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Abstract—Infrasound signals of interest (SOI) have been 

collected from various sources including boats, aircraft and 

personal watercraft during a recent field exercise. The designed 

experiment specifically located infrasound sensors to gather the 

SOIs and process them using a developmental methodology. 

This custom pre-processing, and exploitation suite allows for 

the extraction of SOIs from experimental data sets that might 

be sub-optimal due to the presence of noise or interfering 

(undesired) sources.  The on-going development of the 

infrasound sensor suite and the SOI signal processing and 

analysis is supported by this work.  

 
Index Terms—Feature vector, infrasound, infrasound 

analysis, infrasound array, infrasound classification, principal 

component analysis, PCA. 

 

I. INTRODUCTION 

The gathering and processing of infrasound signals of 

interest (SOI) continues to evolve as increasingly more 

capable sensors are deployed and more sophisticated post 

processing algorithms are developed [1]-[3]. The scope of 

infrasound analysis continues to grow as well. While once 

highly focused on environmental sources such as earthquakes, 

volcanic eruptions, and bolides, the science of infrasound 

research continues to expand to include ever-more man-made 

sources such as boats, missile launches, fixed and 

rotary-wing aircraft, ground vehicles, machinery, and so 

forth [4]-[8].  

While naturally occurring infrasound SOIs are 

continuously being gathered and analyzed, the advancement 

of the state of the art in processing man-made SOIs offers a 

wide range of opportunities. Improved algorithms for the 

detection, characterization and/or classification phases of the 

analysis process could all aid in the advancement of the field. 

This paper focuses on the detection and characterization 

phases and makes use of empirical test data gathered during a 

specially designed field experiment using a combination of 
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seismic and infrasound sensors to detect a variety of 

man-made SOIs from a waterborne source. In conjunction 

with the field experiment, post-processing routines were 

developed to facilitate exploitation of signals of interest. The 

analytical methods can be validated by comparing the results 

with the known ground truth data of the field exercise. This 

paper presents a brief summary of the field measurements, 

the corresponding data processing algorithm and an analysis 

of the results of the comparison of the processed data with the 

ground truth.  

          

II.  INFRASOUND SIGNAL ANALYSIS 

A. Overview 

A field experiment was conducted in December 2010 at an 

ocean-side pier in Key West Florida, USA [5]. A 

multi-channel sensor array was deployed for the purpose of 

gathering infrasound and seismic data on a variety of 

man-made SOIs. The collection of extensive signal 

information both in the form of different sources (e.g. boats, 

aircraft, personal watercraft) as well as varying behavioral 

aspects (e.g. inbound, outbound, accelerating, idling) 

contributed to a growing library of data being developed as 

part of our teams on-going research effort. Each collection 

represented a particular set of controlled (source and aspect) 

and uncontrolled (undesired signals, system noise) signal 

inputs which were recorded as individual experimental trials. 

For the subject experiment, the particular signals of interest 

were emanating from a pair of boats provided by the United 

States Coast Guard. See Fig. 1 below. 

 

 
Fig. 1. Experimental test boat. 

 

Once an infrasound or seismic signal of interest has been 

detected by our sensor suite, the actual processing of the data 

can begin. Pre-processing actions such as band-pass filtering 

may be done but is outside the scope of this paper and is not 

covered here. This paper will focus on the steps of the data 

processing flow that begin with detection and classification. 

For example, a sensor may detect that some infrasound 

signature has occurred. The location algorithm may use a 
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method such as back azimuth projection to determine a 

general direction of origin and distance to the source that may 

be hundreds of miles over the horizon. Next, the task is to 

determine what caused the received sound. Here the goal is to 

classify the source as being perhaps a natural event (such as a 

volcano), or possibly an aircraft or watercraft. Then we want 

to further specify the source by identifying the type of aircraft 

(e.g. fixed wing, rotary wing, drone, jet) or the type of 

watercraft. Then, with even more precise analysis we desire 

to know information about the attitude or aspect of the source. 

Is the detected aircraft taking off or landing? Is the detected 

ship approaching or moving away? The data flow diagram for 

a typical infrasound signal processing system is shown in Fig. 

2. 

 

 
Fig. 2. Infrasound data flow diagram. 

 

B.   Classification Methodology 

In order to classify a particular signal of interest, the signal 

must be compared to some library of known signals (or 

signatures) and some measure of “goodness of fit” must be 

established. There are numerous, well established methods 

available for both the signal comparison phase as well as 

evaluating the quality of the match [9],[10]. In this paper we 

will focus on the comparison of known signals and in 

particular, we will present a methodology for establishing a 

match when less than ideal experimental conditions exist.  

