
  

 

 

Abstract—This research study has utilized an experimental 

design method to evaluate the impact of integrating process 

work flows, personnel factors, and rework into a dynamic 

software process simulation model and its implication for 

software project managers to respond quickly and correctly to 

changes that are occurring throughout the software 

development process. The failure rate of software project has 

remained high due to the failure to effectively manage the 

dynamic risks that are present throughout the software process. 

Current risk management methods, project estimation tools 

and models in existence have not met the need for continuous 

re-evaluation of projects as unexpected events occur. Many of 

the unexpected project events can be quantified and 

represented in a project plan and thus a simulation of the 

software process can model the effects of those events on the 

project outcome. The results of the study showed that extending 

existing models as input to the software development process 

and parameterizing the change factors and the project profile 

within a simulation can provide estimation of the effects of 

dynamic project changes on the outcome of software 

development projects in terms of effort and completion time. 

 
Index Terms—Estimation, simulation model, software 

development process, software development project 

management. 

 

I. INTRODUCTION 

Software projects are known for continuing to have a high 

occurrence of failure despite the many standard estimation 

tools, metrics, and risk management techniques that have 

been developed [1]-[3]. One important factor that leads to 

software failure is the difficulty in reacting appropriately to 

unexpected changes in the project resources and schedule. 

There is a need for a change management tool that can track 

software project changes and predict the probable impact of 

those dynamic changes on the schedule and budget.  This 

research study demonstrates how we can apply static 

software estimation models in a software development 

simulation model for quantitative software monitoring and 

prediction of project outcomes based upon response 

scenarios. This paper will first introduce the existing studies 

that were used in developing the extended simulation model. 

Next, the research problem, the methodology and the 

application of the extended simulation model will be detailed. 

Finally, the main contributions and future research areas will 

be discussed. 
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II. RELATED WORK 

A risk factor, as it pertains to software engineering projects, 

is defined by [4] as “A potential problem that, should it 

become a real problem, will inhibit the ability to deliver 

acceptable software elements for a software intensive system 

on schedule and within the constraints of the monetary 

budget and/or the technology budget.” Many risks have been 

documented for software projects, and the effective 

management of those risks is at the center of preventing 

software failure. Ayad Ali [5] asserts that as a technology 

advances and more of our software is being developed in web 

and mobile environments, the complexity of these risks and 

the challenges in risk management will evolve as well. 

Management of project risk correlates to managing possible 

project failure or loss; even when an unexpected risk arises 

after the project is in implementation phase, effective 

methods for responding to the problem can determine the 

success or failure of the project [6].  

Existing project estimation tools have been effective in 

providing some sort of planning guideline at the beginning of 

the project; however, the accuracy rates of those methods are 

still quite low by the end of the project cycle. When using 

modeling techniques that are derived based upon data 

provided by a few hundred software projects, such as 

Constructive Cost Model (COCOMO), the problem is not 

with the estimation technique itself, but the fact that the tool 

is not designed for real-time adjustments throughout the 

project.  Whenever a risk factor turns into a real problem 

during the process of developing the software, a combination 

of risk management and software estimation must take place 

to counteract the challenges. A good risk management 

process will ensure the risks with the greatest impact and 

probability of occurring are identified as project status 

changes [7], [8]. One way of incorporating risk and 

estimation into a static method is through simulation of the 

software development process. Below we will present some 

of the most relevant and most recent existing theoretical 

research that focuses on using simulation in software 

estimation techniques. 

A. Combining Static Models with Dynamic Simulation 

Choi and Bae [9] used the system dynamics model to apply 

the COCOMO II static probabilities to a theoretical military 

software project. The authors used the iThink simulation 

software to create the process model and run the simulation to 

obtain the total effort results [9]. The study in [9] provides a 

good baseline for combining static and dynamic estimation 

methods; however, there are a few weaknesses in the study 

that provide opportunity for improvement. One limitation is 
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the assumption that the software development methodology 

is the waterfall method whereas many organizations are 

shifting toward a more agile methodology to better 

accommodate requirements changes. Another weakness of 

the study is that its goal is limited to examining the effects of 

requirements changes, but does not address other types of 

dynamic events that commonly occur during the project. The 

simulation input is mainly based on a percentage of 

requirements creep in the project; however, it does not 

address the impact of project changes at different stages of 

the development process. The next study reviewed involves a 

discrete event simulation.  

