation, 

which is mentioned for example in [10, Ch. 1.3]: 

 

            
     

           

 

   

  

 

Let A be a subset of   . We call a function         

convex of the order  , or more shortly,  -convex, if it fulfills 

the following condition: For every set               , 

where     are ordered in an ascending order, the divided 

difference              is at least  . This definition results 

in the set of  -convex functions consisting of all convex 

functions, and the set of  -convex functions consisting of all 

nondecreasing functions. On open intervals for positive 
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values of   ,  -convexity is equivalent with the function 

admitting a convex       :th derivative        , with the 

 :th derivative being the function itself – see for example [9]. 

We define the sets    as follows: 

 

                   
                  

                       
   

 

Besides convexity, we can also define concavity of order  . 

In this case, the definition is given by              being at 

most   , for all    ordered in an ascending order. The 

derivative condition for  -concavity on open intervals is 

similarly         being concave. If    is  -convex,    is 

 -concave, and vice versa. 

Based on this, we define the sets 

 

                   
                   

                       
   

 

Since  -concavity is equivalent with nonincreasingness, 

this coincides with our earlier definition of   . 

For all of our previously defined sets   ,    and   , the 

sets   
 ,   

  and   
  are defined as previously by restricting to 

elements supported in the set      . Using the definition via 

divided differences, we prove the following lemma: 

Lemma 6. Fix a nonnegative integer  , and a radius   
     . Let    be an element of    

 . If    is odd,    is 

nonincreasing. If    is even,   is nondecreasing. As a 

corollary, for even values of  , the set    contains only the 

zero function. 

A similar result holds for functions    of    
 : For odd 

values of  ,   is nondecreasing, and for even values of  ,   

is nonincreasing. Therefore, whenever   is odd,    contains 

only the zero function. 

The case     is clear, so we may assume     . We 

prove the case where    is in    
  and    is odd. Let   ,   be 

elements of      , with the assumption that    , and let   

be a real number greater than both   and  . 

We derive the inequality 

 

                       

  
    

                      

  
    

                      

  
     

       
   

    

   
 
 
     

     
 

 

 
    

   
 
 
     

     
 

 
   

 

Since    is odd, the value within the right pair of 

parantheses is nonpositive for all previously defined  . Since 

the limit of this value at     is          , we obtain 

the nonpositivity of           . Since this holds for 

all        ,   is nonincreasing. The other three cases 

are proven analoguously.              

Next, define the following subfamilies: 

                              
                             

Again, subfamilies    
  and    

  are defined as previously. 

Due to convex functions being continuous on open intervals, 

every element of   is continuous at every point, except 

possibly    . Hence, for every element    of   , we may 

associate an element    of      by setting                  .  

We see that     is in     , since                is continuous 

in       . Similar results hold for   . 

By using the derivative condition and taking the limit at the 

point    , we reach the conclusion of        for odd  , 

and        for even  . According to the next result,    

actually gives the same  -value. 

Lemma 7. Let   be a positive integer and        . If   

is odd, select an element    of     
 . Otherwise, select    

from     
 . Fix     . Then there is a nonnegative linear 

combination of elements of   
 , denoted by          

    , for which               on all of      . In other 

words, we can approximate    uniformly with nonnegative 

linear combinations of elements of   
 . 

Proof.  We use induction on  , starting from case    . 

We assume a convex, continuous    supported in       . 

Using Lemma 6, we obtain the nonincreasingness of  . 

The first half of the proof shows the base case of    . 

We select an integer    such that          . Since    is 

continuous and nonincreasing,                  . Next, 

we select points         for which              , taking 

care to select       and      . Due to the 

nonincreasingness of   , the points    have the order    
       .  

Now, we may select our    and    as follows for       : 

                         

         
             

       

    

   

  

These yield a linear combination    with the 

property              for every         . This is best 

seen by induction: As the base case, we have         
     . For the induction step, we assume that        

equals      . Now, on the interval           our f is a linear 

function of the form       , where    maps to       

and   is the sum           , which by the definition 

of      equals the quotient                          . 

Hence,         has to equal         . 

Next, we show that   is a nonnegative linear combination 

of functions   . The nonnegativeness of    is clear. For    , 

we obtain that 

    
             

       

         

     

  
             

       

  
               

         

     

     

 

    

     

                             
 

Therefore, every    is nonnegative. 
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We have shown that   is a nonnegative linear combination 

of    which fulfills             for        . Since    are 

all nonincreasing,   is also nonincreasing. Hence, for 

any        , there is an interval           containing  , and 

therefore 

 

                                    
 

Since      and      are both zero for all    ,   is the 

desired uniform approximation of  . 

