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2 

Abstract—This paper presents and evaluates a new approach 

of modeling energy consumption of embedded systems resulted 

by concurrent software components. The objective is to enable 

energy estimation within early phases of system development, 

which allows system designers to compare different allocations 

of software components within networked systems. 

The model is presented in detail and its application demo  

started by a case study. Additionally, an execution time 

estimation for software components is presented which is 

necessary for the energy model – but previously not available. 

The model was developed being applicable early in the 

development process, i.e. previous to any software 

implementation. This was realized by using only available 

information. 

The individual elements of the presented model are: energy 

consumption of software components themselves, energy 

consumption resulted by any software component, and energy 

consumption resulted by specific software components. The 

variables of the model can be estimated during early phases of 

system design using existing methods, expecting the execution 

time of software components. For that reason, a previously 

energy estimation technique [1] was further developed to 

estimate the execution time based on program flowcharts. 

The estimation was verified by using three commercially 

available benchmarks. The flowcharts of these are utilized to 

estimate the execution times. The comparison between 

estimated and measured execution time of an exemplary 

embedded system results in an estimation error bandwidth 

between -12.5 % and +6.8 %. Additionally, an algorithm is 

presented which enables an automated analysis of program 

flowcharts as part of the execution time estimation.  

The developed model was applied within an automotive case 

study which shows a theoretical energy saving potential of 

36.2 %. This demonstrates the potential and relevance of 

modeling energy estimation within early development phases. 

 
Index Terms—Embedded systems, energy efficiency, energy 

estimation, networked embedded systems (automotive).  

 

I. INTRODUCTION 

Embedded systems designers, such as those active in the 

automotive, aerospace or other industries, are frequently 

given energy consumption requirements for the finished 

product. This makes it necessary to estimate the energy 

consumption early in the design process to realize the 

evaluation of different designs w.r.t. energy consumption. 

Because most industrial domains such as the automotive 

industry have especially long development cycles, a lot of 
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hardware and software choices must be made very early 

during the design process [2]. Optimizing energy 

consumption early in the design process can therefore be a 

major challenge. Embedded systems are characterized by a 

high degree of interaction with the environment using sensors 

and actuators and these systems feature a wide range of 

technologies that significantly impact energy consumption 

down the road. For instance, the placement of functionality 

within a networked embedded system impacts the partial 

networking modes, which involves deactivating certain 

system components that are not being used. Optimizing this 

aspect can reduce energy consumption by as much as 

30 % [3]. 

As embedded systems become more prevalent and 

powerful, they are consuming more energy. This paper 

focuses on estimating energy consumption of embedded 

systems during the early stages of design. Our research 

concentrates on the area of embedded systems commonly 

found in automobiles, aircrafts and industrial systems. In 

today’s luxury-class vehicles for instance, the electrical and 

electronic components draw up to 2.5 kW ([3], [4]). 

Compared to what the vehicle engine requires (e.g. 55 kW), 

2.5 kW seems small. However, the electrical components 

consume energy during every mode of operation, even when 

in standby mode. The vehicle engine consumes most of its 

energy during acceleration and even here the maximum 

power is seldom demanded. An increase of 100 W thus 

means that fuel consumption rises by 0.1 liter per 100 km, 

leading to an increase in CO2 emissions of 2.5 g per km [3]. 

This illustrates the considerable potential for energy savings, 

an aspect that should be factored in during the development 

process. 

This paper presents an energy estimation model for 

concurrent software components executed on embedded 

hardware. The objective is to enable system designers to 

compare different allocations of software components within 

networked embedded systems. The individual elements of 

the model can be estimated using existing methods expecting 

the execution time of software components. Therefore, a 

method for execution time estimation is presented which uses 

information of program flowcharts composed of generic 

flowchart elements. The focus of this work is to enable the 

energy consumption estimation within early phases of system 

development as suggested within [5], since most of the 

existing energy estimation methods are not applicable. This is 

caused by too less available information within the early 

phases of system development, e.g. “System Design” of the 

development model “V-Model XT” [6]. 

The paper is structured as follows: Section II discusses 

different existing energy estimation models. In Section III the 

energy estimation model of concurrent software components 
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is presented. This includes the execution time estimation and 

the algorithm for the automated analysis of program 

flowcharts. The estimation method is evaluated within 

Section IV. Within Section V the model is applied to a case 

study and finally the paper closes with conclusion and future 

work in Section VI. 