B. Discrete Event Simulation in Software Process 

Kouskouras and Georgiou [10] focus on modeling the 

software development processes in detail and exploring how 

scheduling and defect rates affect the delivery schedule. 

Although this simulation model is very well designed, there 

are several limitations in the study from [10]. One limitation 

is the level of detail and strict procedures represented in the 

model will not be representative of many other software 

project processes. The procedures and resource entities used 

in this model will not be applicable to a broad number of 

software projects because of its rigidness. Also, this 

simulation model mainly would apply to a large-scale 

software project using the waterfall development process. 

Although the simulation runs were able to show how 

different project scenarios could affect total effort, its 

usefulness could be improved by examining the impact of 

other dynamic events and scenarios such as addition or loss 

of personnel, non-project related interruptions to the software 

team, requirements change, and complexity.  

C. Software Process Simulation in Risk Management  

Application of the system dynamics model to software risk 

management could be a good method for addressing the need 

for decision-making tools. Additional research needs to be 

conducted to examine how simulations can be used in real 

world risk management tools [11]. Mainly the visual 

feedback of simulations was found to have a great bearing on 

how useful the simulation was to the users in providing 

valuable information to assist in recognizing the project 

outcomes [12]. One example of such a simulation is 

ProjScout developed in [13]. The author’s dynamic 

simulation model demonstrates the impact of Brooks's law in 

the software development process. The results of running the 

simulation with feedback loops in the model show how 

adding team members can impact the software development 

effort in a number of ways. The paper shows that addition of 

new team members can affect multiple factors such as 

training overhead, communication, and learning curve [13]. 

We can make better project decisions when we visualize the 

risks associated with both the software project itself and with 

management decisions through simulation [14].  

 

III. METHODOLOGY  

A. Problem Statement  

Existing software estimation tools do not model the impact 

of dynamic changes that happen during the software 

development process and thus fail to provide project 

managers the information to fully assess the impact of these 

changes as they occur.  

Current tools do not represent the realities of the Software 

Development Life Cycle (SDLC) and are not able to provide 

a view of the project outcome based on current project status 

and dynamic changes that occur. Root causes of project 

failures or delays are not known until after the project has 

been completed. There may be delayed feedback or no 

feedback at all once the project has ended to indicate whether 

the decisions made in response to those dynamic incidents 

caused performance improvement or degradation. There is 

little opportunity to improve upon existing decision-making 

processes without that feedback [14], [15].  

B. Hypothesis  

If we extend existing software estimation models to 

overcome weaknesses in analyzing the impact of dynamic 

changes throughout the development process, we can provide 

a tool to help software managers manage risks related to 

unanticipated events that could cause software projects to 

fail.  

C. Research Problems  

There were several objectives targeted in development of 

the extended simulation model. One goal for a new model 

was to encapsulate all of the small details that typically vary 

from project to project inside of a larger more general 

representation of the software process. Even though there are 

many methodologies in practice, the differences are usually 

in the amount of time spent in each of the main SDLC phases, 

the number of artifacts produced, and the delivery schedule 

[16]. All of these details can be represented numerically in 

terms of project time and resources required and can 

therefore be minimized to numerical or functional input 

parameters for the simulation. If we wrap the varying process 

details into higher-level processes, such as architecture 

design or requirements development, the model can be 

applied to both waterfall and agile types of projects. A 

weakness noted in the earlier studies, e.g.[9] and [10], was 

the absence of the consideration for other common dynamic 

factors in the software project, such as addition of personnel 

to the team. In order to include this factor in the study, we can 

use the ProjScout model of Brooks’s Law that incorporates 

the effects of personnel numbers on communication 

overhead, training overhead and productivity [13]. This 

model attempts to represent the impact of Brooks’s Law, 

which states in [17], “adding manpower to a late software 

project makes it later.” The model presented by [13] is not 

detailed enough to account for sequential workflows that are 

existent in most projects and does not embody the dynamics 

of requirements creep, defect rates and personnel turnover. 

