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Abstract—During the internal model control of multivariate 

multiple time delay system, process model is very important in 

the design of controller, but complicated mathematical model is 

often encountered in decoupled multivariable multiple time 

delay system and needs to be reduced order. So this paper 

proposes a low order identification structure and an 

optimization method for model approximation of the complex 

model containing the time delay and non-minimum phase parts. 

In this paper, with the adoption of Pade approximation, a 

suboptimal approximate algorithm is used for the model 

approximation and model identification. The integral square 

error index and the frequency-domain integral square error 

index, as well as the integral time absolute error index is used to 

evaluate the approximate model comprehensively. Simulation 

results show that using the proposed model identification 

structure and adopting the suboptimal approximate algorithm 

to deal with this kind of approximation, that can get an 

approximate model that well reveals the dynamic 

characteristics of system and has a high approximation 

precision. 

 

Index Terms—Model approximation, complicated model, 

suboptimal approximate algorithm, error performance index.  

 

I. INTRODUCTION 

Model identification and model approximation is often 

used in the design and analysis of control system, but the 

difficulty of controller design is determined by the 

complexity of the model. During the design and 

implementation of the multivariate multiple time delay 

system, mathematical model of control plant is relatively 

complex after decoupling [1], [2], so, model approximation is 

often needed to simplify the design of the controller. Model 

approximation causes a wide attention in the field of 

industrial control especially in the process of model 

predictive control and model optimization [3]. The purpose 

of model approximation can be described to find a low order 

approximate model that can fully describe the dynamic 

behavior of the complex system. The precision of the low 

order approximate model is of great importance since it 

determines whether the controller design is good or not. In 

the past few decades, significant research studies on model 

reduction have been reported, such as Krylov Subspace 

method [4], Pade approximation method [5], Routh 
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approximation method [6], Dominant Poles method, 

Continued Fraction method [7], Gradual Waveform 

estimation method [8], Balance order reduction method, and 

so on. Though all these methods are suitable for linear 

systems, they are not useful to non-linear system. In recent 

years, there are some model order reduction researches in the 

time delay system and the unstable system, paper [9] disused 

the identification method of non- equilibrium time delay 

model problems from closed loop step test, Dingyu Xue [10], 

[11] presented a Suboptimal reduction algorithm for the 

model order reduction of single input single output time 

delay system or the none time delay systems. 

However, though multivariable multiple time delay 

systems or multivariable multiple time delay systems 

combined with non-minimum phase system is often 

encountered in the internal model control, the identification 

and approximate research about this model is rarely reported. 

Although paper [12] proposed a frequency weighted 

recursive least squares (FRLS) algorithm solved one case of 

the complex model and made some achievements, but the 

derivation formula of the frequency-domain weighted 

recursive least squares algorithm is complex, besides it needs 

to introduce a new external loop to solve time delay 

parameters, the calculation of which is tedious and 

inconvenience in engineering application, what’s more, the 

paper [12] did not study of the non-minimum phase system. 

Other papers, genetic algorithm is used for model 

approximation [1], but it needs large amount of calculation 

and optimization process may easily fall in premature, when 

encounters a complex problem, the computation time will be 

a problem that largely affecting the industrial implementation. 

However, the Suboptimal reduction algorithm in paper [10], 

[11]  has the advantages of simple calculation, good delay 

fitting features, and can keep the stability of the original 

system. Hence, aiming at this problem, the suboptimal 

reduction algorithm is been extended to approximate the 

multivariable multiple time delay systems and multivariable 

multiple time delay systems combined with non-minimum 

phase system [1], [2] in this paper. 

In model identification or model approximation, the main 

purpose is to solve the model structure and the optimization 

algorithm .The reasonable model structure, more simplified 

and effective fast optimization algorithm is the key to the 

model identification and model approximation. And choose a 

reasonable error evaluation index is the basis to evaluate 

whether approximate model is good or bad. Based on 

multivariable multiple time delay systems or multivariable 

multiple time delay systems combined with non-minimum 

phase system which is often encountered in internal model 

control [1], [2] This paper proposes an approximate model 

structure and a Suboptimal approximate method, as well as 
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the error metrics quality for evaluating the model 

approximation performance, The approximate results are 

compared with frequency-domain weighted RLS method. 

This paper is organized as follows. Section II presents the 

approximate model structure. In Section III the error metrics 

quality will be introduced. Section IV presents the 

Suboptimal approximate scheme. Then in Section V different 

simulation results will be discussed in this work. Finally, 

Section VI brings to a close of the paper. 