 

II. RELATED WORK 

Energy estimation techniques are categorizable concerning 

their level of abstraction. Ibrahim [7] identified two main 

abstraction levels for models that rely on the running system: 

The low-level power modeling with focus on hardware and 

the high-level techniques with focus on software. Models 

which do not rely on running systems are part of a further 

(higher) abstraction level, where the presented model of this 

paper is included. 

The low-level abstraction level of Ibrahim [7] includes the 

circuit-level, gate-level, register-transfer-level and the 

microarchitecture level. These estimation techniques use 

detailed electrical descriptions of the processor to estimate 

the energy consumption. These techniques are used for 

example for processor development.  

The high-level abstraction level contains two categories: 

the Instruction Level Power Analysis (ILPA) and the 

Functional Level Power Analysis (FLPA). Tiwari et al. [8] 

introduced the ILPA, which is based on the energy 

consumption of assembler instructions including 

inter-instruction effects. The maximum estimation error rate 

of this technique is specified as 3 %. Further research was 

done on this topic by different researchers (e.g. [9], [10] and 

[11]). The estimation technique based on FLPA was 

introduced by Laurent et al. [12], where the functional 

elements (e.g. processing unit, memory management unit) of 

processor cores are individually analyzed. The energy 

consumption of these elements is measured under different 

conditions, which enables the energy estimation of assembler 

code. Senn et al. [13] extended the approach to the 

programming language “C”. The reached estimation errors 

are 4.2 % analyzing “C” code and 1.8 % for assembler code. 

Ducroux et al. [14] combines the techniques of ILPA and 

FLPA to further increase the estimation correctness to 4 % 

for “C” code. However, these estimation techniques require 

the existence of the final source code, which is normally not 

available within early development phases [5]. Another 

missing aspect is the different possible program flows during 

execution which influence the energy consumption of the 

program, viewed as a whole. 

The abstraction level of models, which do not rely on 

running systems, such as the presented approach, enables 

energy estimation without the presence of source code. 

Existing approaches use petri nets to enable the modeling of 

program flows on embedded systems. Shorin et al. [15] uses 

stochastic petri nets transformed from UML [16] models with 

MARTE profile [17] to describe the program flow of 

software. At first sight this seems to be similar to the 

execution time estimation approach, however, existing 

source code is divided into source code specific unbranched 

program blocks of software and provided with energy 

consumption and the transition times between those; then, 

different branches of the software flow are provided with 

execution probabilities. This approach needs to know the 

energy consumption of the individual program blocks. These 

blocks are not generic and so individual measurements are 

necessary – previous to the energy consumption estimation of 

the system. Callou et al. [18] also uses petri nets to simulate 

the program flow. The petri nets are automatically generated 

from assembler code. After that the execution probabilities of 

branches and iterations must be added by the system designer. 

This approach results in an estimation accuracy of 93 % for a 

program in whole. However, the final source code is not 

given within early phases of system development. 

Additionally, all the presented techniques are focusing on 

the estimation of single software components. The presented 

energy estimation model of this paper is designed to estimate 

the energy consumption of concurrent software components 

and their influence on embedded systems using information 

available within the development phase “System Design” [5]. 

 

III. ENERGY ESTIMATION OF CONCURRENT SOFTWARE 

COMPONENTS 

In this section the available information for the energy 

estimation and the challenges are discussed. Afterwards, the 

energy estimation of embedded systems executing concurrent 

software components is presented. This includes a detailed 

presentation of the execution time estimation of software 

components based on program flowcharts, which is a 

necessary input for the energy estimation model, but was 

previously not available. At the end of this section an 

algorithm is presented which enables the automated analysis 

of program flowcharts, which is usable to further automate 

the execution time estimation. 

A. Energy Estimation within Early Design Phases 

Energy estimation during early stages of the design phase 

enables system designers to evaluate their design choices 

with respect to the energy consumption of the later system. 

Doing this within the development phase “System Design” [5] 

supports for example the comparison of different software 

realization options or the selection of the processor hardware 

to be used. The earlier energy evaluations are possible during 

the development process, the more possibilities to influence 

the design towards more energy efficiency are available, 

because fewer decisions have already been made [5]. Early 

energy estimation is challenging, caused by the necessary 

database on which the energy estimation is done. As 

discussed within Section II, most models need information 

which are not available during early phases of system 

development to obtain precise estimations.  

Information commonly available previously to the final 

source code and used within this paper for energy estimation 

of embedded systems executing concurrent software 

components are presented in the following. 

