
  

 

Abstract—Chaos synchronization and generalized chaos 

synchronization (GCS) are of essential importance for many 

physical, circuit, biological, and engineering systems. This 

paper introduces the definitions of generalized stability (GST) 

in bidirectional discrete and differentiable systems, which are 

the extensions for the definitions of chaos generalized 

synchronization of corresponding bidirectional discrete and 

differentiable chaos systems. Two constructive generalized 

stability (GST) theorems for bidirectional discrete systems and 

bidirectional differential equations (BDS and BDE) are 

introduced, which give general representations for GST BDS 

and GST BDE.  Using the two theorems, one can easily 

construct new chaos systems to make the system variables be in 

GST.  Two 8-dimensional GST systems are presented to 

illustrate the effectiveness of the theoretical results. By 

combining the 8-dimensional systems with the GCS theorem, 

two 12- dimensional GCS systems are designed. Numerical 

simulations verify the chaotic dynamics of such discrete systems 

and differential equations. Using the two 12-dimensional GCS 

systems designs two chaotic pseudorandom number generators 

(CPRNGs). The FIPS 140-2/SP800-22 test suite are used to test 

the randomness of the four 1,000/100 key-streams consisting of 

20,000 bits generated by our CPRNGs, the RC4 algorithm, the 

ZUC algorithm, respectively. The results show that the 

randomness performances of our CPRNGs are promising. In 

addition, theoretically the key space of the each CPRNG is 

larger than 2
1196

. 

 

Index Terms—Generalized stability, bidirectional systems, 

numerical simulation, RANDOMNESS test.  

 

I. INTRODUCTION 

Chaos was first formally introduced into mathematics in 

connection with an interval map by Li and Yorke in 1975 [1]. 

Chaotic dynamics are intrinsically sensitive to initial 

conditions, as well as system parameters, with random-like 

unpredictable long-term behaviors [2], [3]. 

The problem of chaotic synchronization was first studied 

by Yamada and Fujisaka in 1983 [4], then studied by 

Afraimovich et al. in 1986 [5]. Since the pioneering work by 

Pecora and Carroll in 1990 [6], now commonly termed the 

Pecora-Carroll method, much attention has been devoted to 

research on chaos synchronization. Chaos synchronization is 

of essential importance for much synchronization is of 

essential importance for many physical, circuits, biological 

and engineering systems ([7]–[12]). Chaos synchronization 
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systems may provide new tools in cryptography and 

communication fields ([13]–[18]). Along this line of thoughts, 

we recently studied in-depth a generalized chaos 

synchronization (GCS) scheme [19] (see also [13], 

[20]–[22]).  

First, this paper introduces the definitions of generalized 

stability (GST) in bidirectional discrete and differentiable 

chaos system, which are extensions the definitions of chaos 

generalized synchronization for corresponding bidirectional 

discrete and differentiable chaos systems. Second, this study 

sets up two constructive GST theorems for bidirectional 

discrete systems and differential equations. Two numerical 

simulations aim our theoretical results. Third, using two 

12-dimensional GCS systems designs two CPRNGs. The 

FIPS 140-2 test suite and SP800-22 test suite are used to test 

the randomness of the two CPRNGs, the RC4 algorithm and 

the ZUC [23] algorithm. 

The rest of this paper is organized as follows. Section II 

introduces the definition and the theorem on GST for BDS. 

Section III proposes the definition and the theorem on GST 

for BDE. Section IV presents one 12-dimensional GCS 

discrete system, and one 12-dimensional GCS continuous 

system, simulates the dynamic behaviors of these systems. 

Section V designs two CPRNGs, and implements and 

compares the randomness tests for the two CPRNGs and the 

RC4 algorithm and the ZUC algorithm. Finally, some 

concluding remarks are given in Section VI.  

 

II. GS THEOREM FOR BIDIRECTIONAL DISCRETE SYSTEMS 

In this section, motivated by the bidirectional discrete 

generalized chaotic synchronization (GCS) (for example see 

[24] and [25]), this study introduces the following: 

Definition 1: Consider two systems 

 

( 1) ( ( ), ( )),X k F X k Y k                              (1) 

                          ( 1) ( ( ), ( )),Y k G Y k X k                           (2) 

where 

                          1( ) ( ( ), , ( ))T

nX k x k x k ,                            (3) 

                          
1( ) ( ( ), , ( )) ,T

mY k y k y k m n                    (4) 

1( ( ), ( )) ( ( ( ), ( )), , ( ( ), ( )))T

nF X k Y k f X k Y k f X k Y k      (5) 

1( ( ), ( )) ( ( ( ), ( )), , ( ( ), ( )))T

mG Y k X k g Y k X k g Y k X k     (6) 

If there exists a transformation 
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1( ( )) ( ( ( )), , ( ( )))T

m m m mH X k h X k h X k             (7) 

and for 0   there exists 1 20, 0     

0 1 0 2( , ) ( , ) n mB B X B Y R R     , 

Such that all initial conditions satisfy ( (0), (0))X Y B , 

and all trajectories of (1) and (2) satisfy. 

( ( )) ( )mH X k Y k  ,  1,2,3k            (8) 

where 

1( ) ( ( ), , ( ))T

m mX k x k x k  . 

Then the systems in (1) and (2) are said to be in GST with 

respect to the transformation H . 