 

II. APPROXIMATE MODEL STRUCTURE 

During the controller design of internal model system with 

multivariable time delay, the encountered mathematical 

model is often composed by two or more delay parts 

combined with the non-minimum phase model [1], [2] This 

kind of mathematical model of the system are often expressed 

by the following transfer function ( )G s  

1

1( ) ( ) ...... ( ) lss

lG s G s e G s e
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; ( 1... )l k , ( )m n are rational 

transfer functions, 
,l ja ,

,l ib ( 0,1,..., ; 0,1,...2,i m j n  ) are 

the coefficients of the rational transfer function,
1... l  is 

different time delay, Notice that when 2l  , ( )G s is the two 

time delay parts superposition system, which widely exists in 

the internal model control. 

The model structure of multivariate time delay 

superposition system ( )G s  is complicated, it is hard to 

design its internal model controller directly, so it needs to get 

an approximate simplified model ( )Gr s which has closely 

dynamic characteristics of ( )G s  to simplify the design of 

the controller. The selection structure of simplified 

approximation model is directly related to the approximation 

effect, and it also determines the difficulty of the subsequent 

controller design. 

The following approximate model structure is used for the 

above complex model: 

First order plus time delay model (First order reduced 

model referred to as “FORM”): 

m ( )
1

sk
Gr s e

Ts




                               (2) 

Second order plus time delay model with arbitrary poles 

(Second order reduced model referred to as “SORM”) 

2
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                       (3) 

The model structure in (2) is mainly used to approximate 

model whose unit step response is without overshoot, besides, 

the model structure (3) can be used to approximate model not 

only whose unit step response is overshoot but also whose 

unit step response is without overshoot. 

In many cases, equation (3) can approximate the complex 

object model very well, and it is good enough to meet the 

dynamic characteristics of the original system. But when the 

original complex system contains non-minimum phase model 

structure, the model structure in (3) can not reflect the 

non-minimum phase characteristics of the original system, 

thus causes the subsequent design of controller ignore the 

influence of non-minimum phase, and hard to reach the ideal 

control effect. 

Motivated by the above problems, the paper proposed a 

second order plus time delay model with zeros (Second order 

reduced non-minimum model referred to as “SORNM”) 

presented as the following expression, for the complicated 

model approximation.  

1 2

2

1 2

( ) sb s b
Gr s e

s a s a




 
                       (4) 

where 1 2 1 2, , , ,a a b b  are parameters that to be identified. 

 

III. THE ERROR METRICS QUALITY 

In this paper, the error functional integral evaluation index 

is used to evaluate model approximation method, the error 

functional integral evaluation index usually uses 

instantaneous error function ( )e t  for functional integral 

evaluation, which involve various index such as the integral 

absolute error index(IAE), the integral square error 

index( ISE), the integral square time error index(ISTE), the 

integral time square error index(ITSE), and the integral time 

absolute error index (ITAE).The IAE performance index is 

suitable for evaluating the system with medium and small 

deviation transition process, systems designed based on this 

kind of performance index have the advantage of appropriate 

damping and a good transient response, however, the IAE 

performance index can not reflect obviously to the change of  

system parameters. The ISE performance index is suitable for 

process evaluation if the system transition appears large 

deviations. The ISTE index weighs emphasis on the late 

transition process error, has a good selectivity, and reflects 

the quickness and accuracy of the system. The ITSE 

performance index is focusing more on the late appear 

transient response error than the large initial error response. It 

is widely used for its good practicability and selectivity (the 

large the performance indicators change follows parameters 

change is, the better the selectivity is). Many literatures 

consider ITAE performance index as one of the best 

performance index to evaluate single input single output 

control systems and adaptive control systems [13]. In this 

paper, it is also as an index to evaluate the approximation 

performance of multivariable system. 

The integral squared error index (ISE) and the 

frequency-domain integral squared error index (FISE)as well 

as the integral time absolute error index (ITAE) are adopted 

to analyze the approximation accuracy of the model. 

Any order approximate model can be expressed as  

0 11
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 
              (5) 

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

129



  

where coefficients
0( ,..., )

m
a a and 0 1( ,..., )nb b   represent 

the vector ( )Ta and ( )Tb  respectively. Essentially, the 

model approximation is based on the set of 

coefficients
0( ,..., )

m
a a and 0 1( ,..., )nb b  . 