1) Program flowcharts of applications 

 Program flowcharts represent algorithms or processes of 

software components. Flowcharts and the used symbols were 

standardized within ISO 5807 [19] and were designed to be 

independent from hardware and software. Previously 

presented work uses program flowchart specified by generic 

programming language elements to estimate the energy 

consumption of single software components [1]. 
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2) Relative priorities and cycle times of applications 

Applications running on embedded systems commonly 

have different priorities which are derivable early in the 

design process by the kind of application. This results for 

example in a higher priority for applications which influence 

the driving dynamics than applications which inform the 

driver. Also the repetition rate (i.e. the cycle time) of the 

software components is derived by the applications by the 

necessary up-to-dateness of the results of the application.  

3) Hardware components 

Detailed information concerning the hardware components 

used for electronic control units (ECUs) are not available 

within early design phases as discussed within [5]. However, 

the hardware components specifically necessary for an 

application are commonly known, e.g. the radar sensor for a 

distance measurement application, which was for example 

evaluated previous to the decision to include this feature. For 

general hardware components just a rough estimation is 

possible which is for example derived by previous systems. 

However, networked embedded systems, such as those 

represented in automobiles, aircrafts or industrial systems, 

are characterized by a high degree of interaction with the 

environment using sensors and actuators. Normally almost 

every application within automobiles is interacting with the 

environment. This results in a different distribution of energy 

consumed within embedded systems compared to other 

systems (i.e. sensors and actuators consume a considerable 

larger percentage of the total energy). Through that the 

influence of the estimation error of the general hardware 

components is reduced.  

Within the following section the energy consumption of 

embedded systems influenced by concurrent software 

components is modeled using the previously presented 

information. First of all, the influence of concurrent software 

components w.r.t. energy consumption is discussed. 

Afterwards, the model is presented and the estimation of the 

individual parameters is detailed. 

B. Energy Estimation of Concurrent Software 

Components 

Concurrent software components executed on one 

processor compete for the computing power of the processor. 

To enable a distribution of that resource a scheduling 

algorithm controls the access to the processor. Different 

kinds of scheduling algorithms are available which influence 

the timing behavior of the software components [20]. Very 

common within embedded real-time systems of the 

automotive industry are preemptive, fixed priority schedulers 

such as used within AUTOSAR OS [21] which is based on 

OSEK OS (ISO 17356-3). For any periodic software 

component at least a priority and a cycle time are given. 

Tools such as “TORSCHE” [22] enable the analysis of 

scheduling algorithms and their influence concerning the 

timing behavior. A simple example is shown within Fig. 3 

(see Section V), where the execution of “t3” is suspended two 

times and the second execution of “t2” once. The energy 

consumption for the scheduling overhead is minimizable 

using very lightweight schedulers such as [23] or [24], so that 

the energy consumption of the software component itself is 

nearly identical compared to its serial execution or 

non-preemptive scheduling. However, the timing behavior 

influences the activity times of the other components. Here it 

is necessary to distinguish between the sum of execution 

times and the period of time between begin and completion of 

a software component.  

The sum of execution times influences the general energy 

consumers such as the power supply, which is necessary for 

any software component and through that independent from 

the currently executed application. The influence of software 

components concerning these energy consumers is assumable, 

because most components are not scalable concerning their 

energy consumption – contrary to the CPU [25].  

The period of time between begin and completion of a 

software component influences the energy consumption of 

component-specific peripherals such as sensors and actuators. 

These components cannot be deactivated previous to the 

completion of the task. As mentioned within Section III-A 

most of the software components within embedded systems 

use sensors or actuators which results in a considerable 

energy saving potential, which need to be modeled. (Note: 

Functional dependencies and exclusions between software 

components are part of future work, but not of this paper.)  

Summarized, there are three categories of energy 

consumers influenced by concurrent software components: 

1) The CPU itself which consumes energy during the 

execution of software components. 

2) Hardware components of ECUs which consume energy 

which is independent from the currently executed 

software component. 

3) And hardware components of ECUs which just consume 

energy if a specific software component activates this 

hardware component. 

This leads to Equation (1) for energy estimation, where 

EECU is the estimated energy consumption of the ECU. The 

number of software components is represented by nswc and 

the energy consumption of one independent software 

component executed on the CPU is represented by Eswc. 