Theorem 1: Let , , , ( , )mX Y X F X Y  and ( , )G Y X  be 

defined by (3)-(6), 

1( ) ( ( ), , ( ))T

m mX k x k x k  

Suppose that 

                   H 1( ,x 2 ,x , 1) ( ,mx y 2 ,y , )my . 

If the two systems (1) and (2) are in GST via the 

transformation ( ),mY H X  if, and only if, the function 

( , )G Y X  given in (2) has the following form: 

( , ) [ ( , )] ( , )m mG Y X H F X Y q X Y   

where 

1 2( , ) ( ( , ), ( , ), , ( , ))T

m mF X Y f X Y f X Y f X Y  

and the function 

           1 2( , ) ( ( , ), ( , ), , ( , ))T

m m m m mq X Y q X Y q X Y q X Y  

guarantees that the zero solution of the following error 

equation is stable: 

( 1) ( ( 1)) ( 1)

            = ( , ).

m

m

e k H X k Y k

q X Y

    
          (9) 

Proof: Denote 

( , ) [ ( , )] ( , ),m mG Y X H F X Y q X Y    

Then 

                          
( 1) ( ( 1)) ( 1)

            = ( , ).

m

m

e k H X k Y k

q X Y

    
 

Therefore, two dynamic systems (1) and (2) are in GST via 

the transformations H if, and only if, the function ( , )mq X Y  

makes the trajectory in (9) tends to zero solution stably. This 

completes the proof.  

Remark 1. Theorem 1 is constructive. It provides a 

general approach to construct bidirectional discrete 

generalized stability systems. 

 

III. GST THEOREM  FOR  BIDIRECTIONAL  DIFFERENTIAL 

SYSTEMS 

Motivated by GCS of differential systems ([24] and [25]), 

this paper introduces the following 

Definition 2: Consider two systems 

( ( ))
( ( ), ( )),

d X t
F X t Y t

dt
                    (10) 

 

( ( ))
( ( ), ( )),

d Y t
G Y t X t

dt
                  (11) 

where 

                          1( ) ( ( ), , ( ))T

nX t x t x t                          (12) 

 

                          
1( ) ( ( ), , ( )) ,T

mY t y t y t m n                    (13) 

 

1( ( ), ( )) ( ( ( ), ( )), , ( ( ), ( )))T

nF X t Y t f X t Y t f X t Y t      (14) 

 

1( ( ), ( )) ( ( ( ), ( )), , ( ( ), ( )))T

mG Y t X t g Y t X t g Y t X t .   (15) 

 

If there exists a transformation 

: n mH R R , 

1( ( )) ( ( ( )), , ( ( )))T

m m m mH X t h X t h X t            (16) 

and for 0   there exists 1 20, 0    and  

0 1 0 2( , ) ( , ) n mB B X B Y R R     , 

Such that all initial conditions satisfy ( (0), (0))X Y B , 

and all trajectories of (1) and (2) satisfy 

( ( , (0))) ( , (0))H X t X Y t Y  , ,t        (17) 

where 

1( ) ( ( ), , ( ))T

m mX t x t x t   

Then the systems in (10) and (11) are said to be in GST 

with respect to the transformation H . 

Theorem 2: If two bidirectional differential systems  

(10) and (11) are in GST with respect to the transformation 

( )mY H X  given by (16). Then the driven system function 

( , )G Y X  in (11) has the following form: 

( , ) ( ) ( , ) ( , )m m mG Y X H X F X Y q X Y         (18) 

where 

1 1 1

1 2

2 2 2

1 2

1 2

( )

m

mm

m m m

m

h h h

x x x

h h h

x x xH X

h h h

x x x

   
 
  

 
   
 

     
 
 
   

    

 

and  

1 2( , ) ( ( , ), ( , ), , ( , ))T

m mF X Y f X Y f X Y f X Y . 

The function 

1 2( , ) ( ( , ), ( , ), , ( , ))T

m m m m mq X Y q X Y q X Y q X Y  

guarantees that the zero solution of the following 
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errorequation is stable on the open set B . 

( ( ) )
 = ( , ).m

m

d H X Y
e q X Y

dt


           (19)  

Proof: Since ( )mH X  is an invertible matrix, the function 

( , )mG Y X  can be expressed as the form given in (18).  

Denote 

1 1 2 2

( )

   = ( ( ) , ( ) , , ( ) ) ,

m

T

m m m m m

e H X Y

h X y h X y h X y

 

  
 

Then 

1 2

1 1

1

( ( )
- 

( ) ( )
   = ( , , ,

( )
      ) ( , )

   = ( ) ( , ) ( , ).

   = ( , ).

m

m m
m i m i

i ii i

m
Tm m i

i i

m m

m

d H X dY
e

dt dt

h X dx h X dx

x dt x dt

h X dx
G Y X

x dt

H X F X Y G Y X

q X Y

 





 

 






 

 

  

Therefore two dynamic systems (10) and (11) are in GST 

via the transformations H . if, and only if, the function 

 ( , )mq X Y  makes the trajectory in (19) tends to zero stably. 

This completes the proof. 

Remark 2. Theorem 2 is constructive. It provides a 

general approach to construct bidirectional differential 

generalized stability systems. 

 

IV. NOVEL CHAOTIC SYSTEMS BASED GST THEOREMS  

A.  Discrete GST Systems 

This subsection presents an 8-dimensional bidirectional 

discrete chaotic map (8DBDCM) with the GST property, and 

designs a 12-dimensional discrete chaotic map (12DDCM) 

based on the GCS theorem and the 8DBDCM, which is the 

driving system of the 12DDCM. 