Equation (5) can be written as the time domain differential 

equation form 

( ) ( 1) (1)

1 1 1 1 1 0 1( ) ( ) ... ( ) ( )n n

ny t b y t b y t b y t

           

( ) (1)

1 0= ( ) ... ( ) ( )m

ma r t a r t a r t                 (6) 

where ( )r t  is the system input,
1( )y t  is the approximate 

model output, let
1( ) ( ) ( )y t y t t   as the output of the 

original system, ( )t as the output signal deviation which is 

caused by model approximation. Let the actual output instead 

of the approximate output, the 6 is equivalent to the following 

expression. 

( ) ( 1) (1)

1 1 0( ) ( ) ( ) ... ( ) ( )n n

ne t y t b y t b y t b y t

          

( ) (1)

1 0[ ( ) ... ( ) ( )]m

ma r t a r t a r t      

( ) ( 1) (1)

1 1 0( ) ( ) ... ( ) ( )n n

nt c t c t c t

            (7) 

The error ( )e t contains the deviation signal and the 

deviation of the derivative signal, which means the dynamics 

characteristic differences between the approximation model 

and the original model. 

The Laplace change of the error signal is expressed as 

1

1 1 0( ) [ ... ] ( )n n

nE s s b s b s b Y s
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1 0[ ... ] ( )m

ma s a s a R s                        (8) 

For a particular input ( )r t , ISE and ITAE performance 

index is written as： 

2

0
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

                                   (9) 

                    

0
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                                (10) 

By using the popular Parseval theorem, from (9), gets the 

following frequency domain index 

       
1
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Let s j , and write (9) as the discrete form index 

2
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Substitute
2

1 2 3( )A s a s a s a s   and 1 2( )B s b s b  , 

According to (4), it gets 
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Put (13) into (12), thus (13) is further written as 
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Noticed that (14) is the minimized function of frequency 

domain which is called frequency- domain integral square 

error [14].Take the problem in (12) and (14) into account 

within a chosen frequency range min max~  ,    where 

1i i iv    (assume that 1 2 ... N     ) are the 

weights. iv Shows that the greater the difference between 

two test points frequency is, the greater the weight is. 

 

IV. SUBOPTIMAL APPROXIMATE ALGORITHM 

The Suboptimal reduction algorithm is proposed in paper 

[10] for model order reduction of single time delay system in 

1994, because of the optimization in the process used Pade 

approximation to deal with the time delay, the reduction 

algorithm is called Suboptimal reduction algorithm. By using 

the time weighted integral squared index as a benchmark, the 

objective function of the Suboptimal reduction algorithm can 

be evaluated as 






  



0

22 dttetfJ ),()(min)(               (15) 

the meaning of the minimum integral error criterion changes 

with f (t) changes. When p=0, the minimum integral error 

criterion is ISE index, in one hand ISE index can reach the 

minimum objective function fast, in another hand, it restrains 

the large error transition. When p=1, the criterion is referred 

to as ISTE index, ISTE index can not only control the large 

deviation but also shorten the adjustment time at the same 

time.                                              

The Laplace transform of error signal ( )e t is expressed as 

( ) [ ( ) ( )] ( )rE s G s G s R s                   (16) 

Let ( ) ( ) ( )h t f t e t , the frequency domain expression of 

the objective function can be evaluated from  

 
1

( ) min ( ) ( )
2

j
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J H s H s ds
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

 

 
  

 
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If the rational function )(sH (the Laplace transform 

of )(th ) does not contain the nonlinear part, the frequency 

domain algorithm (Astrom1970) can be used to evaluate (17) 

directly. However, as the existence of the time delay that 

makes the problem nonlinear, Pade approximation is needed 
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where f (t) is a weighting function, ( , )e t  is the error signal.

 is a vector by composition of undetermined coefficients, 

array  such as
1 2, , 1 2[ , .... , .... , ]T

i ja a a b b b  .

Considering the weighting function f (t)=t p, p=0, 1, 2,....., 



  

for the time delay. The approximated error signal is rewritten 

as 

1 1 1( ) [ ( ) ( , ) ( ) ( , )k l kl lE s G s P s G s P s     

( ) ( , )] ( )kGr s P s R s                        (18) 

 

where 1,.. lk k  is Pade approximation order of the original 

model, k is Pade approximation order of the approximation 

model. 

The procedures for Suboptimal approximation algorithm is 

as follows. 

Step 1. According to the approximate model structure, 

select the initial approximation model 
0

0( )exp( )rG s s  

Step 2. Use (16) to obtain an error function ( )E s , select 

the appropriate ( )f t and calculate ( )H s . 

Step  3. Obtain the objective function value in (15). 

Step  4. Use Powell recursion method to iterate one step, 

 find  better estimates
1

1( )exp( )rG s s . 

