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Abstract—The divergence and curl operators appear in 

numerous differential equations governing engineering and 

physics problems. These operators, whose forms are well 

known in general orthogonal coordinates systems, assume 

different casts in different systems. In certain instances, one 

needs to custom-make a coordinates system that my turn out to 

be skew (i.e. not orthogonal). Of course, the known formulas for 

the divergence and curl operators in orthogonal coordinates are 

not useful in such cases, and one needs to derive their 

counterparts in skew systems. In this note, we derive two 

formulas for the divergence and curl operators in a general 

coordinates system, whether orthogonal or not. These formulas 

generalize the well known and widely used relations for 

orthogonal coordinates systems. In the process, we define an 

orthogonality indicator whose value ranges between zero and 

unity. 

 
Index Terms—Coordinates systems, curl, divergence, 

Laplace, skew systems.  

 

I. INTRODUCTION 

The curl and divergence operators play significant roles in 

physical relations. They arise in fluid mechanics, elasticity 

theory and are fundamental in the theory of electromagnetism, 

[1], [2]. 

The physical significance of the Curl of a vector field F , 

denoted by F , is that it measures the amount of  rotation 

or angular momentum of the contents of a given region of 

space. If the value of the curl is zero then the field is said to be 

irrotational. The curl is defined in an arbitrary orthogonal 

curvilinear coordinates 1 2 3( , , )u u u  as 
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where
 ie  is a unit vector in the direction of

 iu , and
 

1 2 2 3F F F F  1 3e e e . The length of the tangent vector in 

the direction of iu is known as scale factor, ih , and is defined 

by 
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where r is the position vector in any three dimensional space, 

i.e. 1 2 3( , , )r r u u u . 

Note that 
i

r

u




 is a tangent vector to the iu curve where 

the other two coordinates variables remain constant. A unit 

tangent vector in this direction, therefore, is 
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The Divergence of a vector field over a control volume V  

bounded by the surface S , denoted by F , is defined by  
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where n  is an outward unit normal vector to the surface S . 

The divergence actually measures the net outflow of a vector 

field from an infinitesimal volume around a given point (or 

how much a vector field "converges to" or "diverges from" a 

given point). The general expression of the divergence for 

arbitrary orthogonal curvilinear coordinates is given by 
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The Laplacian operator of a scalar 1 2 3( , , )u u u  , 

denoted by 2 is defined as the divergence of the gradient 

of  ; that is 
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where     
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Equations (1) and (5) are valid for orthogonal systems 
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only (i.e. 1e , 2e , and 3e  are orthogonal), [3]-[5]. 

 

II. DIVERGENCE FOR GENERAL COORDINATES SYSTEMS 

The Divergence Theorem relates the flow, or the flux, of a 

vector field through a surface to the behavior of the vector 

field inside the surface. More precisely, it states that the 

outward flux of a vector field through a closed surface is 

equal to the volume integral of the divergence over the region 

inside the surface, i.e. 

 

S D

w n dS wdv                          (8) 

 

where D is a closed bounded region with piecewise smooth 

boundary S, n  is an outer unit vector normal to the surface 

S , 1 2 3w w w w  1 2 3e e e , w n  represents the component 

of w in the direction of n , and dv  is the volume bounded 

by the region D. 

 

 
Fig. 1. An infinitesimal control volume bounded by the surface. 

 

Considering the bottom shaded surface dS of the given 

control volume, Fig. 1, one can find that 
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Hence 
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On the upper surface, using Taylor series, the outward flux 

is 
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The net flux through the upper and lower surfaces, then, is 
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Using the same argument, the net flux through the 

remaining two pairs of surfaces are: 
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w n dS  on the left hand side of equation (8) becomes 
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where 2e e 3 1e e is an orthognality indicator of the 

system,  0 1e  . 

The volume element, ,dv  is given by 
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The right hand side of equation (8), then, is 
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In the limit, by equating (12) and (14), an expression for 

the divergence of a vector field w in a general coordinates 

system, whether orthogonal or not, is given by 
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It is easy to see that when 1e   (orthogonal system), 

equation (15) reduces to (5). 

 

III. CURL FOR GENERAL COORDINATES SYSTEMS 

 

 
Fig. 2. An infinitesimal surface enclosed by the closed path c. 
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Stokes' Theorem relates the surface integral of the curl of a 

vector field over a surface to the line integral of the vector 

field over the surface boundary, or 

 

S c

w n dS w dr                    (16) 

 

Considering the bottom shaded surface of the given 

control volume as shown in Fig. 2, 

This surface is bounded by the curve c which is traced 

counterclockwise. This curve is comprised of the four 

segments c1 , c2 , c3 , and c4. We evaluate the right hand side 

and the left hand side of (16) over this surface and two other 

surfaces not opposite to each other. On the shown shaded 

surface, one can write 
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where ( )iw  is the component of  w  in the direction 

of ie . 

The term w dr in equation (16), over the four segments 

comprising the curve c, is 
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In the limit, after equating (17) and (18), 
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Similar results can be obtained for the other two surfaces. 
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Equations (19), (20) and (21) can be written in the concise 

form 
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Obviously, the difference between orthogonal and 

nonorthogonal coordinates systems lies in the introduction of 

the scalar triple product 2e e 3 1e e  into the expressions of 

F , and F . This product returns a value of unity if the 

coordinates system is orthogonal. 

 

IV. EXAMPLE 

Consider the simple right-handed coordinates system 

( , , )u v z  which is related to the Cartesian system by the 

relations 
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This system is composed of the planes: 

y u  which are planes parallel to the  x z  plane, 

y x v   which are planes that are extrusions of the straight 

lines y x u   into the z -direction, and planes that are 

parallel to the x y  plane. 

The level curves of the coordinates system on the x y  

plane are shown in Fig. 3. 

 
Fig. 3. Example of a non-orthogonal coordinates system. 

 

Obviously, the coordinates system is not orthogonal. 

Simple calculations reveal that 
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The corresponding unit vectors are 
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Now, the orthogonality indicator is  
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The value of the orthogonality indicator being different 

from unity indicates that the system is indeed skew. 

One can now find the corresponding operator (15) as 
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and the three components of the curl in (22) to be  
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V. CONCLUSION 

Two formulas for the divergence and curl operators in any 

coordinates systems whether orthogonal or not have been 

obtained. These formulas generalize the well known and 

widely used relations for orthogonal coordinates systems. 

The difference between orthogonal and nonorthogonal 

coordinates systems lies in the introduction of the 

orthogonality indicator 2e e 3 1e e  which returns a value 

of unity if the coordinates system is orthogonal.  
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