Step (1): Introduce the 8DBDCM. 

The first part of the 8DBDCM is in the following form: 

1

2

3

4

( 1)

( 1)
( 1)

( 1)

( 1)

x k

x k
X k

x k

x k

 
 

  
 
   

 

 

1 2

2 4 1 3

1 2 6 3

2

1 2 1 4

0.98 ( ) 0.02 ( )

( ) 0.01( ( ) ( ) ( ))

0.01( ( ) ( ) 0.1 ( )) ( ) 0.1

0.001( ( ) ( )( ( ) 1)) ( )

x k x k

x k x k x k x k

x k x k x k x k

x k x k x k x k




 
 

  
   

     (20) 

Secondly, construct an invertible matrix 

1 0 4 6

3 2 0 4

0 5 4 2

0 1 0 6

A

 
 
   
 
 

  

                      (21) 

 

and define the transformation 4 4:H R R  as follows 

( )H X AX 1 2 3 4( ( ), ( ), ( ), ( )) .Th X h X h X h X       (22) 

Select ( , )q X Y  in Theorem 1 to have the form 

( , ) ( 1) ( ).q X Y e k Be k                    (23) 

where  

0.1 0 0 0

0 0.2 0 0

0 0 0.2 0

0 0 0 1

B

 
 
 
 
 

 

 .                    (24) 

The following Theorem guarantees error equation (9) be 

zero stable. 

Theorem 3: [26] Let B  be an m m  matrix with 

( ) 1B   and assume that each eigenvalue of B  with  

| | 1   is simple. Then there is a constant C  such that 

( ) (0)e k C e  

for every k N  and (0) me R , where ( )e k is solution of 

( 1) ( ).e k Be k   

In fact, the spectral radius ( ) 1B   and each eigenvalue 

of matrix B  with | | 1   is simple. According to Theorem 3, 

taking ( )e k
C


  gives 

( ) .e k C
C


   

Therefore the equation (23) is zero stable. 

By Theorem 1, we can select the second part of the 

8DBDCM to have the form: 

5

6

7

8

( 1)

( 1)
( 1)

( 1)

( 1)

x k

x k
Y k

x k

x k

 
 

  
 
   

 

[ ( ( ), ( ))] ( ( ), ( )).A F X k Y k q X k Y k        (25) 

Moreover, choose the initial conditions as follows: 

(0) ( 0.2,0.2,0.2,0.2) ,TX                  (26) 

(0) (0).Y AX                            (27) 

 
Fig. 1. Chaotic trajectories of variables: (a) 1 2 3x x x  , (b) 

2 3 4x x x  , (c) 3 4 5x x x  , (d) 4 5 6x x x  , (e) 5 6 7x x x  , 

and  (f) 6 7 8x x x  . 
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The calculated Lyapunov exponents of chaotic systems 

(20) and (25) are {0.00431, 0.00012, 0, 0, - 0.02398, - 1.6095, 

-1.6095, -2.3022}. This means that systems (20) and (25) are 

chaotic.  

The chaotic trajectories of the state variables 

1 2, ,x x 3 4 5 6 7, , , , ,x x x x x and 8x  for the first 20000 iterations 

are shown in Figs. 1(a)-(f). The evolution of the state 

variables 1 2 3 4 5 6 7, , , , , , ,k x k x k x k x k x k x k x        

and 8k x  are shown in Fig. 2(a1) - (b4). 

 

 
Fig. 2. The evolution of the state variables: (a1)

1( )k x k , (a2) 
2 ( )k x k , 

(a3) 
3( )k x k , (a4) 

4 ( )k x k , (b1)
5 ( )k x k , (b2) 

6 ( )k x k , (b3) 

7 ( )k x k , and (b4) 
8 ( )k x k . 

 

Fig. 3 (a)-(d) show that ( )X k  and ( )Y k  are in generalized 

synchronization with respect to transformation H A , as the 

theory predict 

 

 
Fig.  3. The state vectors X and Y are in GST with respect to the 

transformation H . (a)
1 5( ( )) ( )h X k x k , (b) 

2 ( ( ))h X k
6 ( )x k , 

(c)
3( ( ))h X k 

7 ( )x k , and (d)
4 8( ( )) ( )h X k x k . 

 

Step 2. Introduce a driven system via the 8DBDCM. An 

invertible matrix C is constructed as follows: 

5 4 1 7

10 4 2 0

8 9 6 1

7 10 6 3

C

   
 
   
  
 

 

                       (28) 

Design a transformation 4 4:H R R  as follows: 

( )H X CX  

1 2 3 4( ( ), ( ), ( ), ( )) .Th X h X h X h X               (29) 

Let 

1
( , ) ( ).

6
mq X Z CX Z                     (30) 

Select the driven system has the form: 

1

2

3

4

( 1)

( 1)
( 1)

( 1)

( 1)

z k

z k
Z k

z k

z k

 
 

  
 
   

                         (31) 

Then, ( , )mq X Z  ensures the error equation 

( 1) ( ( 1)) ( 1)

            = ( , ).

m

m

e k H X k Z k

q X Z

    
         (32) 

be asymptotically stable. From Theorem 1 in [14] which in a 

special case of Theorem 1 proposed in section II, it follows 

that systems (20) and (25) as well as system (31) are GS with 

respect to the transformation H . Therefore, one can 

construct a 12DDCM with the GS property. 

