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Abstract—Large, complex dynamical systems, such as, power 

systems, are very challenging task to model and analysis. 

Numerous techniques have been developed to handle the 

difficulties arising from the size and complexity of typical 

realistic power system models. These complexities demand to 

formulate reduced order dynamic equivalent models of power 

systems in many applications and studies. Linearizing around 

the equilibrium point, a stable time invariant power system 

model leads to index 1 differential-algebraic (DAE) system. A 

balancing based model reduction technique for such a system is 

discussed in a paper of F. Freitas et al. in 2008. The main 

drawback of this method is to compute two Gramian factors of 

the system by solving two continuous-time algebraic Lyapunov 

equations. On the other hand interpolatory model reduction via 

iterative rational Krylov algorithm (IRKA) is computationally 

efficient since it requires only matrix-vector products or linear 

solvers. This paper contributes an interpolatory technique 

using IRKA for a class of index 1 DAE systems to obtain 

reduced standard ordinary differential (ODE) systems. We also 

show that a simple algebraic manipulation retrieve reduced 

index-1 DAE systems. The proposed technique is applied to a 

data of linearized power system models. Numerical results 

illustrate the efficiency of the techniques. 

 

Index Terms—Descriptor systems, indices of descriptor 

systems, interpolatory projection, model reduction, power 

systems, rational Krylov approximation.  

 

I. INTRODUCTION 

Formulate reduced-order dynamic equivalent models of 

power systems are very desirable, specially in the sense of 

fast and cost-efficient stability assessment.  By linearizing a 

stable time invariant power system model around the 

equilibrium point one may come up with descriptor systems 

of index 1. See, e.g.,[1]-[5] for details. The general 

framework for these descriptor systems is to formulate an 

equivalent ODE system of the corresponding power system 

model associated with differential-algebraic equations 

(DAEs). We discuss interpolatory projection based model 

reduction of descriptor system, or DAEs, given by 
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where 1

1( ) nx t  , 2

2( ) nx t 
 
 are  the  states, ( ) pu t   

is the control input to the system and the measurement output 

is ( ) my t  .  Here , , ,E A B   and C are all matrices with 

appropriate dimensions. We assume that E  is singular and 

the block matrix A4 is nonsingular. Therefore, (1) is defined 

as index 1 descriptor system. 

Since the block matrix A4 is invertible, the second line of 

the first equation in (1) gives 
 

1 1

2 4 3 1 4 2( ) ( ) ( ).x t A A x t A B u t   
 

 

Now inserting the 2 ( )x t  into the first line of the first 

equation (1) and in the output equation, i.e., in the second 

equation of (1), the descriptor system (1) leads to ODE 

system in the state-space form 
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Dynamical systems (1) and (2) are equivalent, since both 

have the same finite spectrum and they are different 

realizations of the same transfer function. Transfer function 

(or transfer function matrix) is the input-output relation of the 

system in the frequency domain which can be defined by 

          
1( ) ( ) ,G s C sE A B D                               (3) 

 

where  s , and and ( , , , , )E A B C D  in    G(s)   is   either 

( , , , , )E A B C D  or  ( , , , , )aE A B C D . Although, all the 

block matrices in (1) are sparse, computing the A, B and C 

matrices explicitly inverting A4 makes the system (2) dense 

[6] which might lead to computational complexity. Therefore, 

explicit formulation of A, B and C is avoided in practice.  By 

reduce order modeling (ROM) we mean to replace (2) by r (r 

<< n1), a much lower dimensional surrogate system 
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where ˆˆ , r rE A  , ˆ r pB  , ˆ m rC  , and ˆ
a aD D . The 

reduce order model here is supposed to fulfill some certain 

approximation requirements, for instance the approximation 

error  ˆ( ) ( )y t y t , or correspondingly ˆ(.) (.)G G , where 

ˆ (.)G  is the transfer function matrix of the reduce order model, 

should be small in some suitable norms, e.g., the  H∞ or H2  

norms (see [7]). The way how to achieve this goal is called 

model order reduction (MOR). See, e.g., [7]-[10] for 

motivations, applications, restrictions and techniques of 

MOR.   