However, prior studies addressed these dynamics and can be 

combined with the ProjScout model to create a more 

complete model that addresses some of the weaknesses in all 

three of these research studies.  

The simulation model presented in this study was designed 

to represent changes during the software project, which will 

in turn provide project managers with a useful tool for 
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effectively responding to the specific changes modeled in the 

simulation. The model represents the following project 

attributes in software projects that differ in size, team 

dynamics, and methodologies:  

1) Rework due to changes during any step of the SDLC  

2) Addition or loss of personnel  

3) Delays due to reduced productivity and dependencies  

The next section reviews the steps designed to address the 

issues listed above.  

D. Extended Simulation Model  

The chosen methodology for development of this extended 

simulation model was to combine and extend where 

necessary the major features of the models that were 

presented as the basis for creating a model capable of 

representing dynamic change. The features that were used 

from previous studies include the components used for 

modeling Personnel Factors and Software Defects shown in 

the diagram of the high level overview of the model 

components in Fig. 1. The new model extended the existing 

models containing those components by adding an SDLC 

component, rework feedback loops in every SDLC phase, 

and dynamic model inputs that serve to address the 

weaknesses that exist in those models.  

 

 
Fig. 1. Factors impacting project outcome. 

 

The starting point was a basic model of the SDLC with the 

software size in function points as the primary input and the 

total project effort as the primary simulation output. The 

major components of the SDLC model were software 

requirements, designed software, developed software, tested 

software, and completed software. The major subcomponents 

were connected in sequence to match the reality of the 

software development process.  

Next, the Personnel components from the model in [13] 

were used to incorporate the impact of personnel on the 

project process shown in Fig. 2. This component directly 

impacts the rate of flow between each of the subcomponents 

of the SDLC process, defined as productivity rate and, 

therefore, the total project effort. The Software Defect 

component from [10] shows the impact of software defects 

on the flow through the SDLC process. A feedback loop 

helps to model the way discovered defects would cause the 

defective component to re-enter the development and testing 

phases of the SDLC. This rework required due to software 

defects will ultimately impact the project effort.  

Adding feedback loops to the model to represent the 

possible defects or missed elements in other process areas as 

well extended the model. These feedbacks depicted in Fig. 3 

demonstrate how it is possible that additional work may be 

required in the process causing a flow of work back through 

any previous SDLC sub-component.  

The components discussed above work together in order to 

meet the needs of the research. The SDLC component will 

serve as a base model to show the general sequential flow of 

work units through the development process. Some of the 

initial inputs for the model include parameters indicating the 

number and types of personnel resources, the defect rate, and 

the size of the project in terms of a number of work units 

expected for the project.  

The personnel component from the ProjScout model is 

able to model the impact of those personnel changes on 

productivity [13]. That productivity rate controls how long it 

takes for each work task to move from one phase in the 

SDLC component to the next. The defect rate component 

determines the percentage of implemented software that will 

have to be reworked after passing through the testing phase.  

Whenever rework is required, the work units will flow back 

to a previous phase within the SDLC component instead of 

moving the project forward toward completion [10]. The 

feedback loops added to the model simulate how changes 

causing rework will affect the directional flow of the work 

through the process. The output of the model consists of both 

a total effort and a completion time as a result of the initial 

and dynamic model inputs.  

E. Model Extensions 

1) Personnel component 

The personnel component was extended from the 

ProjScout representation of Brooks’s Law to represent the 

differences in productivity and learning time for developer 

skill levels. This component helps to capture the real 

differences in productivity between resources of different 

experiences and skillsets. 

 

 
Fig. 2. Personnel factors impacting SDLC process. 

 

2) SDLC component 

The process component of the model structure 

encompasses the phases involved in the SDLC in order to 

produce a completed software project. The importance of 

using the SDLC model was to capture the sequential nature of 

software development. Regardless of the number of 

requirements to be met in the software, the same basic 

process must occur to produce a finished product.  