Moreover, choose (26), (27) and (33) as initial conditions, 

and choose (33) as follows: 

                                       (0) (0)Z AX                                  (33) 

The chaotic trajectories of the state variables 

1 2 3 ,z z z  1 2 4 ,z z z  2 3 4 ,z z z  and 1 3 4z z z   for 

the first 20000 iterations are shown in Figs. 4(a)-(d). The 

evolution of the state variables 1 2, ,k z k z  3 ,k z and 

4k z  are shown in Figs. 5(a) - (d). 

Fig. 6 (a)-(d) show that ( )X k  and ( )Z k  are in generalized 

synchronization with respect to transformation H C , as the 

theory predicts. 

 

 

Fig. 4. Chaotic trajectories of variables: (a) 1 2 3 ,z z z   

(b) 1 2 4 ,z z z  , (c) 2 3 4 ,z z z   and (d) 1 3 4z z z  . 
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Fig.  5.  The evolution of the state variables: (a) 1( )k z k , (b) 2 ( )k z k , 

(c) 3( )k z k , and (d) 4 ( )k z k . 

 

 
Fig. 6. The state vectors X and Z are in generalizedsynchronization with 

respect to the transformation H. (a)
1 1( ( )) ( )h X k z k , 

(b)
2 2( ( )) ( )h X k z k , (c)

3( ( ))h X k   
3 ( )z k , and (d)

4 4( ( )) ( )h X k z k . 

 

B. Differential GST Systems 

This subsection presents an 8-dimensional bidirectional 

continuous chaotic map (8DBCCM) with the GST property, 

and designs a 12-dimensional continuous chaotic map 

(12DCCM) based on the GCS theorem and the 8DBCCM, 

which is the driving system of the 12DCCM. 

Step (1): Introduce the 8DBCCM, which is the driving 

system of the 12DCCM. 

The driving system of the 8DBCCM is in the following 

form: 

                         

1 1 2

2 1 3 4

3 1 2 6

4 1 2 8

20( )

10sin( ) 80

2 4 cos( )

x x x

x x x x
X

x x x x

x x x x

  


  
 

  
   

             (34) 

Then, an invertible matrix is constructed: 

                            

0.6 1.6 1.4 1.6

0.6 0.8 0 1.4

1.2 0.2 1 0

0.2 1 1.8 1.8

A

 
 
 
 
 
 

                          (35) 

with the transformation 
4 4:H R R  defined as follows: 

( )H X AX  

                                 1 2 3 4( ( ), ( ), ( ), ( )) .Th X h X h X h X      (36) 

Let 

                      
3

1 1 2 32e e e e    , 3

2 1 2 42e e e e     

                             3 1 42e e e   , 4 2 32e e e    

Then 

1 2 3 4( , , , ) ( , )e e e e e q X Y             (37) 

makes the error equation (19) be zero stable. In order to proof 

the equation (37) is zero stable, we can construct Lyapunov 

function 
2 2 2 2

1 2 3 4V e e e e       

Then 

1 1 2 2 3 3 4 42 2 2 2V e e e e e e e e     

3 3

1 1 2 3 2 1 2 42 ( 2 ) 2 ( 2 )e e e e e e e e         

3 1 4 4 2 32 ( 2 ) 2 ( 2 )e e e e e e       

4 4

1 22( ) 0,e e      ( 0)e    

Therefore, the equation (37) is zero stable. 

Then by Theorem 2, the driven system has the form 

( ) ( , )Y H X X q X Y   

[ ( , )] ( , ).A F X Y q X Y                    (38) 

Moreover, choose the initial conditions (41) and (42) as 

(0) (1.1,0.2,1, 0.5) ,TX                        (39) 

(0) (0).Y AX                             (40) 

 
Fig. 7. Chaotic trajectories of variables: (a) 1 2 3x x x  , (b) 

2 3 4x x x  , (c) 3 4 5x x x  , (d) 4 5 6x x x  , (e) 5 6 7x x x  , 

and (f) 6 7 8x x x  . 

 
Fig. 8. The evolution of the state variables: (a1) 1t x , (a2) 2t x , (a3) 

3t x , (a4) 4t x , (b1) 5t x , (b2) 6t x , (b3) 7t x , and (b4) 

8t x . 
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Fig. 9. The evolution of the state variables: (a) 

1t e , (b) 2t e , (c) 3t e , 

(d) 4t e . 

 

The calculated Lyapunov exponents of chaotic systems 

(34) and (38) are {0.13242, 0.00006, - 0.00072, - 0.00077, - 

0.00124, - 0.00357, - 0.38513, - 19.7369}. This means that 

systems (34) and (38) are chaotic. 

 
Fig. 10. The state vectors X  and Y  are in GST with respect to the 

transformation H .(a) 1 5( ( )) ( )h X t x t , (b) 2 6( ( )) ( )h X t x t , 

(c) 3( ( ))h X t  7 ( )x t , and (d) 4 ( ( ))h X t   8 ( )x t . 

 

 
Fig. 11. Chaotic trajectories of variables: (a) 1 2 3 ,z z z   

(b) 1 2 4 ,z z z  , (c) 2 3 4 ,z z z   and (d) 1 3 4z z z  . 

 

 
Fig. 12.  The evolution of the state variables: (a)

1( )t z t , (b)
2 ( )t z t , 

(c)
3 ( )t z t , and (d)

4 ( )t z t . 