PHW_SWind and PHW_SWdep represent the power consumption of 

the further components on the ECU. PHW_SWind is independent 

and PHW_SWdep is dependent from the specific executed 

software component. tswc represents the execution time and 

tswc_start and tswc_end the start time and the completion time of a 

software component. 

              

    

   

       
            

                  

    

   

               
                     

 

                                         

    

                                
                                      

          

An important factor concerning the usability of Equation 

(1) is how to determine the different variables of the equation. 

The energy consumption of individual software components 

(Eswc) can be estimated using the approach presented in [1]. 

The power consumption of the different ECU components 

(PHW_SWind and PHW_SWdep) can be estimated based on data 

sheets of the components or educated guesses as discussed 

within Section III-A. And the period of time per software 

component (tswc_start and tswc_end) is determinable using tools 

such as [22], which use the priority and cycle time (given by 
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the application, i.e. the system designer). However, 

additionally the execution time tswc of software components is 

necessary which is not known previous to the software 

implementation as discussed within [5]. Therefore a new 

estimation technique is necessary, which is presented within 

the next section. The following section presents an approach 

to estimate the execution time tswc of software components 

which is a necessary input for the presented energy 

estimation model. This approach is a further development of 

the energy estimation approach presented in [1]. 

C. Execution Time Estimation of Software Components 

The presented estimation of the execution time of 

individual software components (without influence of 

concurrent components) is based on program flowcharts and 

focuses on software components which are executed on 

embedded systems and written in the programming language 

“C”. This time estimation approach is a further development 

of the energy estimation of single software components 

presented in [1]. However, the existing results are not directly 

usable, because the power consumption of the different 

flowchart elements differs and so the total energy 

consumption estimation is not linear to the time estimation. 

Furthermore there are different conditions, for example the 

execution time is not influenced by varying input values.  

The time estimation uses program flowcharts, which 

consist of individual elements and illustrate the internal 

process of a software component abstracted from source code. 

A subset of the available flowchart elements of ISO 5807 [19] 

are specified by basic operations for arithmetical calculations, 

flow control and data management. These elements are 

generic and derived from the programming language “C”, 

and are presented in Table I. The resulting flowchart 

elements are used as input for the presented energy 

estimation equations. As an illustrative example, the 

calculation of the factorial N (N!) is presented as program 

flowchart within Fig. 1.  

Compared to the energy estimation of software 

components [1] the influence of different input data is not 

given. However, there are still two main challenges [1]:  

1) Estimating time consumption at an abstracted level (e.g. 

flowcharts) means that a lot of elements are not 

represented. For example where data is stored, 

background processes, etc. This means that this kind of 

time estimation normally results in too small time 

estimations, which must be compensated.  

2) The second challenge is the mostly unknown number of 

iterations or the result of conditional branches, caused by 

unknown input data. This means the program flow varies 

and therefore the time consumption of the software 

component in total. Large estimation errors are possible 

through that.  

The time consumption of the different flowchart elements 

depends on the used hardware. This makes it necessary to 

know the time consumption of the generic flowchart 

elements to enable the time consumption estimation. This 

could be realized by an own database or the values are 

provided by the hardware manufacturer. It is not necessary to 

measure these values on the final hardware; this would 

reduce the benefit of this estimation method.  

The time estimation equations are based on individual time 

estimation elements. These elements are used within 

Equation (3) to estimate the time consumption of programs 

represented by program flowcharts (symbols described 

within Table II). The final time estimation of a software 

component is shown in Equation (2) (symbols described 

within Table III), where a corrective factor τcorr represents all 

neglected time consumers by using the described flowcharts 

for time estimation, e.g. not analyzed operations such as bit 

shifting or even time consumption by caching, pipelining, 

etc., which is commonly not determinable within the 

development phase “System Design”. For instance the value 

of this factor is application-specific, i.e. the characteristics of 

the software such as data-, calculation- or control-intensive, 

and is determinable after a training phase of the energy 

estimation model for different kinds of applications. 

TABLE I: SELECTED PROGRAMMING LANGUAGE ELEMENTS FOR TIME 

ESTIMATION 

 
 

 

Fig. 1. A simple flowchart for computing factorial N (N!). 
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In the following the time consumption symbols used 

within Equation (3) are detailed. Intentionally not all 

available constructs of the programming language “C” were 

used, because having all available constructs and creating 

flowcharts with these would be equivalent to writing source 

code. Equation (4) shows exemplary the calculation of the 

energy consumption of tadd_sub, tmult and tdiv. The symbols n, 

specified by different indexes, contain the number of the 

respective elements. The estimation distinguishes between 

the data types used for the operation. Caused by the different 

calculation complexities, the time consumption is a multiple, 

for example comparing “integer” and “float” calculations. In 

the context of this paper the elements are subdivided into 

operations with data types “integer”, “float” and “double”. 