Step 5. Set
0 1( ) ( )r rG s G s and 0 1  , update data and 

repeat the Step 2 until satisfactory approximate model is 

obtained. 

 

V. ILLUSTRATIVE EXAMPLE 

To test the proposed reduction approach and its 

applications, four examples are presented. The examples 

given in this paper are from paper [11] and paper [2], whose 

internal model control design is multivariable multiple time 

delay systems. Example 1 and Example 2 are the models 

without overshoot in paper [11], Example 3 and Example 4 

are the models contain non-minimum phase. 

As the original model has multiple delays, so Pade 

approximation is needed for the delay parts.  

 

Example (1) : 
10 4

2 2

0.00545 0.010326
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s se e
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s s s s

 

  
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Example  (2) : 3.140.3543
( )

(13.5 1)(2.61 1)

sG s e
s s


   

2.3450.5519 0.3853 (51.6 1)

(16.55 1)(2.55 1) (15.5 1)(6.6 1)

s s
e

s s s s

  
 
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TABLE I: APPROXIMATION MODELS AND PERFORMANCE INDEXES OF EXAMPLE 1 

Method Model  structure Approximate model FISE ISE ITAE 

FRLS[11] FORM 4
6.43.6737 10 1.2197

( )
21.9737 1

ss
Gr s e

s


  




 0.5711 0.8401 33.523 

Suboptimal FORM 
8.140.0591

( )
0.0485

sGr s e
s




 0.4081 0.4330 19.166 

FRLS[11] SORM 4

2

1.22
( )

115.0258 23.8051 1

sGr s e
s s


 

 0.0662 0.1781 6.3525 

Suboptimal SORM 
5.45

2

0.0055
( )

0.1278 0.00452

sGr s e
s s


 

 
0.0403 0.0287 0.5424 

Suboptimal SORNM 
5.7

2

0.03609s+0.00481
( )

0.1169 0.003943

sGr s e
s s


   

0.0314 0.0134 0.2292 

 

TABLE II: APPROXIMATION MODELS AND PERFORMANCE INDEXES OF EXAMPLE 2 

Method Model structure Approximate model FISE ISE ITAE 

FRLS[11] FORM 43.0549 10 1.2915
( )

5.6437 1

s
Gr s

s

 




 
0.327 0.9205 10.006 

Suboptimal FORM 
0.4070.00566 0.2138

( )
+0.1656

ss
Gr s e

s


  

0.2037 0.4077 8.8126 

FRLS[11] SORM* 2
0.36

2

4.3753 7.06 1.2916
( )

43.5119 10.7588 1

ss s
Gr s e

s s

 


 
 

0.0227 0.081 2.0348 

Suboptimal SORM* 2
0.0784

2

0.02079 0.1732 +0.01751
( )

0.2106 0.01356

ss s
Gr s e

s s

 


 

 
0.0116 0.0106 0.2934 

Suboptimal SORNM 
0.0691

2

0.1772 +0.01593
( )

0.2069 0.01234

ss
Gr s e

s s


   

0.0124 0.0153 0.2394 

 

As the reduction model in paper [12] of Example 2 is 

SORM* (the second order with all order structure), for the 

facility of comparison with the FRLS method in paper [12], 

the paper use SORM* structure instead of SORM in Example 

2. (In fact, the SORM structure is not suitable for Example 2) 

The first-order approximate models and the second order 

approximate models gotten by Suboptimal approximation 

method and FRLS approximation method, together with the 

FISE, ISE and ITAE performance indices for step inputs are 

given in Table I and Table II. Table I is the performance 

index contrast of Example 1, Table II is the same for Example 

2. 

Note that whatever using Suboptimal approximate method 

or FRLS approximate method, the performance indices 

gotten by the second order model structure is smaller than 

that gotten by the first order model structure, which inflects 

the better approximation effect. It also can be seen that the 

approximation algorithm which is been used, that can get 
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higher model precision for step inputs than the FRLS 

approximate method. Besides, when chooses proposed 

SORNM model structure the ITAE value is smallest, and 

ITAE performance index is one of the performance 

evaluation indexes for control system who has a better 

practicability and selectivity. 