Next, we show the induction step. We prove the case 

of      
 , as the proof of case      

  is essentially identical. 

We assume that    is odd and    is in     
 . Under these 

assumptions,   is a continuous function which differs from a 

constant one only in a compact set. Therefore,   is uniformly 

continuous, and there is a     for which             
     whenever        . 

We define a function               by setting      

      . Clearly    is also a function of    
 . Since   can be 

extended to an  -convex function on        ,        is 

convex, and therefore    is      -convex. In addition to 

this, due to lemma 6,   is nonincreasing. Consequently,    is 

nonpositive, which results in –    being an element of    
   . 

By the induction assumption, we find a nonnegative linear 

combination of functions of   
    which approximates –    

uniformly: 

 

                           
   

 

   

  
 

  
               

 

By defining   via 

 

      
  

 
              

   

 

   

  

 

we obtain for all   in       the bound 

 

           

                            
   

 

   

   
 

 

  
 

  
  

 

 

 
 

 
 

 

Since in       both   and   are zero, we have obtained the 

uniform bound           . In addition to this, our 

selection of   and   yielded the uniform bound of       
   . Therefore, by using the triangle inequality, we conclude 

that   fulfills our requirements.            

 When combined with lemma 3, our previous lemma is 

enough to conclude that the  -values for    are the same as 

those of     for odd  , and     for even  . However, with a 

small technical fix, we can show the same result for     

and   . 

Lemma 8. Let   be a positive integer and        . If   

is even, select an element    from    
 . Otherwise select    

from   
 . Fix     and    . Then there is a nonnegative 

linear combination                       for which 

each    is in   
 , and 

              
 

  

 

Proof. As previously, we outline the case of odd  , as the 

other case is essentially identical. Again, we denote         

by       , and           by     . We define     to 

be                  . In addition, we denote by   the 

integral 

 

       
 

  

 

As previously,   is left-continuous and nondecreasing, and 

              . Hence, we can select a      which 

fulfills                   . 

Using the previous Lemma, we find a nonnegative linear 

combination       
        

    of functions of    
  

fulfilling the uniform bound                    . Recall 

that here,    is the previously defined function of    
  given by 

the function   of   
 . We define 

 

  
                 

        

 

   

     
            

 

      

 

   

  

 

Since       at all points    save for possibly     , we 

obtain for all   with          the bound 

 

   
                                       

 
 

     
  

 

Since   is nonincreasing thanks to Lemma 6,      is at 

least      . Hence, in the case of           , we obtain the 

chain of inequalities 

 

      
  

     
                   

  

     

       
  

     
   

 

which results in the bound                        .  

In this case,   
  is a nonnegative linear combination of the 

desired form, as 

 

    
               

 

     
 

     
    

 

Next, we observe the remaining case of           . We 

select                    and 

 

     
                           

   
                             

 

         

 

The function    has the property 
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and therefore we obtain the bound (note: [11]) 

 

            
 

             
  

     

          
       

          
  

       

     
  

     

   
              

   
  

  
       

  
 

     
  

  
       

            
          

 
     

 

     

  
  

     

    

 
 

 

 
   

 

We have found a suitable nonnegative linear combination 

in every possible case, which concludes the proof.     

By combining Lemmas 8, 5, and 3, we have finally proven 

the main result: 

Theorem 9. Let    be convex and closed under the 

Euclidean metric of   . Fix a natural number  . Then for all 

   , if   is even, 

 
             

              
       

   
 
           

        
    

 
       

              

     

 

and if   is odd, 

 
             

              
          

 
           

            
 

       
              

     

 

VI. DIFFERENCE IN RESULTS FOR DIFFERENT   

The derivative condition for  -convexity and  -concavity 

yields that         for odd  , and         for even  . 

Due to this,                 for all   and  . Next, we 

present a simple example which further illustrates the effects 

of convexity order on results. 

As our example case, we use        ,    , and the 

following  : 

 

       
       
       
       

   

 

We define our set   to be        . Clearly the value of 

       is     . On the other hand,        ends up being 

infinitely large. To see this, let   be an element of      . In 

this case, 

 

 
      

        
       

  
       

  
                

  

              
 

When      gains values from         ,             

has a minimum value of     . Since the values of our 

integrals are nonincreasing when      , this is the global 

minimum. 

As seen in the previous example, a small order of 

convexity   results in our radius calculation halting at 

comparatively smaller gaps of undesirable results. As the 

order of convexity grows larger, our probability distributions 

become increasingly focused around our intended choice. 

This lets the probabilistic robustness radius to pass relatively 

greater gaps in desirable results, resulting in a less 

conservative measure of robustness. 