The system designers normally know with which data the 

software component has to work with, because this is given 

by the application.  

 
TABLE II: LIST OF MAIN SYMBOLS OF THE TIME ESTIMATION EQUATION 

RESULTING FROM THE USED FLOWCHART ELEMENTS 

 

TABLE III: LIST OF USED SYMBOLS OF THE MAIN TIME  

ESTIMATION EQUATION (2) 

 
 

The time consumption for incrementing integer values is 

included in the time estimation equation, because this is a 

very common operation within embedded system software. 

In particular, this operation is used within “for” and “while” 

loops as counter. The time consumption for increment 

operations tinc is lower than for addition and subtraction, 

because just one variable is manipulated. 

           

        

   

            
            

 

            
            

 

            
            

                         

One of the main influences concerning the time 

consumption of software components in total is the execution 

flow, which is influenced by conditional branches (e.g. “if”) 

and iterations (e.g. “for” and “while”). The challenge is the 

necessarily to concern all relevant branches and iterations 

within the time estimation. The presented estimation 

equation solves this by introducing the factor ω equivalent to 

[1]. This factor is used in the context of “if” branches to 

define the probability of every branch to be executed (ωif). 

For “for” and “while” iterations the factor is used to give the 

probable number of iterations (ωloop). It is possible to mark 

uncertain values with an interval of error (or confidence 

value), which is then propagated to the final estimate to 

indicate the error bandwidth resulted by the ω factors. 

The ω factors must be defined by the system designer 

during the creation of the program flowchart or at least 

previous to the time estimation of the software component. 

This factors induce the risk of large estimation errors caused 

by incorrect values, which requires a careful choice by the 

designer. To do so, the first step of the designer is to reduce 

the number of relevant probability factors, because some are 

not relevant to the time consumption. These are for example 

branches for error handling or covering of extremal values. 

Others are neglectable from the point of view of time 

consumption, because all possible branches result in a nearly 

identical time consumption. The other factors are 

data-dependent, i.e. dependent from the application and/or 

from the context of the application or system. The easiest way 

to specify these factors is to know them from previous 

applications or through the developer’s experience. More 

complex is the creation of a model of the application’s 

environment and simulate the execution of the application. 

Here the use of interval of errors (or confidence values) 

enable the evaluation of the influence of errors and the 

decision to use more complex specifications methods or not. 

In any way there is a need of further research on the 

specification of these values.  

Equation (5) represents the time estimation of “if” 

branches, which include the time consumption of the 

condition check (tifhead), the “if” branch itself (tifbranch) and the 

“else” branch (telsebranch). Within every branch the full set of 

possible flowchart elements may be represented, as defined 

in Equation (3). The time consumption of tifhead is given by 

time consumption necessary for comparing values.  

Equation (6) shows the estimation of loops like “for” and 

“while” as discussed above. The content of the variables 

tloopinit, tloophead and tloopbody depends on the used time 

estimation elements by the system designer. An advantage of 

loops is the possibility to decompose the elements into the 

basic elements such as trw, tif or tinc. This considerably 

simplifies the estimation algorithm, because the analysis of 

the flowchart need not to distinguish between loops and 

branches. 
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Every software component consumes time by reading and 

writing variables. The time consumption differs depending 

on the data type, caused by different representation of data 

and for different number of necessary bytes, e.g. for variables 

of type “double”. Equation (7) shows the time consumption 

elements separated by the data type. (Note: Only reads and 

writes to internal memory are analyzed within this paper.) 

      

   

   

         
       

 

         
       

 

         

       
                                          

D. Execution Time Estimation of Software Components 

In the following an algorithm is presented which extracts 

the number of time consumption elements from flowcharts. 

The presented time estimation is designed to be 

automatically applicable to a given flowchart, i.e. the system 

designer does not necessarily have to count every single 

element by hand. The algorithm, which analyzes a given 

flowchart concerning the number of time consumption 

elements, is illustrated within Algorithm 1. The algorithm 

counts the number of different time consumption elements 

and analyzes the loops and branches, which are resulted by 

“decision” elements. As presented above the decomposition 

for “for” and “while” loops simplifies the algorithm. After 

analyzing the flowchart the only additional thing to do for 

system designers is the definition of the probability factors ω 

for every conditional branch (”if”) and iteration (”for” and 

“while”) as discussed before. The time consumption values 

of the selected hardware are given for example by the 

manufacturer as discussed above.  