3) Defect component 

The design and implementation defects have the effect of 

rerouting the functions back to a previous process step. The 

model was designed to route all defects to either the 

Requirements level, which indicates a design defect, or the 
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design Software level, which would indicate an 

implementation defect.  

 
Fig. 3. Introduction of defects and rework in SDL. 

 

IV. IMPLEMENTATION 

A. Personnel Component 

The Personnel extension added the ability to estimate 

process flow based on team experience and skill levels. There 

were several factors to consider when deriving the 

productivity rate for each of the skill levels represented: 

1) Skill level 

Each resource was categorized into one of three skill levels: 

junior, mid-level, and senior. For the purpose of the model, 

junior level developers are considered to have the least 

amount of experience and education in software development 

and senior developers are considered to have the highest 

amount of experience and education in software development. 

Mid-level developers were considered to have a combination 

of education and experience that is higher than a junior 

developer and less than a senior developer. 
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Fig. 4. Personnel component model structure. 

 

2) Project/domain experience 

A determination was made of whether the resource was 

new to the project with no prior domain knowledge or 

experienced in the domain and familiar with the project. Each 

development resource was classified as either “New” or 

“Experienced” to differentiate between those developers with 

project experience and those without experience. 

3) Relative productivity 

The relative productivity was the percentage of increase or 

decrease in what was considered nominal productivity based 

on both the skill level and the project and domain experience 

level. Nominal productivity was considered to be the number 

of functions developed, designed, or tested per hour for 

mid-level developers. Junior and senior productivity 

multipliers were used to adjust productivity to match the skill 

level and the project experience level of the developer. 

The model structure for the personnel component is 

displayed in Fig. 4 and includes a standard communication 

overhead, which will reduce the overall productivity rates. 

An average productivity equation was derived for each 

skill level based on the fraction of “New” versus 

“Experienced” resources available. The equations used to 

calculate average mid-level productivity  are shown in (1), 

(2), and (3)  Each of the average productivity rates was 

calculated using the same formula and were dynamic based 

upon the number of developers working on a set of tasks for 

each phase.  
  

NominalProductivity = 0.0125                           (1) 

 

NewMIDProductivity = 0.8 * NominalProductivity        (2) 

 

ExperiencedMIDProductivity =1.2*NominalProductivity   (3) 

The initial requirements for the project begin as a set of 

functions in the Requirements level and the design, 

implementation, and testing rates determine how quickly the 

functions flow from the Requirements level to the Completed 
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Software level. For the purpose of this research, the model 

structure uses levels as the backlog of functions waiting to be 

processed either in the design, implementation or testing 

phase and rates to define the amount of time for each function 

to flow from one phase to the next. The output productivities 

from the personnel component are used to drive the rates in 

the SDLC process component. In cases where there are 

multiple teams working on separate project components, an 

additional process is utilized for integration testing as well as 

the resolution of defects discovered during integration 

testing.   

The primary consideration for calculating the rates of flow 

was the distribution of resources among each phase. Since 

the productivity is already known, the percentage of each 

skill and experience level available for work on each phase 

was needed for the rate calculations. For the design rate, only 

senior developers would perform work, however, for the 

implementation and testing rate, all available developers 

would be available to perform work. Since the goal of this 

research was not to determine optimal work distribution, a 

simple method of matching resource distribution to workload 

was used. For example, if 50% of the functions were in the 

Designed Software level waiting to be implemented, then 

50% of the resources available for implementation were 

assigned to complete the work. For senior developers, the 

workload percentage was calculated among all three phases, 

but for mid-level and junior developers, the percentage was 

calculated among only the implementation and testing phases 

since they would not be performing any design work. Also, 

since senior developers must spend a fraction of their time in 

training if there are any new developers, the training effort 

must be subtracted from the senior developers’ availability. 

Equations (4) and (5) demonstrate how the design and 

implementation rates were calculated within the modeling 

tool. In those equations, the function ZIDZ (numerator, 

denominator) returns numerator/denominator OR returns 

zero if the denominator is zero. 

 

   (4)  

    (5)  

 

Note: The function ZIDZ (numerator, denominator) 

returns numerator/denominator OR returns zero if the 

denominator is zero. 

