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Abstract—The electro mechanical brake (EMB) system is a 

efficient pure electric vehicle braking system in where 

technologies in the fields of electronics, mechanics, and vehicle 

communication network were considered at the same time. 

Because that offered information to the electronic control of the 

EMB system is taken from several detectors, during 

developments of the pure electric vehicle, unsolved difficulties 

in EMB system are the accurate fault detection as well as the 

timely process of a fault tolerant control. In this paper, the fault 

detection and the fault tolerant control on the mathematical 

models of a current, a speed, and a pressure detector loaded on 

the EMB actuator system will be studied. Based on the 

three-loop control architecture model of the EMB actuator, 

these models of detectors are constructed by the method of the 

dynamics analysis of the actuating agency respectively. On the 

purpose of improving the accuracy of fault detection, the clonal 

selection - support vector regression algorithm (CSA-SVR) is 

proposed, which is a combination of CSA and SVR calculation 

methods. Through CSA-SVR algorithm, optimized parameters 

of support vector machine (SVM) and improved accuracy of 

fault detection are obtained. The adaptive fault tolerant control 

architectural model mentioned which is designed using 

CSA-SVR algorithm in this paper shows effective function in 

fault detection, isolation from fault, and fault estimation. 

 
Index Terms—Electro mechanical brake, fault diagnosis, 

fault reconstruction, support vector machine, clonal selection 

algorithm. 

 

I. INTRODUCTION 

The electro mechanical brake (EMB) system is one direct 

reason of electric vehicle’s breaking function, Which is the 

key technology for fundamentally improving the driving 

stabilization, comfortableness, and economics of energy 

consumption in the electric vehicle [1]. EMB actuators are 

composed of retarding mechanisms, movement conversion 

devices, and executive motors mainly [2]. EMB actuators are 

loaded with various detectors like detecting currents, speeds, 

and pressures which are used for information perception, 

detection and obtainment. Obviously, if there is something 

wrong in detectors, there will no detection of driver’s brake 

intention and no reliable breaking effect. Hence, for the 

purpose of improving the robustness of the breaking system, 

the study of fault detection and fault tolerant control of 

sensors in EMB actuator is especially important. 
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In the previous studies of sensor fault detection, one kind 

of kalman filter was designed and published by Gao [3] 

which could detect sensor’s fault effectively. However, such 

a method is suitable for liner system only. There is another 

reference [4] that mentions fault detection methods based on 

the BP neural network calculation. As well as, in the 

reference [5], the calculation method based on wavelet neural 

network is mentioned which can resolve the sensor fault like 

from temperature, flow rate, and pressure in the variable air 

volume (VAV) system. Above researches show that the 

neural network calculation method has realized functions of 

self-learning, parallel processing, and fault tolerance. 

However, neural network calculations need huge training 

sample, have complex constructions, and show poor real time 

performance. Such over fitting phenomena will cause low 

generalization ability. 

Through studies of fault tolerant control, fault diagnosis, 

control and observer are established using neural network 

calculation and BP neural network calculation as stated in 

references [6] and [7]. According to them, under the fault 

occurrence, information from fault sensor will be replaced by 

information from tolerant control system. However, 

disadvantages are that it is depending on the initial value 

settings, easy to sink into local extremum, and causing over 

fitting. 

The rest of the paper is organized as follows: In Section II, 

the mathematical model for EMB actuator is proposed. In 

Section III, CSA-SVR fault detection method is mentioned 

which is the combination of SVM and CSA algorithms and 

parameters of SVM was optimized. In Section IV and Section 

V, the fault tolerant control architectural model of sensors in 

EMB actuator systems is mentioned using CSA-SVR 

algorithm. Concluding remarks are given in Section VI. 

 

II. MATHEMATICAL MODEL OF THE EMB ACTUATOR 

Three main compositions of EMB actuator system are a 

retarding mechanism, a movement conversion device, and an 

executive motor. Fig. 1 shows the three-loop control 

architecture model for EMB actuator. In this paper, three 

controls indicate pressure, speed, and current signals, These 

information is taken from the implementation of the 

executive motors [8]-[10]. 

Whether the EMB actuator operates normally or not 

largely depends on the accuracy of information obtained 

from current, speed, and pressure sensors. Current and speed 

information come from the brushless direct current motor 

(BDCM) in EMB system while pressure information comes 

from the brake caliper. The output model of current and speed 

sensors are established using the mathematical model of 

BDCM [11]. The output model of the pressure sensor is 
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established through the mechanical relationship between a 

force and a load torque. 

 

 
Fig. 1. Three-loop control architecture model for EMB actuator. 