This algorithm is also usable for the energy estimation of 

single software components such as [1], because the result of 

the algorithm is an analyzed program flowchart which is also 

usable as input for the energy estimation (with small 

modifications). 

 
 

Algorithm 1. Algorithm to analyze program flowcharts for the presented 

execution time estimation. 

IV. EVALUATION 

The presented execution time estimation is evaluated using 

an exemplary embedded system. (Note: The energy 

estimation model Equation (1) is demonstrated within a case 

study in Section V.) At first the system and the measurement 

setup for the execution time estimation is explained. 

Afterwards, the measured time consumption parameters 

necessary for the time estimation (cf. Table I) are presented. 

These parameters must be known to estimate the execution 

time as discussed within Section III-C. Finally the time 

consumption of three different commercial software 

benchmarks are estimated and compared to the real time 

consumption of the evaluated embedded system. (Note: The 

evaluation setup is identical to [1].) 

A. Measurement Setup 

The microcontroller used for the evaluation has a MIPS32 

architecture and is equipped with six processor cores. Every 

core is equipped with L1 instruction cache and L1 data cache 

of 16 kB. All cores share a L2 cache of 256 kB. The software 

executed for evaluation is running on just one processor core. 

The microcontroller has four power supplies for analog core 

(1.5 V), digital core (1.5 V), DDR2 SDRAM phy (1.8 V) and 

pads (3.3 V). The most relevant power supply is the digital 

core supply, which is responsible for the MIPS32 processor 

cores.  

A DC Power Analyzer N6705B of Agilent Technolgies, 

Inc. [26] is used to measure the power and time consumption. 

The Power Analyzer is equipped with “N6762A Precision 

DC Power Modules”, which enables very precise 

measurements in the microampere region. The accuracy of 

voltage output (low range) is 0.016 % + 1.5 mV and for 

current output (low range) is 0.04 % + 15 µA. The maximum 

sampling rate is 48.9 kHz. The source code of the 

benchmarks is compiled using the GNU Compiler (GCC1) in 

version 4.5.2 with deactivated optimization options. The 

temperature of the microcontroller and the ambient air 

temperature influence the energy consumption. Through that 

the measurements were done after 30 minutes of activation of 

the microcontroller to enable temperatures to be as identical 

as possible between different measurements. The ambient air 

temperature was between 22 and 24 degree Celsius. 

B. Time Consumption Parameters of the Evaluated System 

To measure the time parameters of the system, which must 

be known to estimate the time consumption, own test 

benchmarks were written. These tests consist of a “for” loop, 

which is repeated 50.000 times for the measurement. The 

loop itself contain 200 of the operation to be analyzed. This is 

done to eliminate side effects. Additionally there is an 

influence to the time consumptions by using local or global 

data. To compensate this, the averaged value of the 

benchmark - one third using only local data and two third 

only global data - is used. To demonstrate the suitability of 

the selected number of operations, Fig. 2 shows exemplary 

the energy consumption of the operation “Addition of local 

integer data” averaged over different number of operations 

within the “for” loop. At a low number of operations the 

influence of the covering “for” loop is visible, after about 150 

operations the energy consumption is constant. Caused by 

 
1 http://gcc.gnu.org 
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that, the number of 200 operation per benchmark was 

selected. 

 

 
Fig. 2. Energy consumption of operation “Addition of local integer data” 

averaged over different number of operations within the “for” loop. 

 

The measured values of the time consumption parameters 

of the system are presented within Table IV. The 

decomposition of tloophead (discussed within Subsection III-C) 

was also verified. The time consumption of the head of “for” 

and “while” loops with one decision and one increment is 

16.8 ns, which is equal to the added time consumption of tif 

and tinc.  

The value of τcorr is given within this paper by the 

measurement results of Section IV-3. In average the 

estimation results are 19.2 % too low. This offset is shifted to 

zero using an correction factor of 1.24 for this test scenario. 

As discussed within Section III-C this factor is given for 

example after a training phase to learn the estimation error or 

is previously known by the kind of application. 