Unlike changing the size of  , this sensitivity adjustment 

via changing assumed convexity order has less effect on 

models with little variation. In the previous example, 

enlargening   to         would result in        passing the 

drop in   . However, it would also vastly improve the 

robustness radii for models   which are under     in large 

areas, the extreme example being a constant   of    . 

 

VII. CONCLUSION 

In this article we have analyzed a version of the classical 

robustness radius based on probability distributions. The 

probabilistic robustness radius was defined in the spirit of 

distributional robustness, by observing the worst case out of 

families of possible probability distributions. We limited the 

analysis to families consisting of symmetric distributions that 

have bounded supports. In this case, if the set of acceptable 

results is closed and convex, we deduced a condition for a 

subfamily of distributions yielding the same robustness 

radius. 

These results were then applied to families of distribution 

functions that are  -convex or  -concave with respect to 

distance from the initial point. We reduced the calculation for 

each   to a simple family of polynomial distributions. As a 

special case, we reduced the radius calculation for 

nonincreasing symmetric distributions to the respective 

calculation for uniform distributions. We also noted how one 

can tune the sensitivity of the probabilistic robustness radius 

by assuming a different convexity order. 

REFERENCES 

[1] Y. Sotskov, N. Y. Sotskova, and F. Werner, ”Stability of an optimal 
schedule in a job shop,” Omega, vol. 25, no. 4, pp. 397-414, 1997.  

[1] L. Palopoli, C. Pinello, A. Bicchi, and A. Sangiovanni-Vincentelli, 

Maximizing the stability radius of a set of systems under real-time 
scheduling constraints,” IEEE Transactions on Automatic Control, vol. 

50, no. 11, pp. 1790-1795, 2005. 

[2] S. S.-M. Lam, “Real robustness radii and performance limitations of 
LTI control systems,” Ph.D. thesis, Univ., Toronto, 2011.  

[3] G. Ferreres and J.-M. Biannic, “Reliable computation of the robustness 

margin for flexible aircraft,” Control Engineering Practice, vol. 9, no. 
12, pp. 1267-1278, 2001. 

[4] C. M. Lagoa, P. S. Shcherbakov, and B. R. Barmish, “Probabilistic 

enhancement of classical robustness margins: The unirectangularity 
concept,” Systems and Control Letters, vol. 35, no. 1, pp. 31-43, 1998. 

International Journal of Modeling and Optimization, Vol. 6, No. 4, August 2016

217



  

[5] G. Calafiore, F. Dabbene, and R. Tempo, “The probabilistic real 

stability radius,” in Proc. the 14:th World Congress of IFAC, Beijing, 

China, 1999. 
[6] B. Barmish and C. M. Lagoa.”The uniform distribution: A rigorous 

justification for its use in robustness analysis,” Mathematics of Control, 

Signals and Systems, vol. 10, no. 3, pp. 203-222, 1997.  
[7] C. M. Lagoa, “Probabilistic enhancement of classical robustness 

margins: A class of nonsymmetric distributions,” IEEE Transactions 

on Automatic Control, vol. 48, no. 11, pp. 1990-1994, 2003. 
[8] A. W. Roberts, J. Roberts, D. E. Varberg, Convex functions, vol. 57, 

Academic Press, 1974. 

[9] L. M. Milne-Thomson, The Calculus of Finite Differences, American 
Mathematical Soc., 2000. 

[10] M. Kuczma, An Introduction to the Theory of Functional Equations 

and Inequalities: Cauchy’s Equation and Jensen’s Inequality, Springer, 
2008. 

 

 
 

 

K. Ilmari Kangasniemi is a master’s student at the University of Helsinki. 

He became a bachelor of sciences in the Beginning of fall 2015, majoring 

mathematics, and is soon to finish his Master’s degree. 
 He served from fall 2014 to summer 2015 as a conscript researcher for the 

Finish Defence Forces Research Agency (FDRA). This article was written 

during the aforementioned period of service. 

 

Juha-Pekka Nikkarila has a PhD in physics (2008) and serves as a 

researcher at Finnish Defence Research Agency (FDRA). He has acquired 
Master’s degrees from physics (2006) and electrics (2016).  

He has served at FDRA from 2012 with research interests in operation 

analysis, electronic warfare and Cyber, and currently serves at FDRA as a 
First Lieutenant (Eng.). Earlier he has worked as a researcher in Marioff 

Corporation / United Technologies (2009-2012), Inspecta (2007-2009), a 

PhD student in University of Jyvaskyla (2006-2007), and as a physics 
lecturer in Metropolia University of Applied Sciences (2009-2014). He 

served as a conscript soldier at LapItR in 2001-2002. 

  
 

 

 

 

 

International Journal of Modeling and Optimization, Vol. 6, No. 4, August 2016

218