A basic assumption when evaluating a signal of interest 

against a library of known signals, is that the known signals 

have been validated, or have some degree of trustworthiness. 

But where did those signals come from and how were they 

validated? In an ideal case the signals would be collected in a 

controlled experimental environment where external, 

interfering signal sources were eliminated or reduced to the 

extent possible. This would provide the cleanest (in a 

signal-to-noise ratio sense) signal that would then serve as the 

reference or library signal henceforth.  But what if the only 

option was to attempt to create a reference signal from a less 

than ideal source? In this paper we will present a method for 

extracting key characteristics from a measured signal 

containing clutter and directly interfering signals and use 

previously collected experimental data as a test case. 

The objective is to extract from the signal of interest a 

signature that uniquely describes the particular signal source 

for which the library signal is to be created. We wish to create 

these custom “feature vectors” in such a way that allows the 

derivation directly from raw measured data while 

simultaneously maximizing the rejection of any extraneous 

signals (ie: reject any content that is not due to the actual 

signal source). To assist us with this task we can employ the 

well documented data analysis method known as Principal 

Component Analysis (PCA) [11]. The method is particularly 

useful when analyzing data that is expected to be redundant 

(possessing duplicate data content). In this situation the size 

(dimension) of the data can be reduced and a simpler/smaller 

data set can be used to represent the signal.  

Let us assume that at each point in time during the 

acquisition of a SOI, a measurement is logged from each of 

the n sensors (channels) in the network. This produces a 

single column vector having n rows. 

 

    

  

 
  

                                       (1) 

 

As this is repeated across an extended acquisition of m 

samples, a matrix of data is produced. The first component of 

the Principal Component Analysis is an mxn matrix where m 

is the number of measurements or observations and n is the 

number of measurement types or channels. Each row of the 

data matrix is a native basis vector. We define this input data 

matrix X as 

 

   

       

   
       

                             (2) 

 

As our goal is to reduce and simplify our data set, we wish 

to find a matrix that is a linear combination of the original, 

native basis vectors. Given our input data matrix X, we define 

a desired output matrix Y and a transformation vector A. We 

can write the linear transformation equation 

 

                                         (3) 

 

Or, in expanded general matrix form: 

 

 

  

 
  

  

     

   
      

   

         

   
         

        (4) 

 

The components of vector A are actually the coefficients 

for the new basis vectors which allow us to execute the linear 

transformation from X to Y.  

Now that we have a set of new bases vectors with which to 

define our original data, how do we select the proper subset 

that will allow us to redefine a new, reduced dimension set of 

data? Since we are comparing multiple measurement samples, 

and we postulate that some of the samples provide redundant 

data, we can calculate the covariance between pairs of 

measurements and then sort them to find the highest 

variances. In a Principal Component Analysis the 

coefficients with the largest variance represent the largest 

contributions to the signal of interest. Alternatively, 

measurement pairs producing low variance do not differ 

significantly between the data sets and are said to be 
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redundant, and are candidates for removal. The specific 

method for determining precisely how many of these 

“principal” components to retain has been the subject of 

numerous publications [12]-[15].     

Given two sets of data that could represent our experiment 

for n observations for two trials a and b, 

 

                              (5) 

 

the variance of the individual sets of data is calculated as 

shown below (set a for example), 

 

         
  

 

   
         

               (6) 

 

 where  is the mean of the vector a. 

If the data sets a and b are expressed as row vectors, the 

covariance in matrix form can then be calculated as 

   
 

   
                                      (7) 

The resulting square matrix will have the variance of the 

two vectors along the main diagonal and the off-diagonal 

terms represent the covariance of all other pairwise 

combinations. As indicated earlier, the variances identified 

along the diagonal indicate the principal components. The 

covariance matrix is typically diagonalized to rank the 

components for ease of interpretation. The elements closer to 

the upper left corner of the ranked covariance matrix indicate 

the pairwise elements of the data set that have a high variance, 

while those towards the lower right corner of the matrix 

demonstrate lower variance.    

