

Abstract—This research study has utilized an experimental

design method to evaluate the impact of integrating process

work flows, personnel factors, and rework into a dynamic

software process simulation model and its implication for

software project managers to respond quickly and correctly to

changes that are occurring throughout the software

development process. The failure rate of software project has

remained high due to the failure to effectively manage the

dynamic risks that are present throughout the software process.

Current risk management methods, project estimation tools

and models in existence have not met the need for continuous

re-evaluation of projects as unexpected events occur. Many of

the unexpected project events can be quantified and

represented in a project plan and thus a simulation of the

software process can model the effects of those events on the

project outcome. The results of the study showed that extending

existing models as input to the software development process

and parameterizing the change factors and the project profile

within a simulation can provide estimation of the effects of

dynamic project changes on the outcome of software

development projects in terms of effort and completion time.

Index Terms—Estimation, simulation model, software

development process, software development project

management.

I. INTRODUCTION

Software projects are known for continuing to have a high

occurrence of failure despite the many standard estimation

tools, metrics, and risk management techniques that have

been developed [1]-[3]. One important factor that leads to

software failure is the difficulty in reacting appropriately to

unexpected changes in the project resources and schedule.

There is a need for a change management tool that can track

software project changes and predict the probable impact of

those dynamic changes on the schedule and budget. This

research study demonstrates how we can apply static

software estimation models in a software development

simulation model for quantitative software monitoring and

prediction of project outcomes based upon response

scenarios. This paper will first introduce the existing studies

that were used in developing the extended simulation model.

Next, the research problem, the methodology and the

application of the extended simulation model will be detailed.

Finally, the main contributions and future research areas will

be discussed.

Manuscript received July 23, 2015; revised October 15, 2015.

Allesha Fogle is with Harris Corporation in San Antonio, Texas 78250

USA (e-mail: alleshafogle@gmail.com).

Yanzhen Qu is with Colorado Technical University, Colorado Springs,

CO 80907 USA (e-mail: yqu@coloradotech.edu).

II. RELATED WORK

A risk factor, as it pertains to software engineering projects,

is defined by [4] as “A potential problem that, should it

become a real problem, will inhibit the ability to deliver

acceptable software elements for a software intensive system

on schedule and within the constraints of the monetary

budget and/or the technology budget.” Many risks have been

documented for software projects, and the effective

management of those risks is at the center of preventing

software failure. Ayad Ali [5] asserts that as a technology

advances and more of our software is being developed in web

and mobile environments, the complexity of these risks and

the challenges in risk management will evolve as well.

Management of project risk correlates to managing possible

project failure or loss; even when an unexpected risk arises

after the project is in implementation phase, effective

methods for responding to the problem can determine the

success or failure of the project [6].

Existing project estimation tools have been effective in

providing some sort of planning guideline at the beginning of

the project; however, the accuracy rates of those methods are

still quite low by the end of the project cycle. When using

modeling techniques that are derived based upon data

provided by a few hundred software projects, such as

Constructive Cost Model (COCOMO), the problem is not

with the estimation technique itself, but the fact that the tool

is not designed for real-time adjustments throughout the

project. Whenever a risk factor turns into a real problem

during the process of developing the software, a combination

of risk management and software estimation must take place

to counteract the challenges. A good risk management

process will ensure the risks with the greatest impact and

probability of occurring are identified as project status

changes [7], [8]. One way of incorporating risk and

estimation into a static method is through simulation of the

software development process. Below we will present some

of the most relevant and most recent existing theoretical

research that focuses on using simulation in software

estimation techniques.

A. Combining Static Models with Dynamic Simulation

Choi and Bae [9] used the system dynamics model to apply

the COCOMO II static probabilities to a theoretical military

software project. The authors used the iThink simulation

software to create the process model and run the simulation to

obtain the total effort results [9]. The study in [9] provides a

good baseline for combining static and dynamic estimation

methods; however, there are a few weaknesses in the study

that provide opportunity for improvement. One limitation is

An Extended Simulation Model for Managing Dynamic

Changes in Software Development Projects

Allesha Fogle and Yanzhen Qu

325

International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015

DOI: 10.7763/IJMO.2015.V5.483

the assumption that the software development methodology

is the waterfall method whereas many organizations are

shifting toward a more agile methodology to better

accommodate requirements changes. Another weakness of

the study is that its goal is limited to examining the effects of

requirements changes, but does not address other types of

dynamic events that commonly occur during the project. The

simulation input is mainly based on a percentage of

requirements creep in the project; however, it does not

address the impact of project changes at different stages of

the development process. The next study reviewed involves a

discrete event simulation.

