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Abstract—In this paper, an algorithm for the clustering 

problem   using a combination of the genetic algorithm with the 

popular K-Means greedy algorithm is proposed. The main idea 

of this algorithm is to use the genetic search approach to 

generate new clusters using the famous two-point crossover and 

then apply the K-Means technique to further improve the 

quality of the formed clusters in order to speed up the search 

process. 

 Experimental results demonstrate that the proposed genetic 

algorithm combined with K-Means converges faster while 

producing the same quality of the clustering compared to the 

standard genetic algorithm. 

 
 Index Terms—Clustering problem, genetic algorithm, 

K-means. 

 

I. INTRODUCTION 

Cluster analysis has been a hot topic of research due to its 

applicability in many disciplines including market 

segmentation [1], image processing [2], web mining [3], and 

bio-informatics [4], [5] to name just a few. The Clustering 

Problemcan be defined as a tuple(X, A, R, Φ) where: 

 X is finite set of n data objects: X = {O1,O2, .....On}, 

 A is a finite set of attributes or features: A = {AO1 , 

AO2 , .... AOn}. Thus each data object Oi∈ X has a 

corresponding discrete set of attributes AOi from which 

it can beidentified, 

 R is a relation defining the constraints on the resulting 

clusters. For any two clusters Ci and Cj, Ci∩Cj = ∅, 

∀i ≠ j, and  i, j∈ 1, 2, ....k. The relation to be respected by 

all the formed clusters is that no pairs ofclusters should 

have a data object in common, 

 And Φ is the objective function used for evaluating the 

clustering. 

 

A solution to the clustering problem requires the 

partitioning of the n data objects into a set of k clusters Ck 

such that Φ is optimized. The number of possible partitions 

for n objects into k clusters is given by is a Stirling number of 

the second kind, which is given by: 

  
  

 

  
         

 
 
   

   

   

 

 

This shows the combinatorial explosion due to the number 

of possible solutions. Clearly, searching all possible 
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clustering alternatives would not be feasible. The problem 

becomes much harder when the number of clusters is not 

known. In this case, then the number of different partitions is 

the sum of the Stirling numbers of the second kind: 

   
 

      

   

 

where kmax is the maximum number of clusters with kmax ≤ n. 

Because of these two reasons, there is a considerable interest 

in the design of heuristics to solve the clustering problems 

using a cost function that quantifies the goodness of the 

clusters on the basis of the similarity or dissimilarity 

measures of the data objects. A commonly used cost function 

is the sum of squared distances of the data objects to their 

cluster representatives. Given a partition P and the cluster 

representatives C, the clustering is usually assessed by Eq. (1) 

 

               

   

   

 

(1) 

 

where Dist is a distance function taken between a data object 

and the cluster center. Euclidean Distance is the most widely 

used distance function in the clustering context, and it is 

calculated using Eq. (2) 
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The hardness of the problem has stimulated the search for 

efficient clustering approximation algorithms which can be 

broadly be divided into three main types: hierarchical, 

partitional, and local search methods. Hierarchical clustering 

algorithms [6]-[8] construct a hierarchy of clusters using 

either agglomerative or divisive style. The agglomerative 

style starts with each data object in its own cluster, and at 

each step, the closest pair of clusters are merged using a 

metric of cluster proximity. Different agglomerative 

algorithms differ in how the clusters arethe other hand, 

Non-hierarchical or partitional clustering [9]-[11] are based 

on iterative relocation of data objects between clusters. The 

set of data objects is divided into non-overlapping clusters 

such that each data object lies in exactly one cluster. The 

quality of the solution is measured by a clustering criterion. 

At each iteration, the algorithm improves the value of the 

criterion function until convergence is reached. The 

algorithms belonging to this class generate solutions from 

scratch by adding to an initially empty partial solution 
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components, until a solution is complete. They are regarded 

as the fastest approximate methods, yet they often return 

solutions of inferior quality. Finally, local search methods 

constitute an alternative to the traditional partitional 

techniques. These techniques offer the advantage of being 

flexible. They can be applied to any problem (discrete or 

continuous) whenever there is a possibility for encoding a 

candidate solution to the problem, and a mean of computing 

the quality of any candidate solution through the so-called 

cost function. They have the advantage that they could escape 

more efficiently from local minima. They start from some 

initial solution and iteratively try to replace the current 

solution by a better one in the light of the cost function in an 

appropriately defined neighborhood of the current solution. 