 
Fig. 13. The state vectors X  and Z  are in generalized synchronization 

with respect to the transformation H. (a)
1 1( ( )) ( )h X t z t , 

(b)
2 2( ( )) ( )h X t z t , (c)

3( ( ))h X t   
3 ( )z t , and (d)

4 4( ( )) ( )h X t z t . 

 

The chaotic trajectories of the state variables 1 2 3 4, , ,x x x x , 

5 6 7, , ,x x x and 8x  for the first 20000 iterations are shown in 

Fig. 7 (a)-(f). The evolution of the state variables 1,t x   

2 3 4 5 6 7, , , , , ,t x t x t x t x t x t x      and 8t x  are shown 

in Figs. 8(a1) - (b4). The evolution of the state variables 

1 2 3, ,t e t e t e   , and 4t e  are shown in Figs. 9(a) - (d). 

Fig. 10 (a)-(d) show that X  and Y  are in GST with 

respect to transformation H A , as the theory predicts. 

Step 2. Introduce a driven system via the 8DBCCM. 

An invertible matrix B is constructed as follows: 

2 1 2 2

2 3 4 2

2 2 4 4

1 4 3 4

B

 
 

   
 
 
   

                      (41) 

Design a transformation 4 4:H R R  as follows: 

( )H X BX  

1 2 3 4( ( ), ( ), ( ), ( )) .Th X h X h X h X         (42) 

Let 

 
1

( , ) ( ).
4

mq X Z BX Z                   (43) 
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Select the driven system has follows: 

1

2

3

4

( 1)

( 1)
( 1)

( 1)

( 1)

z k

z k
Z k

z k

z k

 
 

  
 
                            (44) 

Then, ( , )mq X Z  ensures the error equation 

                                        

( ( ) )

   = ( , ).

m

m

d H X Z
e

dt

q X Z




                  (45) 

be asymptotically stable. Similar to Theorem 2 cited above, 

we can draw a conclusion that systems (34) and (38) as well 

as system (44) are GS with respect to the transformation H . 

Therefore, one can construct a 12DCCM with the GS 

property. 

Moreover, choose (39), (40) and (46) as initial conditions, 

and choose (46) as follows: 

                                       (0) (0)Z AX                                  (46) 

The chaotic trajectories of the state variables 

1 2 3 ,z z z  1 2 4 ,z z z   2 3 4 ,z z z  and 1 3 4z z z   

for the first 20000 iterations are shown in Figs. 11(a)-(d). The 

evolution of the state variables 1 2, ,t z t z  3 ,t z and 

4t z  are shown in Figs. 12 (a) - (d). 

Fig. 13 (a)-(d) show that ( )X k  and ( )Z k  are in 

generalized synchronization with respect to transformation 

H B , as the theory predicts。 

 

V. CHAOTIC PSUEDORANDOM NUMBER GENERATOR AND 

PSUEDORANDOMNESS TESTS 

A. Pseudorandom Number Generator 

In this section two chaotic psuedorandom number 

generators (CPRNGs) are designed. The CPRNG1 and 

CPRNG2 are based on the first discrete system and the 

differential system in section IV, respectively. 

Denote  

{ ( ) | 1,2,3,4},i iX x k k                   (47) 

{ ( ) | 1,2,3,4},i iY y k k                    (48) 

{ ( ) | 1,2,3,4},i iZ z k k                   (49) 

{ ( ) | 1,2,3,4},i iW w k k                  (50) 

 

where ix s , iy s , iz s  and iw s  are defined by (20), (31), 

(34), and (44).  

First, introduce a transformation 
16

1 : {0,1, ,2 1}T R   

which transforms the chaotic streams of GST systems (47), 

(48), (49), and (50) into key streams. Denote 

3 2S X Y                                  (51) 

2 1R Z W                                  (52) 

Then 1T  is defined by 

1

16

( ) mod( (( ( min( ))

             /(max( ) min( ))) ,2 )     

T S round L S S

S S

 


       (53) 

1

16

( ) mod( (( ( min( ))

             /(max( ) min( ))), 2 )     

T R round L R R

R R

 


       (54) 

  Second, construct a transform 
16

2 :{0,1, ,2 1} {0,1}T    which is defined by 

 

2 22 21T T T                                   (55) 

s.t.
16{0,1, ,2 1}Ny    

21( ) 2 ( ).T y dec bin y  

 

Let 2 ( )u dec bin y , then  

22 ( ) (:),T u u  

where 2dec bin  and (:)u  are both Matlab commands. 

Finally the transformation : {0,1}T R  is defined via  

2 1T T T                                (56) 

Now we can design a CPRNG based on the 

transformations (51)-(56) and systems (20) and (31) or 

systems (34) and (44). 

( )S T S                               (57) 

is the key stream generated via the CPRNG1. 

( )R T R                               (58) 

is the key stream generated via the CPRNG2. 

The seeds of the CPRNGs are the initial conditions of the 

GST systems, which can be chosen via random number 

generators. Therefore the output key streams of the CPRNGs 

can be obtained via the transformation (56) acting on the 

chaotic streams of the GST systems (20) and (31) or systems 

(34) and (44). 