B. Discrete Event Simulation in Software Process

Kouskouras and Georgiou [10] focus on modeling the

software development processes in detail and exploring how

scheduling and defect rates affect the delivery schedule.

Although this simulation model is very well designed, there

are several limitations in the study from [10]. One limitation

is the level of detail and strict procedures represented in the

model will not be representative of many other software

project processes. The procedures and resource entities used

in this model will not be applicable to a broad number of

software projects because of its rigidness. Also, this

simulation model mainly would apply to a large-scale

software project using the waterfall development process.

Although the simulation runs were able to show how

different project scenarios could affect total effort, its

usefulness could be improved by examining the impact of

other dynamic events and scenarios such as addition or loss

of personnel, non-project related interruptions to the software

team, requirements change, and complexity.

C. Software Process Simulation in Risk Management

Application of the system dynamics model to software risk

management could be a good method for addressing the need

for decision-making tools. Additional research needs to be

conducted to examine how simulations can be used in real

world risk management tools [11]. Mainly the visual

feedback of simulations was found to have a great bearing on

how useful the simulation was to the users in providing

valuable information to assist in recognizing the project

outcomes [12]. One example of such a simulation is

ProjScout developed in [13]. The author’s dynamic

simulation model demonstrates the impact of Brooks's law in

the software development process. The results of running the

simulation with feedback loops in the model show how

adding team members can impact the software development

effort in a number of ways. The paper shows that addition of

new team members can affect multiple factors such as

training overhead, communication, and learning curve [13].

We can make better project decisions when we visualize the

risks associated with both the software project itself and with

management decisions through simulation [14].

III. METHODOLOGY

A. Problem Statement

Existing software estimation tools do not model the impact

of dynamic changes that happen during the software

development process and thus fail to provide project

managers the information to fully assess the impact of these

changes as they occur.

Current tools do not represent the realities of the Software

Development Life Cycle (SDLC) and are not able to provide

a view of the project outcome based on current project status

and dynamic changes that occur. Root causes of project

failures or delays are not known until after the project has

been completed. There may be delayed feedback or no

feedback at all once the project has ended to indicate whether

the decisions made in response to those dynamic incidents

caused performance improvement or degradation. There is

little opportunity to improve upon existing decision-making

processes without that feedback [14], [15].

B. Hypothesis

If we extend existing software estimation models to

overcome weaknesses in analyzing the impact of dynamic

changes throughout the development process, we can provide

a tool to help software managers manage risks related to

unanticipated events that could cause software projects to

fail.

C. Research Problems

There were several objectives targeted in development of

the extended simulation model. One goal for a new model

was to encapsulate all of the small details that typically vary

from project to project inside of a larger more general

representation of the software process. Even though there are

many methodologies in practice, the differences are usually

in the amount of time spent in each of the main SDLC phases,

the number of artifacts produced, and the delivery schedule

[16]. All of these details can be represented numerically in

terms of project time and resources required and can

therefore be minimized to numerical or functional input

parameters for the simulation. If we wrap the varying process

details into higher-level processes, such as architecture

design or requirements development, the model can be

applied to both waterfall and agile types of projects. A

weakness noted in the earlier studies, e.g.[9] and [10], was

the absence of the consideration for other common dynamic

factors in the software project, such as addition of personnel

to the team. In order to include this factor in the study, we can

use the ProjScout model of Brooks’s Law that incorporates

the effects of personnel numbers on communication

overhead, training overhead and productivity [13]. This

model attempts to represent the impact of Brooks’s Law,

which states in [17], “adding manpower to a late software

project makes it later.” The model presented by [13] is not

detailed enough to account for sequential workflows that are

existent in most projects and does not embody the dynamics

of requirements creep, defect rates and personnel turnover.

