

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

119DOI: 10.7763/IJMO.2015.V5.447

2

Abstract—This paper presents and evaluates a new approach

of modeling energy consumption of embedded systems resulted

by concurrent software components. The objective is to enable

energy estimation within early phases of system development,

which allows system designers to compare different allocations

of software components within networked systems.

The model is presented in detail and its application demo

started by a case study. Additionally, an execution time

estimation for software components is presented which is

necessary for the energy model – but previously not available.

The model was developed being applicable early in the

development process, i.e. previous to any software

implementation. This was realized by using only available

information.

The individual elements of the presented model are: energy

consumption of software components themselves, energy

consumption resulted by any software component, and energy

consumption resulted by specific software components. The

variables of the model can be estimated during early phases of

system design using existing methods, expecting the execution

time of software components. For that reason, a previously

energy estimation technique [1] was further developed to

estimate the execution time based on program flowcharts.

The estimation was verified by using three commercially

available benchmarks. The flowcharts of these are utilized to

estimate the execution times. The comparison between

estimated and measured execution time of an exemplary

embedded system results in an estimation error bandwidth

between -12.5 % and +6.8 %. Additionally, an algorithm is

presented which enables an automated analysis of program

flowcharts as part of the execution time estimation.

The developed model was applied within an automotive case

study which shows a theoretical energy saving potential of

36.2 %. This demonstrates the potential and relevance of

modeling energy estimation within early development phases.

Index Terms—Embedded systems, energy efficiency, energy

estimation, networked embedded systems (automotive).

I. INTRODUCTION

Embedded systems designers, such as those active in the

automotive, aerospace or other industries, are frequently

given energy consumption requirements for the finished

product. This makes it necessary to estimate the energy

consumption early in the design process to realize the

evaluation of different designs w.r.t. energy consumption.

Because most industrial domains such as the automotive

industry have especially long development cycles, a lot of

Manuscript received October 20, 2014; revised January 12, 2015. The

research leading to these results has received funding from the German

Federal Ministry for Economic Affairs and Energy (BMWi).

The authors are with the Fraunhofer Institute for Embedded Systems and

Communication Technologies ESK, Munich, Germany (e-mail: {forename.

surname}@esk.fraunhofer.de).

hardware and software choices must be made very early

during the design process [2]. Optimizing energy

consumption early in the design process can therefore be a

major challenge. Embedded systems are characterized by a

high degree of interaction with the environment using sensors

and actuators and these systems feature a wide range of

technologies that significantly impact energy consumption

down the road. For instance, the placement of functionality

within a networked embedded system impacts the partial

networking modes, which involves deactivating certain

system components that are not being used. Optimizing this

aspect can reduce energy consumption by as much as

30 % [3].

As embedded systems become more prevalent and

powerful, they are consuming more energy. This paper

focuses on estimating energy consumption of embedded

systems during the early stages of design. Our research

concentrates on the area of embedded systems commonly

found in automobiles, aircrafts and industrial systems. In

today’s luxury-class vehicles for instance, the electrical and

electronic components draw up to 2.5 kW ([3], [4]).

Compared to what the vehicle engine requires (e.g. 55 kW),

2.5 kW seems small. However, the electrical components

consume energy during every mode of operation, even when

in standby mode. The vehicle engine consumes most of its

energy during acceleration and even here the maximum

power is seldom demanded. An increase of 100 W thus

means that fuel consumption rises by 0.1 liter per 100 km,

leading to an increase in CO2 emissions of 2.5 g per km [3].

This illustrates the considerable potential for energy savings,

an aspect that should be factored in during the development

process.

This paper presents an energy estimation model for

concurrent software components executed on embedded

hardware. The objective is to enable system designers to

compare different allocations of software components within

networked embedded systems. The individual elements of

the model can be estimated using existing methods expecting

the execution time of software components. Therefore, a

method for execution time estimation is presented which uses

information of program flowcharts composed of generic

flowchart elements. The focus of this work is to enable the

energy consumption estimation within early phases of system

development as suggested within [5], since most of the

existing energy estimation methods are not applicable. This is

caused by too less available information within the early

phases of system development, e.g. “System Design” of the

development model “V-Model XT” [6].

The paper is structured as follows: Section II discusses

different existing energy estimation models. In Section III the

energy estimation model of concurrent software components

Early Energy Estimation of Networked Embedded

Systems Executing Concurrent Software Components

Patrick Heinrich, Hannes Bergler, and Erik Oswald

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

120

is presented. This includes the execution time estimation and

the algorithm for the automated analysis of program

flowcharts. The estimation method is evaluated within

Section IV. Within Section V the model is applied to a case

study and finally the paper closes with conclusion and future

work in Section VI.

II. RELATED WORK

Energy estimation techniques are categorizable concerning

their level of abstraction. Ibrahim [7] identified two main

abstraction levels for models that rely on the running system:

The low-level power modeling with focus on hardware and

the high-level techniques with focus on software. Models

which do not rely on running systems are part of a further

(higher) abstraction level, where the presented model of this

paper is included.