The Single Value Decomposition (SVD) method is often 

used to calculate principal components as it is a general case 

of the PCA algorithm.  The general form of an SVD problem 

begins with an eigenvector definition which can be written as  

 

                                            (8) 

 

which states that the square matrix X can be expressed in 

terms of the eigenvectors u and v, and the eigenvalue   which 

are characteristic roots of the linear system of equations 

associated with the matrix X. This form is valid for 

representing a single trial of a given experiment. The 

efficiency of linear algebra allows us to write the matrix form 

of this equation that accounts for all trials in the data set 

simultaneously as shown below     

   

                                           (9) 

 

SVD makes use of a linear algebra theorem that states that 

a rectangular matrix X, can be expressed in terms of an 

orthogonal matrix U, a diagonal matrix , and the transpose 

of an orthogonal matrix V. The matrix V contains the 

orthonormal eigenvectors for the matrix XTX, and the matrix 

U contains the orthonormal eigenvectors for the matrix XXT.  

Consider an experiment having n observations and m trials 

expressed in the form of Equation 9 above. Matrices U and V 

can be written as,  

   

     

   
      

             

     

   
      

                                          

And the matrix  is a symmetric matrix with the 

rank-ordered singular values along the main diagonal.   

Multiplying both sides of Equation 9 above by V
T

 produces 

the final form of the SVD shown below 

 

                                      (11) 

 

Referring back to the earlier discussion on principal 

component analysis, our intention remains to establish a 

change of basis that allows us to restate the matrix X in a 

reduced dimension form by identifying the principal 

components of the SOI. If the data set X can be expressed in 

terms of the singular values in matrix , a modified (alternate 

basis) version of the data set X can be calculated by 

determining a modified version of . This modified matrix 

contains the largest (most significant in terms of variance) 

singular values along the main diagonal (after deciding how 

many to retain) while populating the rest of the matrix with 

zeros.  

 

          
                            (12) 

 

This modified version of the original data set Xmod is 

calculated by multiplying the X data matrix by the 

reduced/modified singular values matrix mod. This operation 

achieves one of the key benefits of principal component 

analysis, dimension reduction. Just as importantly, although 

perhaps less obviously, the elements that remain in the 

modified data set are those that contribute the highest 

variance to the data set and thus are most critical to 

representing the data in a reduced dimensional space. 

Meanwhile, the elements that have the lowest variance have 

been removed from the data set, as their contribution to the 

data set is less significant or even redundant. 

 

III. INFRASOUND FIELD EXERCISE 

A. Overview 

In December 2010 a network of infrasound and seismic 

sensors was deployed to an ocean-side pier in Key West 

Florida in a field experiment conducted in collaboration with 

the U.S. Coast Guard (USCG). The focal point of the 

experiment was a 33 foot SPC-LE Fast Interceptor boat 

provided and operated by the USCG (Fig. 1). In addition, due 

to the public location of the test, operators were able to gather 

numerous infrasound and seismic signatures for a host of 

“targets-of-opportunity” (e.g., aircraft, pleasure boats, 

personal watercraft, land vehicles).  

B. Sensor Configuration 

The experimental sensor network consisted of a 

combination of seismic and infrasound sensors (4 infrasound 

sensors and 2 seismic sensors). While both seismic and 

infrasound data was collected during the experiment, only the 

infrasound data is used during the analysis presented here. 

Fig. 3 below shows a photograph of the actual sensor package 

as it was deployed for the field experiment.  

C. Data Processing Methodology 

As indicated above, the subject boat made several circuits 

of the experimental course to support extended data 
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gathering.  

 

 
Fig. 3. Sensor package during experiment. 

 

This facilitated the generation of a data set that contained 

not only numerous samples for a given SOI (extended 

acquisition for a given SOI in a given aspect state), but also 

numerous trials of the particular SOI. For example, signal 

data was collected of the subject boat as it moved between the 

dock where the sensor platform was deployed and a buoy that 

was approximately 1.6 miles offshore. Having the subject 

boat repeat this route numerous times allowed for the 

collection of data for both inbound and outbound aspect 

states over numerous passes (trials).  Fig. 4 below shows an 

example of the acquired temporal signature for the subject 

boat across 2 of the infrasound sensor channels. The vertical 

lines in the plots indicate the ground truth detection points 

within the overall acquisition. In other words, where during 

the acquisition did the test conductor log the closest point of 

approach of the subject boat? By having the ground truth data 

we can compare the known boat activity with the upcoming 

output results of the detection phase of the post processing.   

 

 
Fig. 4. Infrasound time history for boat. 

 

Our objective is to derive a feature vector that uniquely 

describes the response of the subject boat. In an ideal case the 

boat signature would be collected in a sterile spectrum, 

noise-controlled environment. This would maximize the 

signal to noise ratio by minimizing random (white) noise as 

well as colored noise (signals due to other sources). Under 

these conditions an optimum test signature can be acquired 

from which the feature vector can be derived. In this 

experiment however, both white and colored noise are 

present in the recorded signals. Therefore a method was 

needed to overcome this empirical limitation.  