Representing projects with multiple teams working in 

parallel involved the addition of integration testing process 

components. An input parameter to indicate the number of 

functions that need to be integration tested as well as an 

additional process flow specifically for integration testing 

was designed. The integration flow process is similar to the 

SDLC process presented previously, however, in this study 

the resources available for integration testing and debugging 

only include senior developers from each team. Unlike the 

normal SDLC process, the integration testing process does 

not begin until all team project components have been fully 

designed, developed and tested independently of each other.  

The integration test rate flow controls when the integration 

testing begins and during integration testing, the defects flow 

back through the normal SDLC process for resolution. 

B. Defect Component 

The probability of defects occurring is controlled by the 

Defect Fraction parameter.  The model was designed to route 

all defects to either the Requirements level, which indicates a 

model is either a design defect or an implementation defect, 

an increase in the fraction of design defects corresponds to a 

decrease in the fraction of implementation defects. 

C. Project Changes 

Once the baseline estimate was established, the changes in 

resources and productivity were simulated in the model using 

parameters for the change to be applied and the actual time at 

which to apply the change. For this study, resource and 

productivity changes were applied at three distinct times in 

the simulation in order to show how the effort and 

completion time would vary based upon whether the change 

was made early, in the middle, or late in the project. For early, 

middle, and late changes, the change was applied when 25%, 

50%, and 75% of the original estimated time for the project 

elapsed respectively. For project scenarios that involve 

multiple teams, the changes were applied to Team One 

workflows only.  

The changes in defect rate were applied by modifying the 

overall fraction of functions that were found to be defective. 

Additionally, the defects were categorized as either 

implementation defects or design defects. Changes to the 

ratio of design defects to implementation defects were 

simulated as well. 

D. Model Outputs 

The specific project outputs that were captured during the 

simulation were project effort and total project completion 

time as: 

Project Completion Time: Total number of hours for the 

design, implementation and successful testing of software 

project. 

Project Effort: The total person-hours used for design, 

implementation and testing to deliver a fully implemented 

software project. 

The status of the tasks remaining within the SDLC and 

Integration components enable calculation of the total project 

completion time. A model variable was set up to capture the 

number tasks in the Requirements, Designed Software, and 

Implemented Software level for the SDLC component for 

each team as well as those same levels in addition to the 

Integration Requirements level within the Integration 

component. This data was used to determine when the total 

tasks remaining to be executed are equal to zero at which 

time the project can be deemed completed. 
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The model was designed to accumulate project effort as 

long as the design rate, development rate, testing rate, or 

integration testing rate was non-zero since a non-zero rate 

indicated that the work was being completed by resources for 

the project. Effort for all personnel resources was considered 

to be equivalent regardless of skill level. The effort equation 

for project effort at any given time was calculated as the 

summation of the rates of flow between each of the phases. 

The total effort was determined by observing the maximum 

effort, which occurred at the project completion time. 

 

V. APPLICATIONS 

To demonstrate how this model can be used to help 

manage a software project, we present one of the scenarios 

used in testing the model.  We will use P1 to represent a 

project scenario of creating a single deliverable software 

component consisting of three major functional requirements 

by a single small team.  The resources initially available for 

the project and their skill levels are documented in Table I. 

The total effort and completion time for this project are used 

as the baseline estimates that would be produced prior to 

starting project development. 

 
TABLE I: PROJECT P1 PROFILE 

Input Parameter Baseline value 

Initial Requirements (functions) 3 

Experienced Mid-level (person) 2 

Experienced Senior (person) 1 

Nominal Productivity (function/(person*Hour) 0.0125 

Design Defect Fraction 0.15 

Overall Defect Fraction 0.15 

Total Effort (PERSON-HOUR) 673 

Total Time to Complete (HOURS) 225 

 

If we assume that the software project manager has just 

received a letter of resignation from one of his senior 

developers with about 50% of the project requirements 

completed. This manager needs to know what the impact will 

be on the project timeline. Based on the model presented here, 

such an estimated impact can be made through simulating the 

scenario within the model.  