The low-level abstraction level of Ibrahim [7] includes the

circuit-level, gate-level, register-transfer-level and the

microarchitecture level. These estimation techniques use

detailed electrical descriptions of the processor to estimate

the energy consumption. These techniques are used for

example for processor development.

The high-level abstraction level contains two categories:

the Instruction Level Power Analysis (ILPA) and the

Functional Level Power Analysis (FLPA). Tiwari et al. [8]

introduced the ILPA, which is based on the energy

consumption of assembler instructions including

inter-instruction effects. The maximum estimation error rate

of this technique is specified as 3 %. Further research was

done on this topic by different researchers (e.g. [9], [10] and

[11]). The estimation technique based on FLPA was

introduced by Laurent et al. [12], where the functional

elements (e.g. processing unit, memory management unit) of

processor cores are individually analyzed. The energy

consumption of these elements is measured under different

conditions, which enables the energy estimation of assembler

code. Senn et al. [13] extended the approach to the

programming language “C”. The reached estimation errors

are 4.2 % analyzing “C” code and 1.8 % for assembler code.

Ducroux et al. [14] combines the techniques of ILPA and

FLPA to further increase the estimation correctness to 4 %

for “C” code. However, these estimation techniques require

the existence of the final source code, which is normally not

available within early development phases [5]. Another

missing aspect is the different possible program flows during

execution which influence the energy consumption of the

program, viewed as a whole.

The abstraction level of models, which do not rely on

running systems, such as the presented approach, enables

energy estimation without the presence of source code.

Existing approaches use petri nets to enable the modeling of

program flows on embedded systems. Shorin et al. [15] uses

stochastic petri nets transformed from UML [16] models with

MARTE profile [17] to describe the program flow of

software. At first sight this seems to be similar to the

execution time estimation approach, however, existing

source code is divided into source code specific unbranched

program blocks of software and provided with energy

consumption and the transition times between those; then,

different branches of the software flow are provided with

execution probabilities. This approach needs to know the

energy consumption of the individual program blocks. These

blocks are not generic and so individual measurements are

necessary – previous to the energy consumption estimation of

the system. Callou et al. [18] also uses petri nets to simulate

the program flow. The petri nets are automatically generated

from assembler code. After that the execution probabilities of

branches and iterations must be added by the system designer.

This approach results in an estimation accuracy of 93 % for a

program in whole. However, the final source code is not

given within early phases of system development.

Additionally, all the presented techniques are focusing on

the estimation of single software components. The presented

energy estimation model of this paper is designed to estimate

the energy consumption of concurrent software components

and their influence on embedded systems using information

available within the development phase “System Design” [5].

III. ENERGY ESTIMATION OF CONCURRENT SOFTWARE

COMPONENTS

In this section the available information for the energy

estimation and the challenges are discussed. Afterwards, the

energy estimation of embedded systems executing concurrent

software components is presented. This includes a detailed

presentation of the execution time estimation of software

components based on program flowcharts, which is a

necessary input for the energy estimation model, but was

previously not available. At the end of this section an

algorithm is presented which enables the automated analysis

of program flowcharts, which is usable to further automate

the execution time estimation.

A. Energy Estimation within Early Design Phases

Energy estimation during early stages of the design phase

enables system designers to evaluate their design choices

with respect to the energy consumption of the later system.

Doing this within the development phase “System Design” [5]

supports for example the comparison of different software

realization options or the selection of the processor hardware

to be used. The earlier energy evaluations are possible during

the development process, the more possibilities to influence

the design towards more energy efficiency are available,

because fewer decisions have already been made [5]. Early

energy estimation is challenging, caused by the necessary

database on which the energy estimation is done. As

discussed within Section II, most models need information

which are not available during early phases of system

development to obtain precise estimations.

Information commonly available previously to the final

source code and used within this paper for energy estimation

of embedded systems executing concurrent software

components are presented in the following.

1) Program flowcharts of applications

 Program flowcharts represent algorithms or processes of

software components. Flowcharts and the used symbols were

standardized within ISO 5807 [19] and were designed to be

independent from hardware and software. Previously

presented work uses program flowchart specified by generic

programming language elements to estimate the energy

consumption of single software components [1].

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

121

2) Relative priorities and cycle times of applications

Applications running on embedded systems commonly

have different priorities which are derivable early in the

design process by the kind of application. This results for

example in a higher priority for applications which influence

the driving dynamics than applications which inform the

driver. Also the repetition rate (i.e. the cycle time) of the

software components is derived by the applications by the

necessary up-to-dateness of the results of the application.

3) Hardware components

Detailed information concerning the hardware components

used for electronic control units (ECUs) are not available

within early design phases as discussed within [5]. However,

the hardware components specifically necessary for an

application are commonly known, e.g. the radar sensor for a

distance measurement application, which was for example

evaluated previous to the decision to include this feature. For

general hardware components just a rough estimation is

possible which is for example derived by previous systems.