Their performances depend highly on finding a tactical 

interplay between diversification and intensification. The 

former refers to the ability to explore many different regions 

of the search space, whereas the latter refers to the ability to 

obtain high quality solutions within those regions. Examples 

include genetic algorithms [12]-[14], Tabu Search [15], 

Grasp [16]. 
 

II. THE ALGORITHM
 

A. K-Means Algorithm 

The K-Means [17] is a simple and well known algorithm 

used for solving the clustering problem. The goal of the 

algorithm is to find the best partitioning of n objects into k 

clusters, so that the total distance between the cluster’s 

members and its corresponding centroid, representative of 

the cluster is minimized. The algorithm uses an iterative 

refinement strategy using the following steps: 
 

 

B. Genetic Algorithms 

Genetic Algorithms [18] are stochastic methods  for global 

search and optimization and belong to the group of 

Evolutionary Algorithms. They simultaneously examine and 

manipulate a set of possible solution. Given a specific 

problem to solve, the input to GAs is an initial population of 

solutions called individuals or chromosomes. A gene is part 

of a chromosome, which is the smallest unit of genetic 

information. Every gene is able to assume different values 

called allele. All genes of an organism form a genome which 

affects the appearance of an organism called phenotype. The 

chromosomes areencoded using a chosen representation and 

each can be thought of as a point in the search space of 

candidate solutions. Each individual is assigned a score 

(fitness) value that allows assessing its quality. The members 

of the initial population may be randomly generated or by 

using sophisticated mechanisms by means of which an initial 

population of high quality chromosomes is produced. The 

reproduction operator selects (randomly or based on the 

individual’s fitness) chromosomes from the population to be 

parents and enters them in a mating pool. Parent individuals 

are drawn from the mating pool and combined so that 

information is exchanged and passed to off-springs 

depending on the probability of the cross-over operator. The 

new population is then subjected to mutation and enters into 

an intermediate population. The mutation operator acts as an 

element of diversity into the population and is generally 

applied with a low probability to avoid disrupting cross-over 

results. Finally, a selection scheme is used to up- date the 

population giving rise to a new generation. The individuals 

from the set of solutions which is called population will 

evolve from generation to generation by repeated 

applications of an evaluation procedure that is based on 

genetic operators. Over many generations, the population 

becomes increasingly uniform until it ultimately converges to 

optimal or near-optimal solutions. The next section explains 

in detail the genetic algorithm used for the clustering problem. 

Algorithm 1 shows the various steps used in the proposed 

genetic algorithm. 

 

Algorithm 1: Enhanced genetic algorithm with K-means. 

input : Problem P0 

output: Solution Cfinal(P0) 

1) begin 

2) Generate initial population; 

3) Evaluate the fitness of each individual in the 

population; 

4) while (Not Convergence reached) do 

5)   Select individuals according to a scheme to    

   reproduce; 

6) Breed each selected pairs ofindividuals through 

crossover; 

7) Apply K-Means if necessary to each offspring 

    according to Pk−Means; 

8) Evaluate the fitness of the intermediate population; 

9) Replace the parent population witha new 

generation ; 

10)  end 

11)  end 

 

C. Implementation Details 

1) Fitness function 

The Notion of fitness is fundamental to the application of 

genetic algorithms. It is a numerical value that expresses the 

performance of an individual (solution) so that different 

individuals can be compared. The fitness function used by 

our genetic algorithm is simply Eq. (1). 

2) Representation 

A representation is a mapping from thestate space of 

possible solutions to a state of encoded solutions within a 

particular datastructure. The encoding scheme used in this 

work is based on integer encoding. An individual or 

chromosome is represented using a vector of N positions, 

where N is the set of data objects. Each position corresponds 

to a particular data object, i.e, the ith position (gene) 
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Steps 1. This step determines the starting cluster’s 

centroids.  A very common used strategy is to assign random 

k, different objects as being the centroids.

Steps 2. Assign each object to the cluster that has the 

closest centroid. In order to find the cluster with the most 

similar centroid, the algorithm must calculate the distance 

between all the objects and each centroid.