B. Pseudorandomness Tests 

The FIPS 140-2 test consists of four sub-tests: Monobit 

Test, Poker Test, Run Test and Long Run Test. Each test 

needs a single stream of 20,000 one and zero bits from the 

keystream generator. Any failure in the first three tests means 

that the corresponding quantity of the sequences falls out the 

required intervals listed in the second column in Table I. The 

Long Run test is passed if there are no runs of length 26 or 

more. 

It has been pointed out that the required intervals of the 

Monotone test and the Pork test correspond significant 
410   for the normal cumulative distribution and the    

distribution, respectively, and the required intervals of the 

Run tests correspond approximately the significant 
71.6 10   for the normal cumulative distribution ([27], 

[28]). If we select the significant 
410   of all tests, the 

correspond accepted intervals are listed in the third column in 

Table I. 

According to Golomb’s three postulates on the 
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randomness that ideal pseudorandom sequences should 

satisfy [29], the ideal values of the first three tests should be 

those listed in the 4th column in Table I. 

 

TABLE
 
I:

 
THE

 
REQUIRED

 
INTERVALS

 
OF

 
THE

 
FIPS

 
140-2

 
MONOBIT TEST,

 
PORK TESTS,

 
RUN TEST

 

Test Item
 

FIPS140-2 Required
 
Intervals

 
α = 10−4 

 
Required Intervals

 
Golomb’s Postulates

 

MT
 

9,725~10,275
 

9,725~10,275
 

10000
 

PT
 

2.16~46.17
 

2.16~46.17
 

χ2 DT
 

LT
 

<26
 

<26
 

—
 

k
 

Run Test
 

Run Test
 

Run Test
 

1
 

2,315~2,685
 

2,362~2,638
 

2,500
 

2
 

1,114~1,386
 

1,153~1,347
 

1,250
 

3
 

527~723
 

556~694
 

625
 

4
 

240~384
 

264~361
 

313
 

5
 

103~209
 

122~191
 

156
 

 
6+

 
103~209

 
122~191

 
156

 

  Here, MT, PT, and LT represent the Monobit test, the pork test and the long run test, respectively. k  represents the length  

  of the run of

 

A tested sequence. 
2

  DT represents 
2

  distribution. 
 

 
TABLE

 
II:

 
THE CONFIDENT INTERVALS OF THE FIPS

 
140-2

 
TESTED VALUES OF 1,000

 
KEY STREAMS GENERATED BY THE CPRNG1,  CPRNG2,

 
RC4

 
PRNG

 
AND 

ZUC PRNG 

Test 
Item 

bits CPRNG1 
Mean ± SD 

CPRNG2 
Mean ± SD 

RC4 
Mean ± SD 

ZUC 
Mean ± SD 

MT 0 
1 

10000 ±73.980 
9999.8±73.980 

10008±71.134 
10007±71.135 

9999.7±70.092 
10000±70.092 

9998.4±71.843 
9998.4±71.843 

PT - 15.020±5.3399 15.047±5.3595 14.870±5.4330 15.043±5.5491 

LT 0 
1 

13.710±1.862 
13.629±1.824 

13.549±1.782 
13.599±1.856 

13.60±1.8214 
13.642±1.931 

13.488±1.829 
13.595±1.931 

k bits Run test Run test Run test Run test 
1 0 

1 

2499.6±47.407 
2499.9±47.627 

2502.2±45.778 
2502.3±47.759 

2500.9±45.568 
2501.4±46.398 

2501.9±45.735 
2502.7±46.121 

2 0 
1 

1249.9±16.394 
1248.8±33.617 

1250.6±32.261 
1250.8±33.612 

1250.5±31.372 
1249±31.048 

1252.1±32.606 
1249.5±32.221 

3 0 
1 

625.19±23.357 
624.96±23.181 

624.89±22.706 
624.47±22.201 

624.95±22.964 
625.65±22.93 

624.09±22.648 
624.64±23.455 

4 0 
1 

311.73±16.394 
313.15±16.561 

312.27±16.485 
312.83±16.485 

311.71±16.548 
312.17±16.822 

312.56±16.748 
312.72±16.506 

5 0 
1 

156.48±11.680 
156.82±12.453 

156.55±11.776 
156.57±12.533 

156.41±12.069 
156.60±11.958 

155.65±12.097 
156.66±12.369 

6+ 0 
1 

156.40±11.807 
155.73±11.875 

156.83±12.188 
156.43±11.989 

156.15±11.792 
155.79±11.979 

155.75±11.719 
155.82±11.497 

                                  Here, SD represents the standard Diviation. k represents the length of the run. 

     
The NIST SP800-22 Test Suite [30] consists of 15 

statistical tests (see the first column of Table I), which were 

set for testing the randomness of binary sequences produced 

by hardware or software-based cryptographic random or 

pseudorandom number generators [30]. Each statistical test is 

formulated to test a specific null hypothesis 0H : the sequence 

being tested is random. A significance level ( ) can be 

chosen for the tests. If P value   , then the null hypothesis 

is accepted; i.e., the sequence is considered to be random. 

Typically,   is chosen in the range [0.001, 0.01]. The NIST 

SP800-22 test suite is more strictly than the FIPS140-2 test 

suite, NIST; namely, a binary sequence that can pass all tests 

of FIPS140-2 test suite may not pass all tests in the NIST 

SP800-22 test suite. 

The FIPS 140-2 / SP800-22 test is used to check 

1,000 / 100 keystreams, which are randomly generated by 

CPRNG1 with perturbed randomly initial conditions (26), 

(33) and the parameters of matrix (28) and CPRNG2 with 

perturbed randomly initial conditions (39), (46) and the 

parameters of matrix (41) , respectively. The tested results are 

shown in the Tables II, III, and IV.  