However, prior studies addressed these dynamics and can be

combined with the ProjScout model to create a more

complete model that addresses some of the weaknesses in all

three of these research studies.

The simulation model presented in this study was designed

to represent changes during the software project, which will

in turn provide project managers with a useful tool for

326

International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015

effectively responding to the specific changes modeled in the

simulation. The model represents the following project

attributes in software projects that differ in size, team

dynamics, and methodologies:

1) Rework due to changes during any step of the SDLC

2) Addition or loss of personnel

3) Delays due to reduced productivity and dependencies

The next section reviews the steps designed to address the

issues listed above.

D. Extended Simulation Model

The chosen methodology for development of this extended

simulation model was to combine and extend where

necessary the major features of the models that were

presented as the basis for creating a model capable of

representing dynamic change. The features that were used

from previous studies include the components used for

modeling Personnel Factors and Software Defects shown in

the diagram of the high level overview of the model

components in Fig. 1. The new model extended the existing

models containing those components by adding an SDLC

component, rework feedback loops in every SDLC phase,

and dynamic model inputs that serve to address the

weaknesses that exist in those models.

Fig. 1. Factors impacting project outcome.

The starting point was a basic model of the SDLC with the

software size in function points as the primary input and the

total project effort as the primary simulation output. The

major components of the SDLC model were software

requirements, designed software, developed software, tested

software, and completed software. The major subcomponents

were connected in sequence to match the reality of the

software development process.

Next, the Personnel components from the model in [13]

were used to incorporate the impact of personnel on the

project process shown in Fig. 2. This component directly

impacts the rate of flow between each of the subcomponents

of the SDLC process, defined as productivity rate and,

therefore, the total project effort. The Software Defect

component from [10] shows the impact of software defects

on the flow through the SDLC process. A feedback loop

helps to model the way discovered defects would cause the

defective component to re-enter the development and testing

phases of the SDLC. This rework required due to software

defects will ultimately impact the project effort.

Adding feedback loops to the model to represent the

possible defects or missed elements in other process areas as

well extended the model. These feedbacks depicted in Fig. 3

demonstrate how it is possible that additional work may be

required in the process causing a flow of work back through

any previous SDLC sub-component.

The components discussed above work together in order to

meet the needs of the research. The SDLC component will

serve as a base model to show the general sequential flow of

work units through the development process. Some of the

initial inputs for the model include parameters indicating the

number and types of personnel resources, the defect rate, and

the size of the project in terms of a number of work units

expected for the project.

The personnel component from the ProjScout model is

able to model the impact of those personnel changes on

productivity [13]. That productivity rate controls how long it

takes for each work task to move from one phase in the

SDLC component to the next. The defect rate component

determines the percentage of implemented software that will

have to be reworked after passing through the testing phase.

Whenever rework is required, the work units will flow back

to a previous phase within the SDLC component instead of

moving the project forward toward completion [10]. The

feedback loops added to the model simulate how changes

causing rework will affect the directional flow of the work

through the process. The output of the model consists of both

a total effort and a completion time as a result of the initial

and dynamic model inputs.

E. Model Extensions

1) Personnel component

The personnel component was extended from the

ProjScout representation of Brooks’s Law to represent the

differences in productivity and learning time for developer

skill levels. This component helps to capture the real

differences in productivity between resources of different

experiences and skillsets.

Fig. 2. Personnel factors impacting SDLC process.

2) SDLC component

The process component of the model structure

encompasses the phases involved in the SDLC in order to

produce a completed software project. The importance of

using the SDLC model was to capture the sequential nature of

software development. Regardless of the number of

requirements to be met in the software, the same basic

process must occur to produce a finished product.

3) Defect component

The design and implementation defects have the effect of

rerouting the functions back to a previous process step. The

model was designed to route all defects to either the

Requirements level, which indicates a design defect, or the

327

International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015

design Software level, which would indicate an

implementation defect.

Fig. 3. Introduction of defects and rework in SDL.

IV. IMPLEMENTATION

A. Personnel Component

The Personnel extension added the ability to estimate

process flow based on team experience and skill levels. There

were several factors to consider when deriving the

productivity rate for each of the skill levels represented:

1) Skill level

Each resource was categorized into one of three skill levels:

junior, mid-level, and senior. For the purpose of the model,

junior level developers are considered to have the least

amount of experience and education in software development

and senior developers are considered to have the highest

amount of experience and education in software development.