First, we recognize that we only have access to signal 

power versus time. No phase-history information for the 

sampled data is available. Without a complex representation 

of the signal we cannot use typical signal processing methods 

such as the discrete Fourier transform. We can however work 

in the power spectrum domain. To develop the feature vector 

we must extract a signature from the acquired signal that 

uniquely describes the boat we are attempting to classify. 

Since we have the ground truth data we know where (when) 

in the acquired signals to look for the response of the boat. 

We then need to separate it from the other interfering 

signals. If we choose to arbitrarily assign a 30 second window 

length to the desired feature vector we can center this around 

the ground truth time stamp. Fig. 5 below shows the power 

spectral density plot for the source boat sampled on channel 

#2 during passes (trials) #1-6.   

 

 
Fig. 5. Typical PSD for boat #1.  

 

In order to build the raw data matrix X described above as 

the input to the single value decomposition process, we 

gather the power spectrum vectors for each trial as recorded 

by each channel. These are the xn row vectors of Equation (2) 

above. After calculating the most dominant singular values 

(principal components) and using them to calculate the Xmod 

data array discussed above a simplified (reduced order) 

version of the data can be observed. As the left-hand panel of 

Fig. 6 below indicates, one of the trials has significantly more 

variance than the others. Additionally, the right-hand panel 

shows the Pareto plot of the singular values and indicates that 

the first 4 singular values should be retained to capture 95% 

of the variance in the data set, with the data in the remaining 

two trials being discarded as redundant, or having 

insignificant variance.   

 

 
Fig. 6. Selecting singular values to retain. 

 

While our goal is to develop a single feature vector that 

describes the subject boat, we must do so for each unique 

measurement channel due to the unique characteristics of 
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each sensor (spatial, temporal, spectral). We do this by 

averaging each channel’s set of feature vectors across all 

trials to yield a single vector for each channel. As Fig. 7 

below shows, the power spectrum of each unique channel 

indicates that the subject boat has characteristic frequency 

behaviors at approximately 25 and 50 Hz.  

 

 
Fig. 7. Modified and mean spectra for boat #1. 

 

To extend the validation of the conceptual method, the 

above process was also applied to signal data collected on a 

second day of the experiment where a completely different 

boat was provided by the U.S. Coast Guard to serve as a test 

subject. In this second case, a smaller boat (28ft long) with 

smaller (less horsepower) engines was used. The mean power 

spectrum (shown in Fig. 8 below) for boat #2 differs from 

that of boat #1 as would be expected. The lowest frequency 

resonance occurs at approximately 18 Hz for boat #2, vs. 

25Hz for boat #1. This may help us successfully differentiate 

between the two boats during the classification phase of the 

processing. 

 

 
Fig. 8. Comparison of boat power spectra. 

 

D. Data Processing Methodology Validation 

Now that we have derived a representative feature vector 

for a boat by averaging the power spectra per channel over all 

trials, we wish to validate the accuracy of this approach by 

using our feature vector to detect & classify the boat 

signature from among unknown input sample data. We can 

go back to our original experimental data set in which our 

infrasound array collected power data across multiple 

individual trials. Recall that this data includes not just our 

boat signal of interest but all of the in-band signatures from a 

variety of other sources. A software post-processing routine 

was created that takes the 30 second-long feature vector and 

steps it in 1-second increments across the entire 2-hour long 

data set. For each 30 second “window” the full set of input 

data (grouped by channel) is processed as described above to 

derive the mean power spectrum for that window. That vector 

is then compared in a least-squared-error sense to the boat 

feature vector to determine how alike the two are. (Note: 

Even though the boat feature vector was derived from the 

experimental data, it has been through several processing 

steps. The feature vector is only a representation of the boat 

signature, but we hope a reasonable one. As such we would 

not expect to find the exact feature vector within the 

experimental data, but we would hope to find reasonably 

close matches between the two that were coincident with our 

known ground truth data). 

 

   

 
Fig. 9. Boat #1 detection example. 