Steps 3. Recalculate the values of the centroids. The 

values of the centroid are updated by taking as the average of 

the values of the object’s attributes that are part of the cluster.

Steps 4. Repeat Steps 2 and Step 3 iteratively until objects 

can no longer change clusters.



  

represents the ith data object. Each gene has a value over the 

set{1,2,....k}. These values define the set of cluster labels. 

3) Initial population 

The initial population consists of individuals generated 

randomly in which each gene’s allele is assigned randomly a 

label from the set of cluster labels. 

4) Cross-over 

The task of the cross-over operator is to reach regions of 

the search space with higher average quality. New solutions 

are created by combining pairs of individuals in the 

population and then applying a crossover operator to each 

chosen pair. The individuals are visited in random order. An 

unmatched individual il is matched randomly with an 

unmatched individual im. Thereafter, the two-point crossover 

opera- tor is applied using a cross-over probability to each 

matched pair of individuals. The two-point crossover selects 

two randomly points within a chromosome and then 

interchanges the two parent chromosomes be- tween these 

points to generate two new off- spring.  Recombination can 

be defined as a process in which a set of configurations 

(solutions referred as parents) undergoes a transformation to 

create a set of configurations (referred as off-springs). The 

creation of these descendants involves the location and 

combinations of features extracted from the parents. The 

reason behind choosing the two point crossover is the results 

presented in [19] where the difference between the different 

crossovers are not significant when the problem to be solved 

is hard. In addition, the work conducted in[20] shows that the 

two-point crossover is more effective when the problem at 

hand is difficult to solve. 

5) K-Means 

By introducing local search at this stage, the search within 

promising areas is intensified.  This local search should be 

able to quickly improve the quality of a solution produced by 

the crossover operator, with- out diversifying it into other 

areas of the search space. In the context of optimization, this 

rises a number of questions regarding how best to take 

advantage of both aspects of the whole algorithm. With 

regard to local search there are issues of which individuals 

will undergo local improvement and to what degree of 

intensity. However care should be made in order to balance 

the evolution component (exploration) against exploitation 

(local search component). Bearing this thought in mind, the 

strategy adopted in this regard is to let each chromosome go 

through a low rate intensity local improvement. The 

K-Means Algorithm described A is used for one iteration 

during which it seeks for a better clustering. 

6) Mutation 

The purpose of mutation which is the secondary search 

operator used in this work, is to generate modified 

individuals by introducing new features in the population. By 

mutation, the alleles of the produced child individuals have a 

chance to be modified, which enables further exploration of 

the search space. The mutation operator takes a single 

parameter pm, which specifies the probability of performing 

a possible mutation. Let I = {c1, c2,…,ck } bean individual 

where each of whose gene ciis a cluster label. In our mutation 

operator, each gene ci is mutated through flipping this gene’s 

allele from the current cluster label ci to a new randomly 

chosen cluster label if the probability test is passed. The 

mutation probability ensures that, theoretically, every region 

of the search space is explored. The mutation operator 

prevents the searching process from being trapped into local 

optima while adding to the diversity of the population and 

thereby in- creasing the likelihood that the algorithm will 

generate individuals with better fitness values. 

 
Fig. 1. Average development for 100 runs. Evolution of the cost function 

Eq. (1) for Irisis: Objects: 150. Attributes: 4.

 
Fig. 2. Average development for 100 runs.Evolution of the quality of the 

clustering for Irisis. 

7) Selection 

The selection operator acts on individuals in the current 

population. During this phase, the search for the global 

solution gets a clearer direction, whereby the optimization 

process is gradually focused on therelevant areas of the 

search space. Based on each individual fitness, it determines 

the next population.   In the roulette method, the selection is 

stochastic and biased to- wards the best individuals.  The first 

step is to calculate the cumulative fitness of the whole 

population through the sum of the fitness of all individuals.  

After that, the probability of selection is calculated for each 

individual as being  

                 

   

   

 

where | P | stands for the cardinality of the population. 

8) Convergence criteria 

As soon as the population tends to lose its diversity, 

convergence occurs and all individuals in the population tend 

to be identical with almost the same fitness value. The 

algorithm is assumed to reach convergence when no further 

improvement of the best solution has not been made during 5 
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consecutive generations. 