Among several model  reduction techniques,  the balanced 

truncation (BT) and the interpolatory technique via iterative 

Krylov algorithm (IRKA) are the two prominent methods for 

large-scale dynamical systems. Although balanced truncation 

has a priori error bound and it guarantees the system stability, 

the implementation of this this prominent method is 

expensive since it requires to solve two continuous-time 

algebraic Lyapunov equations. On the other hand 

implementation of interpolatory projection via IRKA is 

simple because it requires only matrix-vector products or 

linear solvers. A balanced truncation method for the index 1 

DAE system (1) has already been discussed in [5]. Here we 

contribute the interpolatory method via IRKA. 

The concept of projection for interpolatory model 

reduction was initially introduced in [11] and later Grimme in 

[12] modified the approach by utilizing the rational Krylov 

method [13].  Since Krylov based methods can achieve 

moment matching without explicitly computing moments 

(explicit computation of moments is known to be 

ill-conditioned [14]), they are extremely useful for model 

reduction of large scale systems. The quality of the reduced 

model is highly dependent on the choice of interpolation 

points and therefore various techniques [11] have been 

developed for the selection of interpolation points. 

Recently in [15], the issue of selecting a good set of 

interpolation points is linked to the problem of  H2-optimal 

model reduction. The iterative rational Krylov algorithm 

(IRKA) is proposed in [15] which identify a good choice of 

interpolation points that guarantees the H2-optimality 

conditions for the reduce system. Starting from an initial set 

of interpolation points, the IRKA iterations update the 

interpolation points until they converge to some fix values. 

Until now we have considered that (1) is a single-input 

single-output (SISO) system. A complete procedure of IRKA 

for a SISO system is given in [15, Algorithm 4.1]. For model 

reduction of multi-input multi-output (MIMO) dynamical 

systems, rational tangential interpolation has been developed 

by Gallivan et al. [16]. In this paper we emphasize on the case 

of MIMO system. 

Very recently model reduction of rational tangential 

interpolation via IRKA is extended for the descriptor system 

in [17]. In principle there one has to compute the spectral 

projectors onto the left and right deflating subspaces 

corresponding to the finite eigenvalues of the system. 

Although the projectors are available for models of particular 

structure (including the system (1), computation is expensive. 

However, the authors in [17] show that for a particular 

structured index 1 DAEs, spectral projectors are not required 

in the implementation of MOR. In this paper we also avoid 

the computation of the spectral projectors. In contrast to [17], 

our index 1 DAEs is slightly different and also in the 

implementation techniques 

The main contribution of this paper is to form (2) 

implicitly and work on the sparse formulation of the original 

model (1). Moreover, a small algebraic manipulation of (4) 

turns out a reduced second order index-1 model if that is 

desired which is not possible in the case of [17]. 

 

II. PRELIMINARIES 

To precise the  MOR  technique  for  the  DAEs  (1)  via 

interpolatory methods, in this section we   discuss the method 

for the generalized linear time-invariant (LTI)  continuous- 

time system 

 



Ex(t)=Ax(t)+Bu(t),

y(t) Cx(t)+Du(t),
                        (5) 

 

In which 
E n n

is non-singular, and 
A n n

, 
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 m nC  and 
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mD . We want to 

construct a r (r << n) dimensional reduce system 
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where  
 

Ê=T ETr ,  Â=T ATr , 

B̂=T B ,  Ĉ=CTr , D̂:=D .                            (7)  

 

Here rT n  and rT n
r  are called, 

respectively, the left and the right transformation matrices. 

For the time being, we consider  the  case  where  (5) is a 

single input single output (SISO) system (i.e., 
 n 1B  and

 1 nC ).  Interpolatory  projection  methods  seek  a  ROM 

(6) by constructing the matrices T  and Tr  in such way that 

the reduced transfer function interpolates the original transfer 

function at a predefined set of interpolation points. That is to 

find ˆ ( )iG  such that, for i = 1, 2,….., r, 

 

ˆ( ) ( )i iG G  ,                                     (8) 

 

where i   are the interpolation points. Often, in addition 

to the above conditions, we are interested in matching more 

quantities, that is 

 

( ) ( )ˆ( ) ( ),j j
i iG G    for  j=0, 1,…., q,            (9)  

 

where 
(j+1)C( E-A)i B  is called the j-th moment of G(s) 

at i  and represents the j-th derivative of G(s)  evaluated  at 

i .  Note that for j = 0,  these  conditions  reduce  to  (8).  In 
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this paper, we restrict ourself to simple Hermite interpolation, 

where j = 0 and j = 1. In the following, we discuss how 

projection can ensure reduced interpolating approximation, 

by carefully selecting the matrices T  and Tr . 