For CPRNG1, there is no sequence failing to pass the FIPS 

140-2 test, and there are 12 sequences failing to pass the G 

FIPS 140-2 test. The statistic test results are listed in the 3th 

column in Table II. And for CPRNG2, there is no sequence 

failing to pass the FIPS 140-2 test, and there are 15 sequences 

failing to pass the G FIPS 140-2 test. The statistic test results 

are listed in the 4th column of Table II. In Table II the statistic 

results of the Pork test and the Long Run test are described by 

mean values   standard deviation (Mean   SD). The 

SP800-22 tested results for CPRNG1 and CPRNG2 are 

shown in the 2th and 3th columns of Tables III and IV. 

ZUC is a stream cipher that forms the heart of the third 

generation partnership project (3GPP) confidentiality 

algorithm 128-EEA3 and the 3GPP integrity algorithm 

128-EIA3. Using FIPS 140-2 test tests the 1,000
 
keystreams 

randomly generated by the ZUC algorithm program (see 
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Appendix A in [23]). Results show that the 1000 sequences 

all passed the FIPS 140-2 test criterions, and there are 21 

sequences failing to pass the G F140-2 test criterions. The 

statistic test results are listed in the 6th column in Table II. 

And using the SP800-22 test tests the 100 keystreams 

randomly generated by the ZUC suite algorithm. The tested 

results are shown in the 5th column of Tables III and IV. 

TABLE III: THE CALCULATED MEAN P-VALUES OF SP800-22 [30] TESTS FOR 100 BINARY SEQUENCES OF LENGTH 
610 PRODUCED BY THE RC4 PRNG, THE 

ZUC ALGORITHM [23], THE CPRNG1 AND CPRNG2 PROPOSED IN THIS PAPER, RESPECTIVELY. SELECT THE SIGNIFICANCE LEVEL TO BE Α = 0.01 

Statistical Test Mean p-value 

CPRNG1 

Mean p-value 

  CPRNG2 

Mean p-value 

  RC4 

 Mean p-value 

    ZUC 

1. Frequency 0.49195    0.49790 0.49598 0.46669 

2. Block Frequency 0.50943    0.48222 0.47781 0.48780 

3. Runs 0.51660    0.50656 0.46958 0.45937 

4. Long Runs of Ones 0.53508    0.50755 0.53504 0.45351 

5. Binary Matrix Rank 0.51860    0.47726 0.50302 0.47611 

6. Spectral DFT 0.48271    0.50772 0.47094 0.50207 

7. Non-overlapping Template 0.50058    0.49426 0.49385 0.50045 

8. Overlapping Template 0.48686    0.50201 0.50478 0.46822 

9. Maurer’s Universal Test 0.45849    0.51229 0.48780 0.45006 

10. Linear Complexity 0.52159    0.50975 0.51639 0.46828 

11. Serial 2( 5, )mm    0.54287    0.52256 0.47546 0.48370 

      Serial 2( 5, )mm     0.55143    0.52292 0.48377 0.50556 

12. Approximate Entropy 0.57906    0.50284 0.48344 0.45022 

13. Cumulative Sum +1 0.52003    0.52161 0.45873 0.46031 

       Cumulative Sum -1 0.48541    0.50313 0.47298 0.47543 

14. Random Excursion 0.32165    0.32664 0.31615 0.29159 

15. Random Excursion Variant     0.31142 0.30775   0.30332    0.29350 

TABLE IV: ACCEPTANCE RATES OF THE SP800-22 [27] STATISTICAL TESTS FOR 100 BINARY SEQUENCES OF LENGTH 
610  PRODUCED BY THE RC4 PRNG, THE 

ZUC ALGORITHM [23], THE CPRNG1 AND CPRNG2 PROPOSED IN THIS PAPER, RESPECTIVELY. SELECT THE SIGNIFICANCE LEVEL TO BE Α = 0.01 

Statistical Test Mean p-value 

CPRNG1 

Mean p-value 

CPRNG2 

Mean p-value 

RC4 

Mean p-value 

ZUC 

1. Frequency 100 99 98 100 

2. Block Frequency 99 100 98 100 

3. Runs 99 100 98 100 

4. Long Runs of Ones 100 100 97 99 

5. Binary Matrix Rank 97 99 97 99 

6. Spectral DFT 97 99 98 99 

7. Non-overlapping Template 95-100 95-100 94-98 96-100 

8. Overlapping Template 98 100 97 100 

9. Maurer’s Universal Test 99 99 97 100 

10. Linear Complexity 99 99 98 98 

11. Serial 2( 5, )mm    99 100 98 98 

      Serial 2( 5, )mm     99 100 96 99 

12. Approximate Entropy 100 100 98 99 

13. Cumulative Sum +1 100 99 98 98 

       Cumulative Sum -1 100 99 98 98 

14. Random Excursion 64-66 63-64 57-58 57-58 

15. Random Excursion Variant 65-66 63-64 56-58 56-58 

 

TABLE V: THE STATISTIC DATA FOR THE PERCENTAGES OF THE CODES OF 

THE KEY STREAM CPRNG1 VARIATIONS BETWEEN S AND 
pS s  

AND S
mS s  

Item SV 
pS s  

mS s  

 

DC 

min 

mean 

max 

48.860% 

49.999% 

51.000% 

48.890% 

49.995% 

50.985% 

 

CC 

min 

mean 

max 

0.0000042 

0.0055970 

0.0228107 

0.0000005 

0.0057483 

0.0221622 

The RC4 was designed by Rivest of the RSA Security in 

1987, which has been widely used in popular protocols such 

as Secure Sockets. The RC4 Algorithm based 8-bit segment 

PRNG can be designed via Matlab commands. 