 
Fig. 3. GA Vs GAKM: GLASS: Objects: 214, Attributes: 9, Clusters: 6. 

 
Fig. 4. GAKM: IRISIS: Objects: 150, Attributes: 4, Clusters: 3. 

 
Fig. 5. GA Vs GAKM: SEEDS: Objects: 210, Attributes: 7, Clusters: 3. 

 
Fig. 6. GA Vs GAKM: HABERMANN: Objects: 306, Attributes: 3, 

Clusters: 2. 

 

III.  BENCHMARK INSTANCES AND PARAMETER SETTINGS 

The performance of the genetic algorithm is compared 

against its enhanced variant using a set of instances taken  

from real industrial problems. This set is taken from the 

Machine Learning Repository website 

(http://archive.ics.uci.edu/ml/datasets). Dueto the 

randomization nature of the algorithms, each problem 

instance was run 100 times. The tests were carried out on a 

DELL machine with 800 MHz CPU and 2 GB of memory. 

The code was written in C and compiled with the GNU C 

compiler version 4.6. The following parameters have been 

fixed experimentally and are listed below: 

• Crossover probability = 0.85 

• Mutation probability = 0.01 

• Population size = 50 

 

IV. ANALYSIS OF RESULTS 

The plot at Fig. 1 shows that the quality of the clustering is 

getting worse after reaching a peak at 0.91 while the plot in 

Fig. 2 shows that the cost function is indicatingthe opposite 

and attaining slightlylow values. This observation 

demonstrates that the cost function scores do not capture the 

quality of the clustering making it an unsuitable metric to 

apply for maximizing both the homogeneity within each 

cluster and the heterogeneity between different clusters. This 

is the main reason behind not comparing the value of ED 

produced by the two algorithms and rather choosing the 

solution of the clustering given in 

(http://archive.ics.uci.edu/ml/datasets) as the only criterion 

for comparing the quality of the clustering produced by 

GAKM and GA. The plot in Fig. 3-Fig. 6 show the evolution 

of the quality of the clustering as a function of time. Both 

algorithms start with random solutions leading to the same 

quality of clustering. During the first seconds of the search, 

GAKM already reaches high quality clusters (around 85%) in 

smaller amount compared to GA (89% of the time GA for Iris, 

95% of the time of GA for Seeds, 4% of the time of GA for 

Glass, and finally 97% of the time of GA for Habermann). 

Both algorithms are able to avoid the so-called plateau 

regions. These regions span an area in the search space where 

the quality of the clustering remains unchanged. In all these  

four cases, the curve of GAKM remains above to that of GA 

and continue to maintain its superiority until convergence 

reached. Table I compares the running time of both 

algorithms. The two algorithms reach a success ratio of 100% 

but their times differ. The time spent does vary significantly 

with GAKM requiring the least amount of time (between 9% 

and 96% of the time of GA ). 

 
TABLE I: COMPARING THE TIME OF GAKM AND GA 

Problems O A GAKM GA 

GLASS 214 9 13.82s 35.0s 

Habermann 306 3 3.26s 12.0s 

Iris 150 3 0.86s 3.0s 

Seeds 210 7 2.83s 20.0s 

Tae 151 5 1.01s 3.0s 

Blood 748 4 58.19s 200s 

Bank 1372 4 401.69s 900s 

Wine 178 13 1.86s 6.0s 

Fertility 100 9 0.09s 1.0s 

 

V. CONCLUSIONS 

This paper introduces a combination of a genetic algorithm 
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and the popular K-Means for the clustering problem. The first 

conclusion drawn from the results at least for the in- stances 

tested in this work generally indicate that using K-Means as a 

strategy to improve the off-springs appears to improve 

substantially the performance of the genetic algorithm while 

producing the same quality of the clustering as GA. The 

quality of the clustering has always been compared against 

the solution given in (http://archive.ics.uci.edu/ml/datasets) 

and not through the value of the Euclidean Distance cost 

function widely used in literature since it does not capture the 

quality of the clustering making it an unsuitable metric to 

apply for maximizing both the homogeneity within each 

cluster and the heterogeneity between different clusters. 
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