However, networked embedded systems, such as those

represented in automobiles, aircrafts or industrial systems,

are characterized by a high degree of interaction with the

environment using sensors and actuators. Normally almost

every application within automobiles is interacting with the

environment. This results in a different distribution of energy

consumed within embedded systems compared to other

systems (i.e. sensors and actuators consume a considerable

larger percentage of the total energy). Through that the

influence of the estimation error of the general hardware

components is reduced.

Within the following section the energy consumption of

embedded systems influenced by concurrent software

components is modeled using the previously presented

information. First of all, the influence of concurrent software

components w.r.t. energy consumption is discussed.

Afterwards, the model is presented and the estimation of the

individual parameters is detailed.

B. Energy Estimation of Concurrent Software

Components

Concurrent software components executed on one

processor compete for the computing power of the processor.

To enable a distribution of that resource a scheduling

algorithm controls the access to the processor. Different

kinds of scheduling algorithms are available which influence

the timing behavior of the software components [20]. Very

common within embedded real-time systems of the

automotive industry are preemptive, fixed priority schedulers

such as used within AUTOSAR OS [21] which is based on

OSEK OS (ISO 17356-3). For any periodic software

component at least a priority and a cycle time are given.

Tools such as “TORSCHE” [22] enable the analysis of

scheduling algorithms and their influence concerning the

timing behavior. A simple example is shown within Fig. 3

(see Section V), where the execution of “t3” is suspended two

times and the second execution of “t2” once. The energy

consumption for the scheduling overhead is minimizable

using very lightweight schedulers such as [23] or [24], so that

the energy consumption of the software component itself is

nearly identical compared to its serial execution or

non-preemptive scheduling. However, the timing behavior

influences the activity times of the other components. Here it

is necessary to distinguish between the sum of execution

times and the period of time between begin and completion of

a software component.

The sum of execution times influences the general energy

consumers such as the power supply, which is necessary for

any software component and through that independent from

the currently executed application. The influence of software

components concerning these energy consumers is assumable,

because most components are not scalable concerning their

energy consumption – contrary to the CPU [25].

The period of time between begin and completion of a

software component influences the energy consumption of

component-specific peripherals such as sensors and actuators.

These components cannot be deactivated previous to the

completion of the task. As mentioned within Section III-A

most of the software components within embedded systems

use sensors or actuators which results in a considerable

energy saving potential, which need to be modeled. (Note:

Functional dependencies and exclusions between software

components are part of future work, but not of this paper.)

Summarized, there are three categories of energy

consumers influenced by concurrent software components:

1) The CPU itself which consumes energy during the

execution of software components.

2) Hardware components of ECUs which consume energy

which is independent from the currently executed

software component.

3) And hardware components of ECUs which just consume

energy if a specific software component activates this

hardware component.

This leads to Equation (1) for energy estimation, where

EECU is the estimated energy consumption of the ECU. The

number of software components is represented by nswc and

the energy consumption of one independent software

component executed on the CPU is represented by Eswc.

PHW_SWind and PHW_SWdep represent the power consumption of

the further components on the ECU. PHW_SWind is independent

and PHW_SWdep is dependent from the specific executed

software component. tswc represents the execution time and

tswc_start and tswc_end the start time and the completion time of a

software component.

An important factor concerning the usability of Equation

(1) is how to determine the different variables of the equation.

The energy consumption of individual software components

(Eswc) can be estimated using the approach presented in [1].

The power consumption of the different ECU components

(PHW_SWind and PHW_SWdep) can be estimated based on data

sheets of the components or educated guesses as discussed

within Section III-A. And the period of time per software

component (tswc_start and tswc_end) is determinable using tools

such as [22], which use the priority and cycle time (given by

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

122

the application, i.e. the system designer). However,

additionally the execution time tswc of software components is

necessary which is not known previous to the software

implementation as discussed within [5]. Therefore a new

estimation technique is necessary, which is presented within

the next section. The following section presents an approach

to estimate the execution time tswc of software components

which is a necessary input for the presented energy

estimation model. This approach is a further development of

the energy estimation approach presented in [1].

C. Execution Time Estimation of Software Components

The presented estimation of the execution time of

individual software components (without influence of

concurrent components) is based on program flowcharts and

focuses on software components which are executed on

embedded systems and written in the programming language

“C”. This time estimation approach is a further development

of the energy estimation of single software components

presented in [1]. However, the existing results are not directly

usable, because the power consumption of the different

flowchart elements differs and so the total energy

consumption estimation is not linear to the time estimation.

Furthermore there are different conditions, for example the

execution time is not influenced by varying input values.

The time estimation uses program flowcharts, which

consist of individual elements and illustrate the internal

process of a software component abstracted from source code.

A subset of the available flowchart elements of ISO 5807 [19]

are specified by basic operations for arithmetical calculations,

flow control and data management. These elements are

generic and derived from the programming language “C”,

and are presented in Table I. The resulting flowchart

elements are used as input for the presented energy

estimation equations. As an illustrative example, the

calculation of the factorial N (N!) is presented as program

flowchart within Fig. 1.