We can simulate a resource loss change at 50% 

requirements completion and observe the estimated impact 

on the total project completion time. Based on whether that 

projected impact is acceptable to the stakeholders, the project 

manager can make an informed decision to make no resource 

additions to the team or to add additional resources to 

maintain the original project timeline. If additional resources 

should be added, the project manager can use the model to 

simulate the addition of resources so that the impact on the 

project completion time can be estimated. The simulation 

results can help determine whether resource additions are 

likely to decrease the project completion time. 

The completion time results showed that when positive 

resource and productivity changes are applied earlier in the 

project, the completion time is shorter than when those same 

changes are made late in the project.  For this small project 

scenario, the addition of resources reduced the completion 

time from a baseline of 225 hours to 206 hours. Conversely, 

the loss of resources led to a longer completion time of 279 

hours. 

 

VI. CONCLUSIONS 

In this research study we have made two contributions to 

the field. First we have provided an extended simulation 

model used for change tolerant software project management 

related parameters estimation. Secondly we have also 

developed a simulation model implementation of the 

extended simulation model capable of estimating the impact 

of unforeseen changes and decisions for projects of different 

sizes, team dynamics, and methodologies.   

The model from [13] was a basis for the personnel 

component by adding dynamic addition/loss of personnel as 

well as adding representation of different skill levels and 

average productivity. The component provided a 

productivity rate to the model as well as staff availability. 

Both productivity and availability have a direct impact on the 

project progress rate. The SDLC component combined with 

the personnel components controls the speed and direction of 

flow of work through the project completion. The SDLC 

component enabled application of the basic rules of 

sequential workflow to the model including any 

dependencies between SDLC phases. The combination of 

components allowed the application of work distribution and 

resource availability to the model for each team involved in 

the simulation. The model from [10] provided basis for 

simulating the effect of defects on the flow of work through 

the process. The feedback loops enabled representation of the 

effects of design and implementation defects on the project 

outcome within the SDLC and Integration testing process. 

The integration component accounted for the necessity for 

integration testing when some requirements rely on 

components from multiple teams to be completed. Team 

dependencies could be represented and demonstrated by 

using the primary SDLC output from each team and the 

number of integration testing requirements as inputs to the 

integration component. 

The results presented in this paper show that in comparison 

to existing estimation techniques and simulation models, the 

extended simulation model presents a unique advantage of 

allowing the impact the aforementioned dynamic changes to 

be estimated in both waterfall and agile processes. The 

previous works were not designed to handle all of these types 

of changes within the context of a general SDLC model. The 

focus of this paper was extending the existing modeling 

techniques and demonstrating a technique that could capture 

and accept dynamic project change input for software 

estimation. The next section will outline a few of the 

improvements and extensions that can further enhance the 

extended simulation model presented in this paper. 

 

VII. FUTURE WORKS 

Many project changes were not specifically addressed in 
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the model. Some of these include the addition of brand new 

requirements, workload distribution for the project, and 

dedication of individual resources to multiple projects. 

Although these types of changes can be built into some 

element of the model parameters, there was no specific 

examination of how each of these elements impacts the 

project outcome. A future study could examine how changes 

in these areas will impact the project effort and completion 

time. 

Another important area for development would be to test 

the validity of this model in terms of how closely it would be 

able to model real project scenarios. Estimations are 

inaccurate by nature, but running the same tests using real 

project data and comparing the estimate with the actual 

project outcome could help to discover ways to calibrate the 

model for future application.   

The extension and calibration of the model to 

accommodate additional changes and more closely estimate 

the outcome of real projects clearly creates the potential for 

development of a usable software estimation tool to be used 

in practice. A programmatic implementation of the extended 

simulation model would be much more flexible in terms of 

the number of changes that can be accommodated and would 

eliminate the limitations of using simulation modeling tools 

alone. There are a number of project management tools 

available on the market that could provide the project data 

that would drive an estimation tool based on the 

change-tolerant extended simulation model. Creating a 

product that could employ the extended simulation model 

combined with existing management tools would be a 

significant contribution to the software engineering and 

software development project management field.  
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