Mid-level developers were considered to have a combination

of education and experience that is higher than a junior

developer and less than a senior developer.

Experienced
JUNIOR SW
Developers

New JUNIOR

SW Developers

JUNIOR

allocation rate

JUNIOR

assimilation rate

JUNIOR

individual

learning time

Experienced
SENIOR SW
Developers

SENIOR
allocation

rate

SENIOR
individual learning

time

total personnel
communication paths

communication

overhead

entropy factor

training effort

time allocated for

training
trainers

training investment

Experienced
MID SW

Developers

New MID SW

Developers

MID allocation

rate

MID assimilation

rate

MID individual

learning time

New SENIOR

SW Developers
SENIOR

assimilation rate

Avg JUNIOR Productivity Avg MID Productivity Avg SENIOR Productivity

New JUNIOR productivity Experience JUNIOR productivity New MID Productivity Experienced MID Productivity
New SENIOR Productivity Experienced SENIOR Productivity

Total JUNIOR

Developers
Total MID Developers

Total SENIOR

Developers

SENIOR

alloc/attrition rateMID

allocation/attrition rate

JUNIOR

allocation/attrition

Fig. 4. Personnel component model structure.

2) Project/domain experience

A determination was made of whether the resource was

new to the project with no prior domain knowledge or

experienced in the domain and familiar with the project. Each

development resource was classified as either “New” or

“Experienced” to differentiate between those developers with

project experience and those without experience.

3) Relative productivity

The relative productivity was the percentage of increase or

decrease in what was considered nominal productivity based

on both the skill level and the project and domain experience

level. Nominal productivity was considered to be the number

of functions developed, designed, or tested per hour for

mid-level developers. Junior and senior productivity

multipliers were used to adjust productivity to match the skill

level and the project experience level of the developer.

The model structure for the personnel component is

displayed in Fig. 4 and includes a standard communication

overhead, which will reduce the overall productivity rates.

An average productivity equation was derived for each

skill level based on the fraction of “New” versus

“Experienced” resources available. The equations used to

calculate average mid-level productivity are shown in (1),

(2), and (3) Each of the average productivity rates was

calculated using the same formula and were dynamic based

upon the number of developers working on a set of tasks for

each phase.

NominalProductivity = 0.0125 (1)

NewMIDProductivity = 0.8 * NominalProductivity (2)

ExperiencedMIDProductivity =1.2*NominalProductivity (3)

The initial requirements for the project begin as a set of

functions in the Requirements level and the design,

implementation, and testing rates determine how quickly the

functions flow from the Requirements level to the Completed

328

International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015

Software level. For the purpose of this research, the model

structure uses levels as the backlog of functions waiting to be

processed either in the design, implementation or testing

phase and rates to define the amount of time for each function

to flow from one phase to the next. The output productivities

from the personnel component are used to drive the rates in

the SDLC process component. In cases where there are

multiple teams working on separate project components, an

additional process is utilized for integration testing as well as

the resolution of defects discovered during integration

testing.

The primary consideration for calculating the rates of flow

was the distribution of resources among each phase. Since

the productivity is already known, the percentage of each

skill and experience level available for work on each phase

was needed for the rate calculations. For the design rate, only

senior developers would perform work, however, for the

implementation and testing rate, all available developers

would be available to perform work. Since the goal of this

research was not to determine optimal work distribution, a

simple method of matching resource distribution to workload

was used. For example, if 50% of the functions were in the

Designed Software level waiting to be implemented, then

50% of the resources available for implementation were

assigned to complete the work. For senior developers, the

workload percentage was calculated among all three phases,

but for mid-level and junior developers, the percentage was

calculated among only the implementation and testing phases

since they would not be performing any design work. Also,

since senior developers must spend a fraction of their time in

training if there are any new developers, the training effort

must be subtracted from the senior developers’ availability.

Equations (4) and (5) demonstrate how the design and

implementation rates were calculated within the modeling

tool. In those equations, the function ZIDZ (numerator,

denominator) returns numerator/denominator OR returns

zero if the denominator is zero.