Compared to the energy estimation of software

components [1] the influence of different input data is not

given. However, there are still two main challenges [1]:

1) Estimating time consumption at an abstracted level (e.g.

flowcharts) means that a lot of elements are not

represented. For example where data is stored,

background processes, etc. This means that this kind of

time estimation normally results in too small time

estimations, which must be compensated.

2) The second challenge is the mostly unknown number of

iterations or the result of conditional branches, caused by

unknown input data. This means the program flow varies

and therefore the time consumption of the software

component in total. Large estimation errors are possible

through that.

The time consumption of the different flowchart elements

depends on the used hardware. This makes it necessary to

know the time consumption of the generic flowchart

elements to enable the time consumption estimation. This

could be realized by an own database or the values are

provided by the hardware manufacturer. It is not necessary to

measure these values on the final hardware; this would

reduce the benefit of this estimation method.

The time estimation equations are based on individual time

estimation elements. These elements are used within

Equation (3) to estimate the time consumption of programs

represented by program flowcharts (symbols described

within Table II). The final time estimation of a software

component is shown in Equation (2) (symbols described

within Table III), where a corrective factor τcorr represents all

neglected time consumers by using the described flowcharts

for time estimation, e.g. not analyzed operations such as bit

shifting or even time consumption by caching, pipelining,

etc., which is commonly not determinable within the

development phase “System Design”. For instance the value

of this factor is application-specific, i.e. the characteristics of

the software such as data-, calculation- or control-intensive,

and is determinable after a training phase of the energy

estimation model for different kinds of applications.

TABLE I: SELECTED PROGRAMMING LANGUAGE ELEMENTS FOR TIME

ESTIMATION

Fig. 1. A simple flowchart for computing factorial N (N!).

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

123

In the following the time consumption symbols used

within Equation (3) are detailed. Intentionally not all

available constructs of the programming language “C” were

used, because having all available constructs and creating

flowcharts with these would be equivalent to writing source

code. Equation (4) shows exemplary the calculation of the

energy consumption of tadd_sub, tmult and tdiv. The symbols n,

specified by different indexes, contain the number of the

respective elements. The estimation distinguishes between

the data types used for the operation. Caused by the different

calculation complexities, the time consumption is a multiple,

for example comparing “integer” and “float” calculations. In

the context of this paper the elements are subdivided into

operations with data types “integer”, “float” and “double”.

The system designers normally know with which data the

software component has to work with, because this is given

by the application.

TABLE II: LIST OF MAIN SYMBOLS OF THE TIME ESTIMATION EQUATION

RESULTING FROM THE USED FLOWCHART ELEMENTS

TABLE III: LIST OF USED SYMBOLS OF THE MAIN TIME

ESTIMATION EQUATION (2)

The time consumption for incrementing integer values is

included in the time estimation equation, because this is a

very common operation within embedded system software.

In particular, this operation is used within “for” and “while”

loops as counter. The time consumption for increment

operations tinc is lower than for addition and subtraction,

because just one variable is manipulated.

One of the main influences concerning the time

consumption of software components in total is the execution

flow, which is influenced by conditional branches (e.g. “if”)

and iterations (e.g. “for” and “while”). The challenge is the

necessarily to concern all relevant branches and iterations

within the time estimation. The presented estimation

equation solves this by introducing the factor ω equivalent to

[1]. This factor is used in the context of “if” branches to

define the probability of every branch to be executed (ωif).

For “for” and “while” iterations the factor is used to give the

probable number of iterations (ωloop). It is possible to mark

uncertain values with an interval of error (or confidence

value), which is then propagated to the final estimate to

indicate the error bandwidth resulted by the ω factors.

The ω factors must be defined by the system designer

during the creation of the program flowchart or at least

previous to the time estimation of the software component.

This factors induce the risk of large estimation errors caused

by incorrect values, which requires a careful choice by the

designer. To do so, the first step of the designer is to reduce

the number of relevant probability factors, because some are

not relevant to the time consumption. These are for example

branches for error handling or covering of extremal values.

Others are neglectable from the point of view of time

consumption, because all possible branches result in a nearly

identical time consumption. The other factors are

data-dependent, i.e. dependent from the application and/or

from the context of the application or system. The easiest way

to specify these factors is to know them from previous

applications or through the developer’s experience. More

complex is the creation of a model of the application’s

environment and simulate the execution of the application.

Here the use of interval of errors (or confidence values)

enable the evaluation of the influence of errors and the

decision to use more complex specifications methods or not.

In any way there is a need of further research on the

specification of these values.

Equation (5) represents the time estimation of “if”

branches, which include the time consumption of the

condition check (tifhead), the “if” branch itself (tifbranch) and the

“else” branch (telsebranch). Within every branch the full set of

possible flowchart elements may be represented, as defined

in Equation (3). The time consumption of tifhead is given by

time consumption necessary for comparing values.

Equation (6) shows the estimation of loops like “for” and

“while” as discussed above. The content of the variables

tloopinit, tloophead and tloopbody depends on the used time

estimation elements by the system designer. An advantage of

loops is the possibility to decompose the elements into the

basic elements such as trw, tif or tinc. This considerably

simplifies the estimation algorithm, because the analysis of

the flowchart need not to distinguish between loops and

branches.