 

Fig. 9 above shows the raw data for channel #1 along with 

the ground truth overlaid with the red vertical lines. This 

represents where the test operator recorded an actual pass by 

our subject boat (signal of interest). The green vertical lines 

indicate observations of non-subject boats in the ground truth 

data. The lower plot in the figure shows the degree to which 

our analytically derived feature vector for the subject boat 

agrees with the data at a given point in time. Recall that the 

sample data was “windowed” into rolling 30-second 

segments for comparison. The elements numbered 1-6 in the 

plot represent the 6 known passes of the subject boat in 

outbound/inbound pairs (e.g., #1 is boat outbound, #2 is boat 

inbound). While the elements labeled A and B represent 

non-subject boat sources that registered significant levels of 

agreement with our feature vector. As the figure shows, the 

first cycle (#1 and #2) matched up very well with the ground 

truth indicating that the feature vector was significantly 

discriminated from the noise/interfering data within the 

sample for that point in time. Alternatively, cycle two (#3 and 

#4) did not register a significant detection by the algorithm. 

This is likely due to the low signal-to-noise ratio of the data 

for those samples. Comparing the raw data in the upper plot 

shows very little signal was recorded for cases #3 and #4 

while a stronger signal level was recorded for cases #1 and #2. 

Additionally, the third cycle (#5 and #6) showed reasonably 

large agreement levels but did not align exactly with the 

ground truth. In the case of the outbound response at element 

#5, the raw data shows a large response just before the ground 

truth that lines up with a registered response. It is likely in 

this case that the ground truth recorded was slightly in error, 

as a review of the ground truth log shows no activity for 
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approximately 8 minutes prior to the outbound boat signature 

of element #5. Two additional responses were registered 

between elements #5 & #6 that (according to the ground truth 

log) correspond to two unaffiliated boats passing through the 

test area. Similarly, elements A and B are attributed to boats 

unaffiliated with the test passing through the test area. In the 

case of element B, a large boat was reported in the area with 

loud engines. 

As an additional validation case we can examine the results 

of a similar experiment using the separately derived feature 

vector for boat #2 which was collected the day after boat #1. 

Recall that boat #2 was slightly smaller in size than boat #1 

and had a different engine configuration. Fig. 10 below 

shows the raw data for channel #1 along with the ground truth 

overlaid with the red vertical lines for boat #2 from the 

experiment. 

 

 
Fig. 10. Boat #2 detection example. 

 

As with the example presented earlier for subject boat #1 

the red vertical lines in the plot represent the entries in the 

ground truth log for the subject boat while the green lines 

represent other boats in the test area. While the data indicates 

two large responses were recorded at 27 and 30 minutes, the 

first pass of the subject boat (and thus the first ground truth 

log entry) was not made until approximately 40 minutes into 

the acquisition period. Only a very small response was 

registered for the outbound portion of the first cycle at 40 

minutes while a very large response was recorded for the 

inbound portion of the cycle at 45 minutes.  Cycle #2 at 49 

and 55 minutes did not yield significant responses for either 

the outbound or inbound cases. For cycle #3, the outbound 

case was logged in the ground truth at 57 minutes but a 

review of the raw data suggests the ground truth may be 

slightly in error, with the actual boat response appearing at 58 

minutes. The inbound response at 63 minutes was of similar 

size to the outbound.  

As an additional validation exercise, we generated a purely 

analytical version of an infrasound sensor output channel. 

This enables us to evaluate the capability of the detection 

algorithm without the difficulty/ambiguity introduced by the 

background noise and interfering signals from other signals 

“similar” to the subject boat. To generate this test signal, we 

first generated a random signal composed of 3 complex 

sinusoids of selectable amplitude and frequency (including a 

small random noise component). We next overlaid a 30 

second portion of this test signal with the subject boats 

feature vector developed in the earlier phase of the 

experiment. For clarity, the feature vector was inserted at the 

3-minute point in the data file which corresponds with the 

first pass of the subject boat according to the ground truth 

data. The test signal was evaluated as before using a sliding 

30-second window. At each window the spectrum of the test 

signal was compared to a mask derived from the boat feature 

vector. The algorithm then counts every frequency in which 

the test signal falls within the feature vector mask. The more 

frequencies in which the test signal lies between the upper 

and lower mask limits, the higher the correlation percentage. 

Fig. 11 below indicates that in an ideal situation the detection 

routine can identify the test boat with 100% certainty.  

 

 
Fig. 11. Detection algorithm validation example. 

 

 
Fig. 12. Feature vector detection “mask”. 
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In this example the “noise floor” of the data appears to be 

as high as 35% due to the fact that the test sample was not 

power-weighted versus frequency like the subject boat’s 

feature vector. As a result, the zero-mean overlay of the two 

signatures creates an erroneous lower bound for the 

correlation percentage. 