 
TABLE VI: THE STATISTIC DATA FOR THE PERCENTAGES OF THE CODES OF 

THE KEY STREAM CPRNG2 VARIATIONS BETWEEN R AND 
pR s  AND 

R  
mR s  

Item SV 
pS s  

mS s  

 

DC 

min 

mean 

max 

48.965% 

50.048% 

51.090% 

48.905% 

50.015% 

51.375% 

 

CC 

min 

mean 

max 

0.0000029 

0.0053481 

0.0215035 

0.0000010 

0.0055299 

0.0275045 
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Here, “ 2 ^ L ” represents 2L
; “randint (1,2 ^ ,[0,2 ^L L  

1]) ” generates a vector of uniformly distributed random 

integers {0,1, ,2 ^ 1}L  of dimension 2L; “mod” means 

modulus after division; “zeros(1,N)” is a zero raw vector of 

dimension N . 

  Consequently, the RC4 Algorithm Based L-bit segment 

PRNG is designed. The FIPS 140-2 test is used to test the 

1,000 keystreams randomly generated by RC4. There is only 

one sequence failing to pass the FIPS 140-2 test and there are 

only 12 sequences failing to pass the G FIPS 140-2 test. The 

statistic test results are listed in the 5th column in Table II. 

And using the NIST SP800-22 test tests the 100 keystreams 

randomly generated by the ZUC algorithm. The tested results 

are shown in the 4th column of Tables III and IV. 

Observe the statistical properties of the pseudorandomness 

of the sequences generated via the CPRNG1, CPRNG2, RC4 

algorithm, and the ZUC algorithm, it follows that the 

statistical properties of the pseudorandomness of the two 

CPRNGs are promising.  

C. Key Space 

The key set parameters of CPRNG1 includes the initial 

conditions (26) and (33) and the matrix (28) is ,( )i jC c .  It 

can be proved that if the perturbation matrix 1 ,( )i jc   

satisfies  

,| | 1.29i jc    

the matrix 1C    is still invertible. 

The key set parameters of CPRNG2 includes the initial 

conditions (39) and (46) and the matrix (41) is ,( )i jB  . It 

can be proved that if the perturbation matrix 2 ,( )i j   

satisfies 

                                               ,| | 0.16i j    

The matrix 2B    is still invertible. 

Therefore the CPRNG1 and CPRNG2 have 4 + 4 + 16 key 

parameters denoted by 

1 2 24{ , , , }.SK k k k                       (59) 

Let the key set be perturbed by 

 

1 2 24( ) { , , , }s sK K                  (60) 

where 
16 110 | | 10 ,i
      1,2, ,24i   

Now we compare the difference between the key stream 

( )S T S  and ( )R T R  with 20000 code length generated 

by the key set (59) with the 1000 key streams pS s  and pR s  

generated by the perturbed key set (60) from our two 

CPRNGs, respectively. 

Comparing the results that are shown in the second row in 

Table III, and Table IV, respectively. For CPRNG1, the 

average percent of the different codes is about 49.999%. And 

for CPRNG2, the average percent of the different codes is 

about 50.048%. They are very closed to the ideal different 

value 50%. 

Now let us to compare the same key stream /S R with the 

1000 stream /m mS s R s   generated by the function of Matlab 

command ([0,1],1,20000)randi . The comparing results are 

shown in Table III and IV. The average percent is about 

49.995% / 50.015% . The results may suggest that there are 

no significant correlations between the key stream /S R  and 

the perturbed key streams /m mS s R s  . In summary the key 

space of each CPRNG is larger than
24 15 11962 10 2  . 

 

VI. CONCLUDING REMARKS  

This study introduces the definitions of GST in 

bidirectional discrete and differential systems and proposes 

two constructive GST theorems. They describe the general 

forms of bidirectional discrete systems or differential 

equations which are in GST with respect to some given 

transformations.  

Two new 8-dimensional bidirectional GST systems are 

introduced, and designs two 12-dimensional generalized 

chaos synchronization (GCS) systems based on the 

8-dimensional bidirectional GST systems and the GCS 

theorem. Numerical simulations suggest that their 

trajectories display chaotic attractor characteristics.  

Two CPRNGs are constructed based on the 

12-dimensional GCS systems. Comparing the results of the 

FIPS 140-2 test and the SP800-22 test for the keystreams 

generated via the CPRNG1, CPRNG2, the RC4 algorithm 

and the ZUC algorithm shows that the randomness of the 

sequences generated via our two CPRNGs are promising. 

The simulations suggest that the key space of each CPRNG is 

larger than
11962 . The key space is large enough to against 

brute-force attacks. 

In summary, the GST theorems may describe dynamic 

behaviors of wider nature phenomena than chaos 

synchronization (CS) and generalized chaos synchronization 

(GCS), and provide new tools for various purposes. And the 

two GST theorems make us be able to design CPRNGs with 

large key space. Research along this line is promising.  
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