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

124

Every software component consumes time by reading and

writing variables. The time consumption differs depending

on the data type, caused by different representation of data

and for different number of necessary bytes, e.g. for variables

of type “double”. Equation (7) shows the time consumption

elements separated by the data type. (Note: Only reads and

writes to internal memory are analyzed within this paper.)

D. Execution Time Estimation of Software Components

In the following an algorithm is presented which extracts

the number of time consumption elements from flowcharts.

The presented time estimation is designed to be

automatically applicable to a given flowchart, i.e. the system

designer does not necessarily have to count every single

element by hand. The algorithm, which analyzes a given

flowchart concerning the number of time consumption

elements, is illustrated within Algorithm 1. The algorithm

counts the number of different time consumption elements

and analyzes the loops and branches, which are resulted by

“decision” elements. As presented above the decomposition

for “for” and “while” loops simplifies the algorithm. After

analyzing the flowchart the only additional thing to do for

system designers is the definition of the probability factors ω

for every conditional branch (”if”) and iteration (”for” and

“while”) as discussed before. The time consumption values

of the selected hardware are given for example by the

manufacturer as discussed above.

This algorithm is also usable for the energy estimation of

single software components such as [1], because the result of

the algorithm is an analyzed program flowchart which is also

usable as input for the energy estimation (with small

modifications).

Algorithm 1. Algorithm to analyze program flowcharts for the presented

execution time estimation.

IV. EVALUATION

The presented execution time estimation is evaluated using

an exemplary embedded system. (Note: The energy

estimation model Equation (1) is demonstrated within a case

study in Section V.) At first the system and the measurement

setup for the execution time estimation is explained.

Afterwards, the measured time consumption parameters

necessary for the time estimation (cf. Table I) are presented.

These parameters must be known to estimate the execution

time as discussed within Section III-C. Finally the time

consumption of three different commercial software

benchmarks are estimated and compared to the real time

consumption of the evaluated embedded system. (Note: The

evaluation setup is identical to [1].)

A. Measurement Setup

The microcontroller used for the evaluation has a MIPS32

architecture and is equipped with six processor cores. Every

core is equipped with L1 instruction cache and L1 data cache

of 16 kB. All cores share a L2 cache of 256 kB. The software

executed for evaluation is running on just one processor core.

The microcontroller has four power supplies for analog core

(1.5 V), digital core (1.5 V), DDR2 SDRAM phy (1.8 V) and

pads (3.3 V). The most relevant power supply is the digital

core supply, which is responsible for the MIPS32 processor

cores.

A DC Power Analyzer N6705B of Agilent Technolgies,

Inc. [26] is used to measure the power and time consumption.

The Power Analyzer is equipped with “N6762A Precision

DC Power Modules”, which enables very precise

measurements in the microampere region. The accuracy of

voltage output (low range) is 0.016 % + 1.5 mV and for

current output (low range) is 0.04 % + 15 µA. The maximum

sampling rate is 48.9 kHz. The source code of the

benchmarks is compiled using the GNU Compiler (GCC1) in

version 4.5.2 with deactivated optimization options. The

temperature of the microcontroller and the ambient air

temperature influence the energy consumption. Through that

the measurements were done after 30 minutes of activation of

the microcontroller to enable temperatures to be as identical

as possible between different measurements. The ambient air

temperature was between 22 and 24 degree Celsius.

B. Time Consumption Parameters of the Evaluated System

To measure the time parameters of the system, which must

be known to estimate the time consumption, own test

benchmarks were written. These tests consist of a “for” loop,

which is repeated 50.000 times for the measurement. The

loop itself contain 200 of the operation to be analyzed. This is

done to eliminate side effects. Additionally there is an

influence to the time consumptions by using local or global

data. To compensate this, the averaged value of the

benchmark - one third using only local data and two third

only global data - is used. To demonstrate the suitability of

the selected number of operations, Fig. 2 shows exemplary

the energy consumption of the operation “Addition of local

integer data” averaged over different number of operations

within the “for” loop. At a low number of operations the

influence of the covering “for” loop is visible, after about 150

operations the energy consumption is constant. Caused by

1 http://gcc.gnu.org

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

125

that, the number of 200 operation per benchmark was

selected.

Fig. 2. Energy consumption of operation “Addition of local integer data”

averaged over different number of operations within the “for” loop.

The measured values of the time consumption parameters

of the system are presented within Table IV. The

decomposition of tloophead (discussed within Subsection III-C)

was also verified. The time consumption of the head of “for”

and “while” loops with one decision and one increment is

16.8 ns, which is equal to the added time consumption of tif

and tinc.

The value of τcorr is given within this paper by the

measurement results of Section IV-3. In average the

estimation results are 19.2 % too low. This offset is shifted to

zero using an correction factor of 1.24 for this test scenario.

As discussed within Section III-C this factor is given for

example after a training phase to learn the estimation error or

is previously known by the kind of application.