 
TABLE IV: PARAMETERS OF THE TIME ESTIMATION EQUATIONS FOR THE 

EVALUATED SYSTEM  

 

C. Estimation Results Compared to Real Time 

Consumptions 

The execution time estimation is evaluated using 

commercially available software benchmarks and their 

program flowcharts. The time consumption of these 

flowcharts is estimated and compared to the real time 

consumption. The benchmarks used for this purpose are the 

“Angle to Time Conversion” (a2time), “Road Speed 

Calculation” (rspeed) and “Basic Integer and Floating Point” 

(basefp) of the benchmark suite “Auto- Bench 1.1” [27] of 

the Embedded Microprocessor Benchmark Consortium 

EEMBC2. 

The evaluated benchmarks have the same execution 

framework. At the beginning a set of data is read from 

memory, then a set of instructions are executed using this set 

of data, and at the end the results are stored in the memory. 

The benchmark “a2time” simulates the embedded 

automotive application of measuring the real-time delay 

between pulses of the toothed wheel on the crankshaft of an 

 
2 http://www.eembc.org 

engine. The application read the real-time counter values at 

the beginning of every loop from the test data file and 

determine the time between the teeth edges. Until the CPU 

detects the Top Dead Center (TDO) the tooth pulse counter is 

incremented and during the “firing angle” of every cylinder, 

it is “fired”. After reaching the Top Dead Center the counter 

is reseted and the process starts from the beginning. The 

benchmark is control-intensive and mainly consist of basic 

arithmetic operations and conditional branches. The set of 

data used for the calculations is composed of integer values. 

The benchmark “rspeed” uses also a set of integer values as 

input data, but the number of arithmetic operations is less 

than half of the benchmark “a2time”. The benchmark “rspeed” 

simulates the application of repeatedly calculating the road 

speed. This is based on the differences between timer values. 

This benchmark also includes calculation for filtering to 

reduce noise and the controller has to handle timer roll-over 

and abrupt changes. The benchmark is a mixture of 

arithmetic (add, subtract, multiply, and divide) and a 

significant number of flow control routines (compare and 

branch). The benchmark “basefp” calculates the arctangent 

using a telescoping series of polynomials. Most of the 

operations are floating point instructions (double), i.e. the 

benchmark is calculation-intensive. The number of 

instructions is about five times larger compared to “rspeed”, 

and the set of data is about four times larger.  

 
TABLE V: TIME CONSUMPTION ESTIMATION AND MEASUREMENT RESULTS 

OF THE SOFTWARE BENCHMARKS 

 
 

Table V shows the number of time parameters within the 

three benchmarks including the real execution time and the 

estimation error. The bandwidth of error is between -12.5 % 

and +6.8 %. Obviously the benchmark “Angle to Time 

Conversion” shows a significantly deviation, i.e. the time 

estimation is to less than for the other benchmarks. “Road 

Speed Calculation” and “Basic Integer and Floating Point” 

are relatively close together concerning the estimation error. 

Evaluating the characteristics of the benchmarks shows that 

the actual code size of “Angle to Time Conversion” is more 

than double compared to the other benchmarks. (Note: This is 

not necessarily derivable from the number of time estimation 

elements, because of loops and iterations.) A larger code size 

results in more time consumption caused by the cache, which 

needs to load more instructions. Another differing 

characteristic is a significant other ratio between local and 

global variables. Compared to the other benchmarks “Angle 
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to Time Conversion” uses 60 % more global variables, which 

consume more time and resulting in more time consumption 

than estimated. The time consumption of caching is difficult 

to estimate, even if all relevant information are available. 

During the early stages of system development, it is nearly 

impossible to estimate the time consumption of caching, 

because the relevant decisions such as cache sizes are not yet 

taken. This results in an increase of the error bandwidth, 

which is larger as earlier the estimation is done during the 

system development phase. 

 

V. CASE STUDY: INFLUENCES OF CONCURRENT TASKS WITH 

RESPECT TO ENERGY CONSUMPTION 

In this section the influences of concurrent software tasks 

concerning the energy consumption of embedded systems 

and the optimization potentials are illustrated. An automotive 

case study is used for that, which shows a simplified adaptive 

cruise control (ACC) that keeps the distance to the vehicle 

ahead.  