The following results suggest a choice of T  and Tr that 

ensures Hermite interpolation with the use of rational Krylov    

subspace. 

Lemma 2.1 ([15]):   Consider   two   sets   of   distinct 

interpolation points,  
1

r

i i



 and  

1

r

i i



 ,  which are 

closed under conjugation (i.e., the points are either real or 

appear in conjugate pairs). Suppose T  and Tr  satisfy the 

following 

 

      1 1
1Range T pan ( E-A) , , ( E-A) ,r rs B B (10) 

 

        1Range T pan ( E-A) , , ( E-A) .rs C C    (11)  

 

 Then  T     and   Tr     can be chosen real and 

1ˆ ˆ ˆˆ ˆ( ) ( )G s C sE A B  where ˆ ˆˆ ˆ, , ,E A B C are as defined 

in (6), satisfies the Hermite interpolation conditions 

   

ˆ ˆ( ) ( ), ( ) ( )i i i iG G G G , 

 

and 

 

ˆ( ) ( ),i iG G when i i , for i = 1, 2,….., r, 

 

where ( )iG  and ˆ ( )iG  are, respectively, the first 

derivatives of ( )iG  and ˆ ( )iG . 

The subspace in (10), that is the span of the column vectors

 1( E-A)i B , for i = 1, 2,….., r,  can be  considered as the 

union of shifted rational Krylov subspaces. For a given shift 

frequency     ,     the       rational      Krylov      subspace 

 (   1 1
q E-A) , ( E-A) B  is defined as 

 

 
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 

 
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1 1
q

1

E-A) , ( E-A) :

pan ( E-A) , ,( E-A) .q

B

s B B
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If q = 1 for each i  , i = 1, 2,….., r,  then the  union  of  

such shifted rational Krylov subspaces is equivalent to the 

subspace in (10). Analogously, the subspace in (11) can be 

also be defined as the union of shifted rational Krylov 

subspaces given above. Thus to summarize, rational Krylov 

based model reduction requires a suitable choice of 

interpolation points, the construction of T  and Tr  as in 

Lemma 2.1 and the use of Petrov-Galerkin conditions [18]. 

The quality of the reduced model is highly dependent on 

the choice of interpolation points and therefore various 

techniques [11] have been developed for the selection of 

interpolation points. Recently in [15], the issue of selecting a 

good choice of interpolation points is linked to the problem of 

H2-optimal model reduction. 

Definition 2.1: A ROM (6) is called 2Η -optimal if it 

satisfies 

 

2
2

ˆdim( )

ˆmin
G r

G G G
H H

               (13) 

 

For SISO systems, IRKA is proposed in [15] which 

prominently finds an efficient choice of interpolation points 

that guarantees the H2-optimality for the reduced system. The 

procedure starts with an initial set of interpolation points, and 

it updates the interpolation points until the iterations 

converge to a reference value. 

Model reduction of MIMO dynamical systems, rational 

tangential interpolation has been developed by Gallivan et.al. 

[16]. The problem of rational tangential interpolation is to 

construct T  and Tr  such that the reduced transfer function 

ˆ ( )G s  tangentially interpolate the original transfer function 

G(s) at a predefined set of interpolation points and some fixed 

tangent directions. That is 

 

ˆG G ˆ, T T
i i i i i i i ib G b c Gc , 

 

 and 

 

G ˆT T
i i i i i ic b c G b , for i = 1, 2,….., r, 

 

where  m
ib  and p

ic are the right and left tangential 

directions, respectively, and correspond to the interpolation 

points    . With these quantities, the rational tangential 

interpolation can be achieved. The IRKA based interpolatory 

projection methods for the MIMO systems have been 

discussed in [15], where the algorithm updates interpolation 

points as well as tangential directions until the reduced 

system satisfy interpolate based necessary condition for 2Η

-optimality. We have summarized a complete procedure of 

such method for MIMO system in Algorithm 1. 