 (4)

 (5)

Note: The function ZIDZ (numerator, denominator)

returns numerator/denominator OR returns zero if the

denominator is zero.

Representing projects with multiple teams working in

parallel involved the addition of integration testing process

components. An input parameter to indicate the number of

functions that need to be integration tested as well as an

additional process flow specifically for integration testing

was designed. The integration flow process is similar to the

SDLC process presented previously, however, in this study

the resources available for integration testing and debugging

only include senior developers from each team. Unlike the

normal SDLC process, the integration testing process does

not begin until all team project components have been fully

designed, developed and tested independently of each other.

The integration test rate flow controls when the integration

testing begins and during integration testing, the defects flow

back through the normal SDLC process for resolution.

B. Defect Component

The probability of defects occurring is controlled by the

Defect Fraction parameter. The model was designed to route

all defects to either the Requirements level, which indicates a

model is either a design defect or an implementation defect,

an increase in the fraction of design defects corresponds to a

decrease in the fraction of implementation defects.

C. Project Changes

Once the baseline estimate was established, the changes in

resources and productivity were simulated in the model using

parameters for the change to be applied and the actual time at

which to apply the change. For this study, resource and

productivity changes were applied at three distinct times in

the simulation in order to show how the effort and

completion time would vary based upon whether the change

was made early, in the middle, or late in the project. For early,

middle, and late changes, the change was applied when 25%,

50%, and 75% of the original estimated time for the project

elapsed respectively. For project scenarios that involve

multiple teams, the changes were applied to Team One

workflows only.

The changes in defect rate were applied by modifying the

overall fraction of functions that were found to be defective.

Additionally, the defects were categorized as either

implementation defects or design defects. Changes to the

ratio of design defects to implementation defects were

simulated as well.

D. Model Outputs

The specific project outputs that were captured during the

simulation were project effort and total project completion

time as:

Project Completion Time: Total number of hours for the

design, implementation and successful testing of software

project.

Project Effort: The total person-hours used for design,

implementation and testing to deliver a fully implemented

software project.

The status of the tasks remaining within the SDLC and

Integration components enable calculation of the total project

completion time. A model variable was set up to capture the

number tasks in the Requirements, Designed Software, and

Implemented Software level for the SDLC component for

each team as well as those same levels in addition to the

Integration Requirements level within the Integration

component. This data was used to determine when the total

tasks remaining to be executed are equal to zero at which

time the project can be deemed completed.

329

International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015

The model was designed to accumulate project effort as

long as the design rate, development rate, testing rate, or

integration testing rate was non-zero since a non-zero rate

indicated that the work was being completed by resources for

the project. Effort for all personnel resources was considered

to be equivalent regardless of skill level. The effort equation

for project effort at any given time was calculated as the

summation of the rates of flow between each of the phases.

The total effort was determined by observing the maximum

effort, which occurred at the project completion time.

V. APPLICATIONS

To demonstrate how this model can be used to help

manage a software project, we present one of the scenarios

used in testing the model. We will use P1 to represent a

project scenario of creating a single deliverable software

component consisting of three major functional requirements

by a single small team. The resources initially available for

the project and their skill levels are documented in Table I.

The total effort and completion time for this project are used

as the baseline estimates that would be produced prior to

starting project development.

TABLE I: PROJECT P1 PROFILE

Input Parameter Baseline value

Initial Requirements (functions) 3

Experienced Mid-level (person) 2

Experienced Senior (person) 1

Nominal Productivity (function/(person*Hour) 0.0125

Design Defect Fraction 0.15

Overall Defect Fraction 0.15

Total Effort (PERSON-HOUR) 673

Total Time to Complete (HOURS) 225

If we assume that the software project manager has just

received a letter of resignation from one of his senior

developers with about 50% of the project requirements

completed. This manager needs to know what the impact will

be on the project timeline. Based on the model presented here,

such an estimated impact can be made through simulating the

scenario within the model.

We can simulate a resource loss change at 50%

requirements completion and observe the estimated impact

on the total project completion time. Based on whether that

projected impact is acceptable to the stakeholders, the project

manager can make an informed decision to make no resource

additions to the team or to add additional resources to

maintain the original project timeline. If additional resources

should be added, the project manager can use the model to

simulate the addition of resources so that the impact on the

project completion time can be estimated. The simulation

results can help determine whether resource additions are

likely to decrease the project completion time.