The considered system is realized by an ECU on which 

three software components (tasks) are executed. Task “t1” 

controls the speed of the vehicle and uses a speed sensor to 

measure the vehicle speed. This task has the highest priority, 

because of the influence to the driving dynamic. The second 

task “t2” evaluates the radar data (without the use of specific 

hardware) which is generated by task “t3” using a radar 

sensor. The priority of “t2” is higher, because it is assumed in 

this case that evaluating the radar data is more important than 

updating the radar data in between. Identically to the 

priorities the cycle time of the tasks are derived by the 

application. The execution times of the tasks are estimated 

using the method as described within Section III-C. The 

discussed values are shown at the first part of Table VI.  

The further timing behavior is evaluated using the toolbox 

“TORSCHE” for MatLab [22]. Using a preemptive, fixed 

priority scheduler (cf. Section III-B) results in a scheduling 

table shown within Fig. 3. Analyzing the first 20 ms the 

further necessary timing parameters are derived resulting in 

the values presented within Table VI.  

 

 

Fig. 3. Scheduled Tasks - Created with TORSCHE for MatLab [22]. 

 

The different energy and power consumption values are 

specified as follows: The energy consumption of the software 

components themselves is estimated using the method 

presented within [1] (cf. Table VI). The average power 

consumption of the processor executing these software 

components is 1.82 W. The power consumption of the radar 

sensor including interface module is 9.7 W [28] and the speed 

sensor is assumed to consume 0.5 W (derived from the power 

consumption of the input power consumption of [29]). Weber 

et al. [29] specifies the power consumption of a body control 

module (BCM): The processor consumes 1 W, the inputs 

0.5 W, the (power) outputs 5 W, the communication module 

0.25 W and the further on-board components (e.g. voltage 

regulator) the remaining 4 W. Thus, the power consumption 

which is independent from the executed software component 

is assumed to be 4 W. This results in a total power 

consumption of the considered electronic control unit of 

16.0 W. This is a realistic consumption value as the BCM 

of [29] is specified with 10.75 W in total.  

Using the presented model to estimate the energy 

consumption of the system results in an energy consumption 

of 241.2 mWs within the analyzed 20 ms. Trying to optimize 

the energy consumption one possibility is the adaption of the 

system parameters or – possible because the estimation is 

done previous to hardware and software realization – a 

different placement of the software components within the 

ECU network is conceivable. To demonstrate the energy 

saving potential the inversed priorities of the tasks were used, 

which results in the theoretical minimum energy 

consumption for that specific case. The energy consumption 

is then 153.9 mWs, which is 36.2 % below the estimated 

energy consumption for the unchanged system (cf. Table VI). 

(Note: The change of priorities influence other system 

parameters (e.g. response times), so system designers have to 

evaluate such decisions concerning different optimization 

goals.) 

TABLE VI: ENERGY ESTIMATION OF THE SYSTEM (CASE STUDY) 

 
 

VI. CONCLUSION AND FUTURE WORK 

This paper presented and evaluated a new approach of 

modeling and estimating energy consumption of embedded 

systems resulted by concurrent software components. The 

presented model differentiates between: energy consumption 

of software components themselves, energy consumption 

resulted by any software component, and energy 

consumption resulted by specific software components. The 

model was applied within an automotive case study which 

shows a theoretical energy consumption saving potential of 

36.2 %. To apply the presented energy estimation within 

early phases of development the necessary information and 

their estimation were discussed. Expecting the execution 

time of software components all other information are known 

or derivable to use the presented model. For that reason the 

energy estimation of software components (presented within 

[1]) was further developed and evaluated to estimate the 

execution time of software components using program 

flowcharts. The execution time estimation was applied to the 

flowcharts of three commercially available software 
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benchmarks to show the feasibility of this approach. The 

comparison between estimated and measured time 

consumption of an exemplary embedded system results in an 

estimation error bandwidth between -12.5 % and +6.8 %.  

The presented energy estimation is designed to be 

applicable early in the design process, which enables system 

designers to optimize the energy consumption of the later 

system by evaluating different design variants. The presented 

case study demonstrates the contrast between realized 

(241.2 mWs) and theoretically possible energy consumption 

(153.9 mWs) of the system. Of course, optimizing real 

systems energy estimation is one of multiple optimization 

goals, so the theoretical energy saving potential is difficult to 

realize. However, this energy estimation enables the 

inclusion of a detailed energy estimation analysis within 

early phases of the development process.  

Future work will include the evaluation of different 

sensors and actuators as relevant energy consumers of 

networked embedded systems concerning their temporal 

behavior of the energy consumption to enable a more 

accurate energy estimation model. 
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