 
TABLE III: APPROXIMATION MODELS AND PERFORMANCE INDEXES OF EXAMPLE 3 

Method Model  structure Approximate model FISE ISE ITAE 

FRLS[12] SORM 
4.23

2

1
( )

3.782 2.234 1

sGr s e
s s


 

               

 

0.2394 0.3697 0.6721 

Suboptimal SORM 
4.1

2

0.2875
( )

0.7541 0.2875

sGr s e
s s


 

 

0.1511 0.2462 0.3119 

FRLS[12] SORNM 
2.13

2

0.3584 0.1846
( )

0.598 0.1846
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s s

 
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0.0108 0.0946 0.2976 

Suboptimal SORNM 
1.7

2

0.4038 0.1923
( )

0.6154 0.1923

ss
Gr s e

s s

 


 
 

0.0051 0.0335 0.0282 

 
TABLE IV: APPROXIMATION MODELS AND PERFORMANCE INDEXES OF EXAMPLE 4 

Method Model  structure Approximate model FISE ISE ITAE 

FRLS[12] SORM 
2.09

2

1
( )

1.5712 2.0765 1

sGr s e
s s


 

 

0.7643 0.8798 2.0314 

Suboptimal SORM 
2

2

0.5786
( )

1.645 0.5786

sGr s e
s s


 

 

0.5359 0.1898 1.6529 

FRLS[12] SORNM 
0.31

2

1.9761 1.0006
( )

2.3362 3.1254 1

ss
Gr s e

s s

 


 
 

0.1159 0.1409 1.2600 

Suboptimal SORNM 
0.153

2

0.8264 0.4144
( )

1.3040 0.4144

ss
Gr s e

s s

 


 
 

0.0471 0.0762 1.1908 
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Fig. 1.  Unit step responses for Example 1 and its approximate model. 
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Fig. 2.  Nyquist curves for Example 1 and its approximate order model. 
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Fig. 3. Unit step responses for Example 2 and its approximate model. 
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Fig.  4.  Nyquist curves for Example 2 and its approximate order model. 
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To   further illustrate the using suboptimal algorithm and 

the adopting second order non-minimum phase model 

identification structure (SORNM) has a better effect, the unit 

step responses of the approximate models and the original 

complex model for Example 1 and Example 2 are shown in 

Fig. 1 and Fig. 3 for one hand, the corresponding Nyquist 

contrast diagrams are shown in Fig. 2 and Fig. 4 for another 

hand It can be seen that the suboptimal optimum model 

matches the original complex model extremely well over the 

whole time and frequency range. The FRLS models are not as 

good as the suboptimal optimum model especially in the 

frequency domain. 

    The original model of Example 3 and Example 4 is more 

complex, Example 3 is a non-minimum phase model that has 

unit step overshoot, and Example 4 is a non-minimum phase 

system with right half plane zeros. For the existence of time 

delay,  the Nyquist diagram of original model has infinite lag 

with the increase of frequency, so the Pade approximation is 

used for the original model. The SORM approximate models 

and the SORNM approximate models as well as the 

performance criterion are shown in Table III and Table IV. It 

can be seen from the Table that the values of ISE index, FISE 

index and ITAE index gotten by SORNM structure are 

superior to what is gotten by SORM structure. In another 

words, the optimum values of the suboptimal method are 

better than the FRLS method. 
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Fig. 5-Fig. 8 are the simulation comparisons of SORNM 

model and SORN model using suboptimal optimum 

algorithm. As can be seen from the Fig. 5 and Fig. 7, for 

non-minimum phase system, the use of SORN model 

structure ignores the right half plane zeros parts, the unit step 

response error is very large within the non-minimum phase 

range. And its frequency dynamic characteristics are 

comparatively large difference when compared with the 

original system (Fig. 6 and Fig. 8). However, the SORNM 

model structure joined the right half plane zeros parts, both 

the unit step response curve and the frequency response 

curves fit the original system very well. 
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Fig. 5. Unit step responses for Example 3 and its approximate order model. 
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Fig.  6. Nyquist curves for example 3 and its approximate order model. 
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Fig. 7. Unit step responses for Example 4 and its approximate order model. 
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Fig.  8. Nyquist curves for Example 4 and its approximate order model. 

 

VI. CONCLUSION 

In this paper, a SORNM identification structure has been 

proposed and a suboptimal approximate algorithm is used for 

model approximation of multivariable multiple time delay 

non-minimum phase system in internal model control design. 

The values of ITAE performance index, ISE performance 

index, and FISE performance index are been used to evaluate 

the approximation result. Several examples which including 

unit step response model with overshoot, or without 

overshoot ,and non-minimum phase model have been given 

to show the  effectiveness and practicability of the method, 
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which adopts suboptimal approximate algorithm together 

with the proposed SORNM  identification structure. The 

simulation results show that the approximate resultant model 

gives a higher precision to the unit step response and 

frequency response of the original model compared with 

FRLS algorithm  
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