 
Algorithm 1:  IRKA for MIMO systems in (5) 

 

Input:  E, A, , CB and D from (5). 

Output: Reduce dimensional matrices   , ˆ ˆˆ ˆ, , , ,E A B C      

and  D̂  as in (6). 

1. Make an initial selection of the interpolation points         

 
1

r

i i



 , and the tangential directions  and 

1

r

i i
b ,  

      and 
1

r

i i
c .   

    2. Construct 

      b b   
 

1 1
1 1T ( E-A) , , ( E-A) ,r r rB B      

       1 rc c     
 1T ( E-A) , , ( E-A) ,rC C   (14) 

    3.   while (not converge) do 

    4.      Ê=T ETr ,  Â=T ATr ,  
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               B̂=T B ,  Ĉ=CTr .   

    5.  Compute  

ˆ ˆˆAz Ezi i i  and   ˆ ˆˆA Ez .i iy y  . 

    6. b 
    ˆˆ , Bi i i y  , and c  ˆ

i iCz  

                                                          for i = 1, 2,….., r. 

    7.   b b   
 

1 1
1 1T ( E-A) , , ( E-A) ,r r rB B     

    8. 1 rc c     
 1T ( E-A) , , ( E-A)rC C .  

    9. i= i+1 

   10. end while 

   11. Construct the reduced matrices as in (7). 

 

 

III. MODEL REDUCTION OF INDEX 1 DAES 

However, Algorithm 1 can be generalized for the model 

reduction of power systems associated with index 1 DAEs (1).  

For this purpose first we need to convert the DAEs (1) into 

the ODE system (2). The right and left transformation 

matrices as defined in (14) then can be formed as 

 

1 1
1 1( ) , , ( ) ,r r rT E A Bb E A Bb         (15) 

 

1 1( ) , , ( )T T T T
l r rT E A C c E A C c .       (16) 

 

A close observation reveals that to generate each term of   

Tr , we have to solve a shifted linear system like 

 

( )E A v Bb                                 (17) 

 

which is equivalent to  

 

            
1 1

1 1 2 3 1 2 24 4( )E A A A A v B A A B b . 

 

Recalling the strategy in [5] instead of solving the above 

linear system we can solve the linear system for v . Note that 

although the linear system in (18) has a larger dimension than 

that of (17), it is sparse and can efficiently be solved by 

suitable direct [19] or iterative solvers [18]. 

 

1 1 2 1

3 4 2

,
E A A Bv

b
A A B

                     (18) 

 

Analogously, when we construct the left transformation 

matrix Tl  to obtain each term of (16), we can avoid of solving 

a liner system like T T T( )E A w C c . Instead, we solve 

the linear system for w . Once we  have  Tl   and Tr , then the 

reduce model (4) can be obtained by forming the reduce 

dimensional matrices as 

 

1 1 3 1

2 4 2

,

T T T T

T T T

E A A Cw
c

A A C
                  (19) 

1

1 1
1 2 3 1 2 24 4

1 1
1 2 3 2 24 4

ˆ :

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ: , :

ˆ ˆ ˆ ˆ ˆ: , : ,

T
l r

a a

E T E T

A A A A A B B A A B

C C C A A D D C A B

       (20) 

 

where 1 1 2 2 3 3
ˆ ˆ ˆ, ,T T

l r l rA T AT A T A A A T , and 

1 1 1 1
ˆˆ , .T

l rB T B C C T  

The whole procedure  to  obtain  the  reduced  ODE  system 

(4), for a given index 1 descriptor system (1) is shown in 

Algorithm 2.    However,  a  simple  algebraic  manipulation  

represents the ROM (4) as in the reduced index 1 DAE 

setting: 
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      (21) 

 

IV. NUMERICAL RESULTS 

 

  Algorithm 2:  IRKA for index 1 DAE systems 

 

Input:  1 1 2 3 4 1 2 1 2, , , , , , , ,E A A A A B B C C  from (1). 