As Fig. 12 above shows, the detection mask captures the 

boat response fairly well when the feature vector is closely 

aligned with the known ground truth data and boat sample.  

E.   Alternate Detection/classification Methodology 

 Having developed and validated the feature vector 

detection mask discussed above, we next created a detection 

method that was simpler than the mean squared error based 

method used in the initial experiment. In the simplified 

method we count the percentage of each channel’s unique 

feature vector that falls within the upper and lower mask 

limits as the vectors are windowed across the entire data set. 

This method also allows us to select a detection threshold to 

vary the processing sensitivity. Fig. 13 below shows the 

results for subject boat #1 with a 75% detection threshold. As 

the plot indicates, the method yielded significant detections at 

3, 11 & 15 minutes and less significant detections at 6 and 30 

minutes. No detection was observed at 34 minutes. (Recall 

that the vertical red lines indicate the known ground truth for 

the subject boat). The 5 of 6 detection result in this data set 

would yield an 83% classification success rate. By contrast, 

obvious incorrect detections can be seen at 5, 9, 24, 26, 28 & 

29 minutes. In some cases, such as at 5 minutes the error 

corresponds to a known interfering boat signal. This case 

would be classified as a detection and classification error 

(false alarm). By contrast, there were numerous cases where 

the software correctly discriminated against interfering 

sources known to be in the data (green vertical lines) but did 

not register a detection (32-33, 36 & 39 minutes).   

 

    
Fig. 13. Variable “mask” detection method. 

 

As a final check of the processing algorithm, a feature 

vector was derived for an airplane that was recorded in the 

area of the sensor array during the experiment. This would 

allow us to contrast the boat data with a signature that should 

be “significantly” different. Fig. 14 below shows a 

comparison of the feature vector for the subject boat #1 and 

the airplane. As can be seen from the figure, while the boat 

has unique frequency characteristics at 25 & 50 Hz, the 

airplane has features at approximately 25, 50 and 75 Hz.  

 
Fig. 14. Feature vector comparison. 

 

We used the feature vector derived for the airplane as the 

mask and evaluated the data set as before. To the extent that 

the boat and airplane feature vectors are different, we would 

expect to see a reduced detection level for an unchanged 75% 

detection threshold used in the processing routine. Fig. 15 

below shows that the detection rate is significantly reduced 

(as compared to the result shown in Fig. 13 above) using the 

airplane feature vector as would be expected.  

 

 
Fig. 15. Detection level w/airplane feature vector. 

 

F. Discussion of Results 

Evaluation of the level of detection for the two different 

boats for which two unique feature vectors were developed 

indicates that there is not a clear discriminator between the 

two boat types for the method used. Additionally, the 

observations indicated that significant detection levels were 

observed when the subject boat was not within the 

experimental test area. A possible explanation for this finding 

is that the common infrasound signature between the two 

subject boats was not sufficiently discriminated. Similarly, 

since the two subject boats used a similar engine 

configuration to many personal pleasure craft, it is reasonable 

that many of the boats observed in the test area during the 

experiment were similar enough in their infrasound signature 

as to be in-discriminable using the method described herein.   

From a “detection” point of view, the method is robust at 

detecting a variety of boats and identifying them as such. 

However, as a classifier a higher fidelity discriminator is 

needed to discern one type of boat from another.  

 

IV. FUTURE WORK 

While this field experiment included SOIs from various 

sources (aircraft, boats, personal watercraft) only the 
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infrasound and seismic data from boats was analyzed for this 

paper. Additional work to characterize the SOIs of the other 

signal sources can be undertaken. Additionally, methods to 

improve the fidelity of the feature vectors used for 

classification can be investigated. For example, neural 

network based radial basis vectors may be able to more 

precisely model the boat response as compared to the power 

spectrum mean that was used herein.   

 

V.   CONCLUSION 

A field experiment has been conducted in which 

infrasound signals of interest were collected by an array of 

sensors. These data were then analyzed to determine a unique 

feature vector that described the boats characteristic signature. 

The use of single value decomposition to determine the 

signals principal components allowed us to determine a 

characteristic response. This was then used to validate the 

method by attempting to detect boat signatures in data 

samples from the same experimental collection from 

alternate channels, sensors and days. The detection aspect of 

the process worked very well as numerous boat signatures 

were observed and validated against known ground truth data. 

However the very presence of so many boats and interfering 

signals having signatures similar to our test boats made 

specific classification of one boat relative to another 

unsuccessful.  Further refinement of the feature vector and 

filtering methods may improve the classification results. 
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