 

When BDCM is normal, states of BDCM are expressed as 

bellow: 
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Among the formula 1, 
sL  

is a self-inductance of stator 

winding, 
mL  

is a mutual-inductor between any two stator 

windings. Based on Kirchhoff voltage Law (KVL), a voltage 

expression in the motor circuit is: 

 

                         
e

dt

di
LRiEa                                  (2) 

 

Here, 
aE  

is an armature voltage, e  
is an armature counter 

electromotive force, I
 
is an armature current, L

 
is an 

armature inductance, R
 
is an armature resistance. 

The counter electromotive force of the stator winding is 

proportional to the rotor acceleration. The expression can be 

shown as: 

   

   
meKe                                          (3) 

 

In formula 3, 
eK  

and 
m  

indicate a counter electromotive 

force coefficient and corner respectively. 

An electromagnetic torque generated in a stator winding is: 
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Here, 
TK  

is a torque coefficient. 

The kinetic equation of BDCM is: 

 

L
m

mfem T
dt

d
JKT 


                           (5) 

 

Here, 
fK  

is a friction factor, J  
is a inertia load, 

LT  
is a 

motor load torque. 
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Based on the physical structure of the EMB actuator, the 

relationship between a braking force and a motor load torque 

is expressed as formula 8: 

 

                            C

RT
F m                                       (8) 

 

Here, F , C , 
mR , and T  are braking force, the brake 

efficiency factor, brake disc radius, and braking torque, 

respectively. 

 

III. SENSOR FAULT DETECTION MODEL BASED ON 

CSA-AVR ALGORITHM 

As a powerful mechanical studying method, SVM 

algorithm is reported by V. Vapnik etc.. That is widely used 

in fields of a regression and a functional approximation with 

the function of overcoming a dimension curse. 

During constructing a regression prediction model, SVM 

algorithm approximates a real function through studying 

given samples. We can choose appropriate solution 

parameters ( 0 ), penalty parameter ( 0C ), and kernel 

function ( ),( 'xxK ) , to construct and optimize. 
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The optimal solution, (*) * *

1 1( , , , , )T

l l      is obtained 

from formula 9. The positive component ）（）（ 0* j  was 

chosen to calculate 



l

i

jiiii xxKyb
1

*
),()(  . The 

construction of the decision is used to expect unknown 

samples. 
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The quality of SVM depends on selected kernel parameters 

and penalty parameters of SVM. The accuracy of the 

regression model that is constructed using previous 

parameters, is difficult to realize intelligent fault detection 

and fault tolerant control in the nonlinear system. In clonal 

selection algorithm, mechanisms like genetic recombination, 

affinity maturation, and receptor editing are more appropriate 

to show the better parameters search process [12], [13]. In 

order to select best kernel parameter and penalty parameter in 

SVR algorithm, optimizing SVM parameters method based 

on clonal selection calculation is mentioned in this research, 

as well as, by using CSA-SVR algorithm, the detection model 
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of sensor fault detection is established. Fig. 2 shows flow 

chart of parameters optimization based on clonal selection 

algorithm. 

 

Antibody Repertoire(P)

Including Memory Cells (M)

Temporary  

Antibody 

Repertoine(Pn)

Temporary 

Antibody Pool(C)

Do all the above conditions 

are met?

End

Select The Best 

Affinity Candidates

Clone The Best 

Antibodies

Hypermutated 

The Antibodies 

Mutated Antibody 

Pool(C*)

Y

N

Start

Reselect The Best 

Antibodies 

Diversity 

Introduction(Nd)

 
Fig. 2.  Flow chart of parameters optimization. 

 

SVM parameters optimization method based on CSA is 

realized by the consideration of SVM parameters 

optimization process, antigen recognizing and antibody 

evolution process in immune system together. Firstly, CSA 

parameters including evolution algebra, crossover probability, 

and mutation probability should be set. Select the random 

antibody and let randomly generated initial antibodies of 

CSA be decoded as the kernel and punishment parameter. 

The K-fold cross-validation method is used to calculate the 

correct classification rate of the antibody. Then, depending 

on the accuracy rate of classification to the testing samples, 

antibodies among the antibody repertoire are dealt with 

selective clone, crossover, and mutation operation. Finally, 

optimal affinity antibody will be outputted and corresponding 

kernel function and penalty parameter will be obtained. 

Obtained parameters will be input into SVR algorism to 

construct an approximation model of sensors. Fault detection 

of sensors will be realized by residual values of 

approximation outputs and real outputs of sensors. EMB 

actuator fault detection and architecture model are shown in 

Fig. 3. 

 

 
Fig. 3. Fault detection and diagnosis architecture model for EMB actuator. 