TABLE IV: PARAMETERS OF THE TIME ESTIMATION EQUATIONS FOR THE

EVALUATED SYSTEM

C. Estimation Results Compared to Real Time

Consumptions

The execution time estimation is evaluated using

commercially available software benchmarks and their

program flowcharts. The time consumption of these

flowcharts is estimated and compared to the real time

consumption. The benchmarks used for this purpose are the

“Angle to Time Conversion” (a2time), “Road Speed

Calculation” (rspeed) and “Basic Integer and Floating Point”

(basefp) of the benchmark suite “Auto- Bench 1.1” [27] of

the Embedded Microprocessor Benchmark Consortium

EEMBC2.

The evaluated benchmarks have the same execution

framework. At the beginning a set of data is read from

memory, then a set of instructions are executed using this set

of data, and at the end the results are stored in the memory.

The benchmark “a2time” simulates the embedded

automotive application of measuring the real-time delay

between pulses of the toothed wheel on the crankshaft of an

2 http://www.eembc.org

engine. The application read the real-time counter values at

the beginning of every loop from the test data file and

determine the time between the teeth edges. Until the CPU

detects the Top Dead Center (TDO) the tooth pulse counter is

incremented and during the “firing angle” of every cylinder,

it is “fired”. After reaching the Top Dead Center the counter

is reseted and the process starts from the beginning. The

benchmark is control-intensive and mainly consist of basic

arithmetic operations and conditional branches. The set of

data used for the calculations is composed of integer values.

The benchmark “rspeed” uses also a set of integer values as

input data, but the number of arithmetic operations is less

than half of the benchmark “a2time”. The benchmark “rspeed”

simulates the application of repeatedly calculating the road

speed. This is based on the differences between timer values.

This benchmark also includes calculation for filtering to

reduce noise and the controller has to handle timer roll-over

and abrupt changes. The benchmark is a mixture of

arithmetic (add, subtract, multiply, and divide) and a

significant number of flow control routines (compare and

branch). The benchmark “basefp” calculates the arctangent

using a telescoping series of polynomials. Most of the

operations are floating point instructions (double), i.e. the

benchmark is calculation-intensive. The number of

instructions is about five times larger compared to “rspeed”,

and the set of data is about four times larger.

TABLE V: TIME CONSUMPTION ESTIMATION AND MEASUREMENT RESULTS

OF THE SOFTWARE BENCHMARKS

Table V shows the number of time parameters within the

three benchmarks including the real execution time and the

estimation error. The bandwidth of error is between -12.5 %

and +6.8 %. Obviously the benchmark “Angle to Time

Conversion” shows a significantly deviation, i.e. the time

estimation is to less than for the other benchmarks. “Road

Speed Calculation” and “Basic Integer and Floating Point”

are relatively close together concerning the estimation error.

Evaluating the characteristics of the benchmarks shows that

the actual code size of “Angle to Time Conversion” is more

than double compared to the other benchmarks. (Note: This is

not necessarily derivable from the number of time estimation

elements, because of loops and iterations.) A larger code size

results in more time consumption caused by the cache, which

needs to load more instructions. Another differing

characteristic is a significant other ratio between local and

global variables. Compared to the other benchmarks “Angle

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

126

to Time Conversion” uses 60 % more global variables, which

consume more time and resulting in more time consumption

than estimated. The time consumption of caching is difficult

to estimate, even if all relevant information are available.

During the early stages of system development, it is nearly

impossible to estimate the time consumption of caching,

because the relevant decisions such as cache sizes are not yet

taken. This results in an increase of the error bandwidth,

which is larger as earlier the estimation is done during the

system development phase.

V. CASE STUDY: INFLUENCES OF CONCURRENT TASKS WITH

RESPECT TO ENERGY CONSUMPTION

In this section the influences of concurrent software tasks

concerning the energy consumption of embedded systems

and the optimization potentials are illustrated. An automotive

case study is used for that, which shows a simplified adaptive

cruise control (ACC) that keeps the distance to the vehicle

ahead.

The considered system is realized by an ECU on which

three software components (tasks) are executed. Task “t1”

controls the speed of the vehicle and uses a speed sensor to

measure the vehicle speed. This task has the highest priority,

because of the influence to the driving dynamic. The second

task “t2” evaluates the radar data (without the use of specific

hardware) which is generated by task “t3” using a radar

sensor. The priority of “t2” is higher, because it is assumed in

this case that evaluating the radar data is more important than

updating the radar data in between. Identically to the

priorities the cycle time of the tasks are derived by the

application. The execution times of the tasks are estimated

using the method as described within Section III-C. The

discussed values are shown at the first part of Table VI.

The further timing behavior is evaluated using the toolbox

“TORSCHE” for MatLab [22]. Using a preemptive, fixed

priority scheduler (cf. Section III-B) results in a scheduling

table shown within Fig. 3. Analyzing the first 20 ms the

further necessary timing parameters are derived resulting in

the values presented within Table VI.

Fig. 3. Scheduled Tasks - Created with TORSCHE for MatLab [22].