The completion time results showed that when positive

resource and productivity changes are applied earlier in the

project, the completion time is shorter than when those same

changes are made late in the project. For this small project

scenario, the addition of resources reduced the completion

time from a baseline of 225 hours to 206 hours. Conversely,

the loss of resources led to a longer completion time of 279

hours.

VI. CONCLUSIONS

In this research study we have made two contributions to

the field. First we have provided an extended simulation

model used for change tolerant software project management

related parameters estimation. Secondly we have also

developed a simulation model implementation of the

extended simulation model capable of estimating the impact

of unforeseen changes and decisions for projects of different

sizes, team dynamics, and methodologies.

The model from [13] was a basis for the personnel

component by adding dynamic addition/loss of personnel as

well as adding representation of different skill levels and

average productivity. The component provided a

productivity rate to the model as well as staff availability.

Both productivity and availability have a direct impact on the

project progress rate. The SDLC component combined with

the personnel components controls the speed and direction of

flow of work through the project completion. The SDLC

component enabled application of the basic rules of

sequential workflow to the model including any

dependencies between SDLC phases. The combination of

components allowed the application of work distribution and

resource availability to the model for each team involved in

the simulation. The model from [10] provided basis for

simulating the effect of defects on the flow of work through

the process. The feedback loops enabled representation of the

effects of design and implementation defects on the project

outcome within the SDLC and Integration testing process.

The integration component accounted for the necessity for

integration testing when some requirements rely on

components from multiple teams to be completed. Team

dependencies could be represented and demonstrated by

using the primary SDLC output from each team and the

number of integration testing requirements as inputs to the

integration component.

The results presented in this paper show that in comparison

to existing estimation techniques and simulation models, the

extended simulation model presents a unique advantage of

allowing the impact the aforementioned dynamic changes to

be estimated in both waterfall and agile processes. The

previous works were not designed to handle all of these types

of changes within the context of a general SDLC model. The

focus of this paper was extending the existing modeling

techniques and demonstrating a technique that could capture

and accept dynamic project change input for software

estimation. The next section will outline a few of the

improvements and extensions that can further enhance the

extended simulation model presented in this paper.

VII. FUTURE WORKS

Many project changes were not specifically addressed in

330

International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015

the model. Some of these include the addition of brand new

requirements, workload distribution for the project, and

dedication of individual resources to multiple projects.

Although these types of changes can be built into some

element of the model parameters, there was no specific

examination of how each of these elements impacts the

project outcome. A future study could examine how changes

in these areas will impact the project effort and completion

time.

Another important area for development would be to test

the validity of this model in terms of how closely it would be

able to model real project scenarios. Estimations are

inaccurate by nature, but running the same tests using real

project data and comparing the estimate with the actual

project outcome could help to discover ways to calibrate the

model for future application.

The extension and calibration of the model to

accommodate additional changes and more closely estimate

the outcome of real projects clearly creates the potential for

development of a usable software estimation tool to be used

in practice. A programmatic implementation of the extended

simulation model would be much more flexible in terms of

the number of changes that can be accommodated and would

eliminate the limitations of using simulation modeling tools

alone. There are a number of project management tools

available on the market that could provide the project data

that would drive an estimation tool based on the

change-tolerant extended simulation model. Creating a

product that could employ the extended simulation model

combined with existing management tools would be a

significant contribution to the software engineering and

software development project management field.

REFERENCES

[1] P. G. Armour, "Twenty percent," Communications of the ACM, vol. 50,

pp. 21-23, June 2007.

[2] K. E. Emam and A. G. Koru, "A replicated survey of IT software

project failures," IEEE Software, vol. 25, pp. 84-90,

September/October 2008.

[3] R. L. Glass, "IT failure rates 70 percent or 10-15 percent?" IEEE

Software, vol. 22, pp.112, 110-111, May/June 2005.

[4] R. E. Fairley and I. C. Society, Managing and Leading Software

Projects, Hoboken, NJ: Wiley, 2009.