IV. ADAPTIVE FAULT-TOLERANT CONTROL MODEL 

When a fault is detected by fault detector, the adaptive 

fault tolerant control method can be used for further 

improvement of the reliability for EMB actuator. In this 

research, mathematical models of formula 6-8 and decision 

function shown in formula 10 are used to construct the fault 

reconstruction models of current, speed, and pressure sensors 

respectively.  

When constructing a speed sensor reconstruction model, 

signals from current and pressure sensors are used to estimate 

signals from speed sensor. The speed sensor reconstruction 

model is shown as follow: 
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where, k  
is a fault occurring moment in sensors, l  is 

sampling interval before fault occurrence. The pressure 

reconstruction model can be written as follows: 
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The current reconstruction model can be written as 

follows: 

 

*

1 1

1

ˆ ( ) ( , )
l

k i i k k

i

I K F b    



                        (13)

 

 

Among above formulations, K indicates radial basis 

function. 
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where, s  is a kernel function. Through above reconstruction, 

another fault sensor signal could be estimated from both of 

mathematical models in EMB actuator and normal working 

sensor. 

As shown in Fig. 4, a sensor adaptive fault-tolerant control 

model for EMB actuator is established using fault detection 

models and reconstruction models of three kinds of sensors. 
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Fig. 4. Sensor adaptive fault-tolerant control model for EMB actuator. 

 

As shown in Fig. 4, input signals of current, speed, and 

pressure from EMB actuator are imported into the fault 

detection and reconstruction model of various sensors. 
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Through detecting fault from fault detector, output detection 

signals are transformed to the reconstruction model and the 

signal switching model in each sensor. Reconstruction model 

of each sensor estimates the signal of fault detector based on 

signals from normal working two sensors. When sensor faults 

occur, on the purpose of realizing adaptive fault tolerant 

control, the output signal from fault detector will be blocked 

by the signal switching model and estimated signals from 

reconstruction model will replace signals from fault detector. 

 

V. SIMULATION RESULT 

In order to confirm the reliability of the adaptive fault 

tolerant control architectural model, simulations are carried 

out against to current, speed, and pressure sensors of EMB 

actuator under MATLAB environment. Parameters of clonal 

selection algorithm are shown in Table I. 

 
TABLE I: PARAMETERS OF CLONAL SELECTION ALGORITHM 

Patameter Value 

Antibodies scale 20 

Encoding length 10 

Encoding length (Pc) 0.2 

Mutation rate (Pm) 0.01 

Selected individual number (m) 12 

Proportional control factor 0.2 

Antibody concentration threshold 0.6 

Evolution generation 100 

 

Fig. 5-Fig. 7 are stuck fault of detecting sensors, constant 

gain fault, and constant bias fault respectively. 
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Fig. 5. Sensor stuck fault signal detection and estimation. 
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Fig. 6. Sensor constant gain fault signal detection and estimation. 
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Fig. 7. Sensor constant bias fault signal detection and estimation. 

 

In Fig.5-Fig. 7, figures (a) indicate real output of sensors 

and comparison pictures of estimated outputs from SVR and 

CSA-SVR algorism. Figures (b) indicate residual comparison 

pictures of SVR and CSA-SVR algorism. From simulation 

results, when a sensor fault occurs, it is observed that there 

are obvious jumps in the residual wave between real output 

values and estimated output values. Fault detection model 

based on CSA-SVR algorism is more accurate than 

traditional SVR fault detection model.  

If a fault from fault sensor were detected, output signals of 

fault detector would be blocked by switching model and 

replaced by compensated output signals from reconstruction 

model. Fig. 8-Fig. 10 show fault reconstructions of sensors 

and deviation comparison pictures. 

 

 
Fig. 8. Current sensor reconstruction and error comparison diagram. 
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Fig. 9. Pressure sensor reconstruction and error comparison diagram. 
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Fig. 10. Speed sensor reconstruction and error comparison diagram. 

 

In Fig.8-Fig. 10, figures (a) indicate real output of sensors 

and comparison pictures of estimated outputs from SVR and 

pictures of SVR and CSA-SVR algorism.  

From simulation results, estimated output signal using 

reconstruction model of CSA-SVR algorism is more accurate 

than traditional reconstruction model of SVR fault detection 

model. 

 

VI. CONCLUSION 

In this research, fault tolerant control architectural model 

of sensors based on CSA-SVR algorism is proposed. Firstly, 

mathematical models of three kinds of sensors like current, 

speed, and pressure sensors in the EMB actuator are 

established. Next, through CSA-SVR algorism, sensor fault 

detection model is constructed. As well as, the residual 

between real signal and estimated signal is used to detect 

fault. Finally, using CSA-SVR algorism, one kind of adaptive 

fault tolerant control is designed. Consequently, the quality 

of fault detection and fault tolerant control models in EMB 

actuator system is improved.  
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CSA-SVR algorism. Figures (b) indicate residual comparison 