The different energy and power consumption values are

specified as follows: The energy consumption of the software

components themselves is estimated using the method

presented within [1] (cf. Table VI). The average power

consumption of the processor executing these software

components is 1.82 W. The power consumption of the radar

sensor including interface module is 9.7 W [28] and the speed

sensor is assumed to consume 0.5 W (derived from the power

consumption of the input power consumption of [29]). Weber

et al. [29] specifies the power consumption of a body control

module (BCM): The processor consumes 1 W, the inputs

0.5 W, the (power) outputs 5 W, the communication module

0.25 W and the further on-board components (e.g. voltage

regulator) the remaining 4 W. Thus, the power consumption

which is independent from the executed software component

is assumed to be 4 W. This results in a total power

consumption of the considered electronic control unit of

16.0 W. This is a realistic consumption value as the BCM

of [29] is specified with 10.75 W in total.

Using the presented model to estimate the energy

consumption of the system results in an energy consumption

of 241.2 mWs within the analyzed 20 ms. Trying to optimize

the energy consumption one possibility is the adaption of the

system parameters or – possible because the estimation is

done previous to hardware and software realization – a

different placement of the software components within the

ECU network is conceivable. To demonstrate the energy

saving potential the inversed priorities of the tasks were used,

which results in the theoretical minimum energy

consumption for that specific case. The energy consumption

is then 153.9 mWs, which is 36.2 % below the estimated

energy consumption for the unchanged system (cf. Table VI).

(Note: The change of priorities influence other system

parameters (e.g. response times), so system designers have to

evaluate such decisions concerning different optimization

goals.)

TABLE VI: ENERGY ESTIMATION OF THE SYSTEM (CASE STUDY)

VI. CONCLUSION AND FUTURE WORK

This paper presented and evaluated a new approach of

modeling and estimating energy consumption of embedded

systems resulted by concurrent software components. The

presented model differentiates between: energy consumption

of software components themselves, energy consumption

resulted by any software component, and energy

consumption resulted by specific software components. The

model was applied within an automotive case study which

shows a theoretical energy consumption saving potential of

36.2 %. To apply the presented energy estimation within

early phases of development the necessary information and

their estimation were discussed. Expecting the execution

time of software components all other information are known

or derivable to use the presented model. For that reason the

energy estimation of software components (presented within

[1]) was further developed and evaluated to estimate the

execution time of software components using program

flowcharts. The execution time estimation was applied to the

flowcharts of three commercially available software

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

127

benchmarks to show the feasibility of this approach. The

comparison between estimated and measured time

consumption of an exemplary embedded system results in an

estimation error bandwidth between -12.5 % and +6.8 %.

The presented energy estimation is designed to be

applicable early in the design process, which enables system

designers to optimize the energy consumption of the later

system by evaluating different design variants. The presented

case study demonstrates the contrast between realized

(241.2 mWs) and theoretically possible energy consumption

(153.9 mWs) of the system. Of course, optimizing real

systems energy estimation is one of multiple optimization

goals, so the theoretical energy saving potential is difficult to

realize. However, this energy estimation enables the

inclusion of a detailed energy estimation analysis within

early phases of the development process.

Future work will include the evaluation of different

sensors and actuators as relevant energy consumers of

networked embedded systems concerning their temporal

behavior of the energy consumption to enable a more

accurate energy estimation model.

REFERENCES

[1] P. Heinrich, H. Bergler, and D. Eilers, “Energy consumption

estimation of software components based on program flowcharts,” in

Proc. the 11th IEEE International Conference on Embedded Software

and Systems (ICESS), 2014.

[2] J. Weber, Automotive Development Processes: Processes for

Successful Customer Oriented Vehicle Development, Berlin and

Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.

[3] A. Monetti, T. Otter, and N. Ulshöfer, “Spritverbrauch senken,

reichweite erhöhen: System-basis-chip für den teilnetzbetrieb am

CAN-Bus,” Elektronik Automotive, no. 11, pp. 24–27, 2011.

[4] A. D. Little. Market and Technology Study Automotive Power

Electronics 2015. (2006). [Online]. Available:

http://www.adlittle.com/

downloads/tx_adlreports/ADL_Study_Power_Electronics_2015.pdf

[5] P. Heinrich and C. Prehofer, “Early energy estimation in the design

process of networked embedded systems,” in Proc. the 3rd

International Conference on Pervasive Embedded Computing and

Communication Systems, 2013, pp. 214–220.

[6] V-Modell XT authors and others. [Online]. Available:

http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-

xt/Releases/1.3/V-ModellXTHTMLEnglish

[7] M. Ibrahim, "Power/energy estimation and optimization for

software-oriented embedded systems," PhD Disseration, 2009.

[8] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded

software: A first step towards software power minimization,”

Computer Aided Design, pp. 384–390, 1994.

[9] J. T. Russell and M. F. Jacome, “Software power estimation and

optimization for high performance, 32-bit embedded processors,” in

Proc. International Conference on Computer Design, 1998, pp.

328–333.