Output: Reduce dimensional matrices ˆ ˆˆ ˆ, , ,E A B C  

               as in (20). 

1. Select initial interpolation points 
1

r

i i
, and tangent  

directions 
1

r

i i
b , and  

1

r

i i
c .   

    2. for i = 1, 2,….., r  do 

3. Solve the linear systems 

                    
1 1 2 1

3 4 2

,
iE A A Bv

b
A A B

 for iv , and 

                  
1 1 3 1

2 4 2

,

T T T T
i

T T T

E A A Cw
c

A A C
 for iw . 

    4.   Construct 

               1 2, , 1 2, ,[ , ], [ , ].r r l rT v v v T w w w  

    5. end for 

    6. while (not converge) do 

7. Form ˆ ˆˆ ˆ, , ,E A B C  as in (20). 

8. Compute  

             ˆ ˆ ˆ
i i iAz E z , and ˆ ˆ ˆ

i iy A y E z . 

    9. ˆ ˆ,
T

i i ib y B , and ˆ
i ic C z   

   for i = 1, 2,….., r. 

   10. Go to step 2 

   11. i= i+1 

   12. end while 

   13. Form  the reduced matrices as in (20). 

 

To assess the performance of the techniques, this section 

discusses some numerical tests. The method is applied to a set 
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of data introduced in [5].  The dimension of the original 

model is 7135, where the number of differential and algebraic 

variables are respectively, n1 = 606 and n2 = 6529. We 

compute exemplary reduce order model of dimension 50, 

using Algorithm 2. The computations are carried out using 

MATLAB 7.11.0 (R2010b) on a board with 2 Intel Xeon 

X5650 CPUs with a 2.67-GHz clock speed. 

Fig. 1 shows the frequency responses (largest singular 

value of G(ω) of full and 50 dimensional reduce order models 

in frequency  domain  over  the  frequency (ω)  range of 10
-2 

to 102. 

In Fig. 2, the absolute error between the frequency 

responses of full and reduce models are shown. The relative 

error   in   the  frequency  responses  of   reduce  dimensional   

model  and full model are depicted in Fig. 3. 
 

 
Fig. 1. Sigma plot (maximum singular values) of full and reduce order 

models. 

 

 
 

Fig. 2. Absolute error in the sigma plot of full and reduce order models. 

 

 
Fig. 3. Relative error in the sigma plot of full and reduced order models. 

 

Since our model is a MIMO, we are also interested to 

analyze the one-to-one input-output behaviors of the full and 

reduce dimensional models. Considering the single input 

single output relations, for example, input 1 to output 2,  Fig. 

4 shows the time domain response of reduce dimensional 

model nicely matches that of the full model. 

 
Fig. 4. Time domain response from input 1 to output 2 of full system  and 

reduce system. 

 

Fig. 5 and Fig. 6, respectively, show absolute and relative 

deviations between full and reduced models.  Note  that  for 

time domain  simulation  we  apply  an  implicit Euler method 

with fixed time step size 10-2. 
 

 
Fig. 5. Absolute deviation between time domain responses (from input 1 to 

output 2) for the full and reduce systems. 

   

 
Fig. 6. Relative deviation between time domain responses (from input 1 to 

output 2) for the full and reduce systems. 

 

V. CONCLUSION 

We have presented an   efficient   reduction  technique for 

An    index 1   DAEs  system,  which in particular,  arises from 

linearization of power system models around an equilibrium 

point [1].  

A balancing based criterion for such models has been 

shown in [5]. There the main drawback is solving two 

continuous time algebraic Lyapunov equations.  Based on 

existed techniques, here we have investigated interpolatory 

projection method via IRKA which is computationally cheap. 

Our strategy allows to work on the original matrices of the 

descriptor system and exploit their sparsity in the solver.  

We have presented an algorithm to obtain reduced 

standard ODE systems. We also have shown how to extract 

the index 1 descriptor systems from the reduced ODE 

systems. The efficiency and accuracy has been demonstrated 
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for one large model with 7135 degrees of freedom. 
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