[5] A. A. Keshlaf, "Risk management for web and distributed software

development projects," in Proc. the Fifth International Conference on

Internet Monitoring and Protection, 2010, pp. 22-28, Barcelona, Spain.

[6] H. Stefan, M. Aust, M. Schermann, and H. Krcmar, "Comparing risks

in individual software development and standard software

implementation projects: A delphi study," in Proc. the Hawaii

International Conference on System Sciences, 2012, pp. 4884-4893,

Hawaii.

[7] D. W. Hubbard, How to Measure Anything: Finding the Value of

Intangibles in Business, Hoboken, NJ: John Wiley & Sons, 2010.

[8] R. E. Fairley, Risk Management for Software Projects, 2008.

[9] K. Choi and D. H. Bae, "Dynamic project performance estimation by

combining static estimation models with system dynamics,"

Information and Software Technology, vol. 51, pp. 162-172, 2009.

[10] K. G. Kouskouras and A. C. Georgiou, "A discrete event simulation

model in the case of managing a software project," European Journal

of Operational Research, vol. 181, pp. 374-389, 2007.

[11] D. Liu, Q. Wang, and J. Xiao, "The role of software process simulation

modeling in software risk management: A systematic review," in Proc.

the International Symposium on Empirical Software Engineering and

Measurement, Lake Buena Vista, Florida, 2009.

[12] R. Agarwal, "Software development process animation," Association

of Computing and Machinery Southeast Regional Conference,

Kennesaw, Georgia, 2011.

[13] D. G. Chernoguz, "The system dynamics of Brooks' Law in team

production," Simulation, vol. 87, pp. 947-975, January 2011.

[14] C. Mizell and L. Malone, "A project management approach to using

simulation for cost estimation on large, complex software development

projects," Engineering Management Journal, vol. 19, pp. 28-34,

December 2007.

[15] G. Lee and W. Xia, "Toward agile: An integrated analysis of

quantaitative and qualitative field data on software development

agility," MIS Quarterly, vol. 34, pp. 87-114, March 2010.

[16] A. Cockburn, Agile Software Development: The Cooperative Game,

Boston, MA: Addison-Wesley, 2007.

[17] F. P. Brooks, The Mythical Man-Month: Essays on Software

Engineering, Crawfordsville, Indiana: Addison-Wesley Pub, Co.,

1995.

Allesha Fogle currently is a software engineer

working as a consultant for Harris Corporation in San

Antonio, Texas, USA. She has over eleven years of

experience in software engineering and has

involvement in planning, architecting, designing and

implementing software solutions in a variety of

application domains including asset tracking, financial

marketing and the medical field. Her primary research

interest is in software development process

improvement using process modeling and simulation

tools. She received her Bachelor of Science degree in Mathematics from Fort

Valley State University, USA in 2001; Bachelor of Science in Computer

Engineering from Georgia Institute of Technology, USA in 2004; Master of

Science in Software Engineering from Mercer University in Macon, USA in

2009, and Doctor of Computer Science from Colorado Technical University,

USA in 2014. Dr. Fogle is a member of IEEE and ACM.

Yanzhen Qu currently is the university dean of

College of Computer Science and Technology, and

professor in computer science and information

technology at Colorado Technical University, USA.

He received his B.Eng. in electronic engineering from

Anhui University, China, M. Eng. in electrical

engineering from the Science Academy of China, and

Ph.D. in computer science from Concordia University,

Canada. Over his industrial career characterized by

many the world first innovations, he has served at

various senior or executive level Product R&D and IT management positions

at several multinational corporations. He was also the chief system architect

and the development director of several world first very large real-time

commercial software systems. At Colorado Technical University, Dr. Qu is

the dissertation supervisor of many computer science doctoral students, and

his recent research interests include cloud computing, cyber security, data

engineering, software engineering process and methods, data mining over

non-structured data, affective computing, artificial intelligence, scalable

enterprise information management system, big data analytics as well as

embedded and mobile computing. He served as general/program/session

chair or keynote speaker in various professional conferences or workshops.

He is also a visiting professor of over twenty universities. He has published

many research papers in the peer reviewed conferences and professional

journals, and is currently serving as a member of editorial board of several

professional journals. He is a senior member of IEEE and IACSIT.

331

International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015