[10] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos,

“Energy consumption estimation in embedded systems,” Transactions

on Instrumentation and Measurement, vol. 57, no. 4, 2008.

[11] M. Bazzaz, M. Salehi, and A. Ejlali, “An accurate instruction-level

energy estimation model and tool for embedded systems,”

Transactions on Instrumentation and Measurement, vol. 62, no. 7,

2013.

[12] J. Laurent, E. Senn, N. Julien, and E. Martin, “High-Level Energy

Estimation for DSP Systems,” presented at workshop on Power And

Timing Modeling, Optimization and Simulation PATMOS, 2001.

[13] E. Senn, N. Julien, J. Laurent, and E. Martin, “Power Consumption

Estimation of a C Program for Data-Intensive Applications,” in Proc.

the 12th International Workshop on Integrated Circuit Design. Power

and Timing Modeling, Optimization and Simulation, 2002, pp.

332–341.

[14] T. Ducroux, G. Haugou, V. Risson, and P. Vivet, “Fast and accurate

power annotated simulation: Application to a many-core architecture,”

in Proc. the 23rd International Workshop on Power and Timing

Modeling, Optimization and Simulation (PATMOS), 2013, pp.

191–198.

[15] D. Shorin, A. Zimmermann, and P. Maciel, “Transforming UML state

machines into stochastic Petri nets for energy consumption estimation

of embedded systems,” Sustainable Internet and ICT for Sustainability

(SustainIT), pp. 1–6, 2012.

[16] Object Management Group. “Unified Modeling Languag (UML).

[Online]. Available: http://www.omg.org

[17] O. M. Group. UML Profile for MARTE: Modeling and Analysis of

Real-Time Embedded Systems. [Online]. Available:

http://www.omg.org/spec/MARTE/1.1

[18] G. Callou, P. Maciel, E. Tavares, E. Andrade, B. Nogueira, C. Araujo,

and P. Cunha, “Energy consumption and execution time estimation of

embedded system applications,” Microprocessors and Microsystems,

vol. 35, no. 4, pp. 426–440, 2011.

[19] ISO 5807:1985: Documentation symbols and conventions for data,

program and system flowcharts, program network charts and system

resources charts. New York (USA): American National Standards

Institute, 1985.

[20] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th ed.

Springer, 2012.

[21] AUTOSAR Development Cooperation. AUTOSAR Basic Software.

[Online]. Available: http://www.autosar.org/about/technical-overview/

ecu-software-architecture/autosar-basic-software/

[22] P. Šůcha, M. Kutil, M. Sojka, and Z. Hanzálek, “TORSCHE

Scheduling toolbox for Matlab,” in Proc. IEEE Computer Aided

Control Systems Design Symposium, 2006, pp. 1181–1186.

[23] Atomthreads: Open Source RTOS. [Online]. Available: http://www.

atomthreads.com/

[24] RIOS: RIverside Irvine Operating System. [Online]. Available:

http://www. riosscheduler.org/

[25] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for systemwide

energy minimization in real-time embedded systems,” in Proc. the

2004 International Symposium on Low Power Electronics and Design,

New York, 2004, pp. 78–81.

[26] Agilent Technologies. [Online]. Available: http://www.cp.literature.

agilent.com/litweb/pdf/5990-9394EN.pdf

[27] The Embedded Microprocessor Benchmark Consortium. [Online].

Available: http://

www.eembc.org/techlit/datasheets/autobenchntextunderscoredb.pdf

[28] Econolite. Generic Procurement Specification for a Radar Advance

Vehicle Detection System For Roadway Traffic Applications: Traffic

Sensor for Advance Detection. [Online]. Available: http://

www.econolite.com/files/2013/9897/1150/detection-advanceplus-spe

cification.pdf

[29] T. Weber, V. Lauer, D. Mann, and M. Simons, “Das umfassende

Energiemanagement: Vom konventionelle Verbrenner bis zum

E-Antrieb,” Baden-Baden.

Patrick Heinrich was born in Germany. He received the

M.Eng. degree from the University of Ulster, UK.

Currently, he is working at the Fraunhofer Institute for

Embedded Systems and Communication Technologies

ESK, Munich, Germany. His research interests include

embedded systems, automotive communication networks

and the design of energy-efficient systems.

Hannes Bergler was born in Germany. He received the

M.Sc. degree from the University of Applied Sciences

Munich, Germany. He is currently working at the

Fraunhofer Institute for Embedded Systems and

Communication Technologies ESK, Munich, Germany.

His research interests include embedded software,

automotive systems and energy efficiency.

Erik Oswald was born in Germany. He studied electrical

engineering with focus on communication engineering at

the University of Rostock. He finished his PhD thesis

Digitale Taktrück ge winnung in Multi trägersy

stemen“ with summa cum laude in 2005. Erik Oswald has

been a research fellow at the Fraunhofer Institute for

Embedded Systems and Communication Technologies

ESK since 1998 and is currently working as Group

Manager for Smart Grid Communication at the business unit Industrial

Communication. His research interests include smart metering/grid,

PLC-communication and quality assurance tests for DSL-systems.

