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Abstract—In this study, we proposed a nonlinear 

mathematical model of Hand Foot Mouth Disease (HFMD) due 

to the effectiveness of hand washing campaign as a control 

strategy.  The model is analyzed using stability theory of 

differential equations and computer simulation.  The results 

showed that there were two equilibrium points; disease free 

equilibrium and endemic equilibrium point. The qualitative 

results depend on the basic reproductive number
0

( ).R We 

obtained the basic reproductive number by using the next 

generation method. Stabilities of the model are determined by 

Routh - Hurwitz criteria. If
0

<1R , then the disease free 

equilibrium point is local asymptotically stable, but If
0

>1R , 

then the endemic equilibrium point is local asymptotically 

stable. The graphical representations are provided to 

qualitatively support the analytical results. It concluded that 

with an increase in the effectiveness of hand washing campaign, 

the infected population reduced. 

 

Index Terms—Hand foot mouth disease, hand washing 

campaign, basic reproductive number, stability analysis, 

equilibrium  point. 

 

I. INTRODUCTION 

Hand Foot Mouth Disease (HFMD) is a common 

infectious disease that affects infants and children. HFMD is 

caused by an Enterovirus genus of  Piconoviridae family [1]. 

The most common viruses causing HFMD are 

Coxsackievirus A16 (COX A16) and Enterovirus71 

(EV71)[2]. Symptoms of HFMD is usually onset a fever, 

poor appetite, malaise, and sore throat. After fever starts, 

painful sores can develop in the mouth. The skin rush with 

flat or raised red spots can develop on the palms of the hands 

and soles of the feet and sometimes on the buttocks.    

Although, HFMD is a moderate contagious and not a serious 

illness among population [3].  There is no specific treatment 

or vaccine for HFMD. Therefore, the control measures of 

HFMD are based on appropriate prevention measure include 

quarantine mechanisms and personal protection against 

exposure to infected persons [4]. In Asia, HFMD is occurred 

in many countries; Malasia (1997 and 2006), Taiwan(1998), 

China(2008, 2009 and 2010), Singapore(2008), Vietnam 

(2008) and Mongolia(2008), Bruni(2008),Indonesia(2009) 

and Thailand(1958 and 2008) [3].   

Mathematical models have become an important tool for 

understanding the spread and control of disease. Reference 

[3]. proposed a simple SEIR model for HFMD among the 
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young children. The aim of this study to understand the 

dynamics of HFMD. The model was analyzed for analytic 

results and numerical simulation results. The results shown 

that disease transmission depends on the number of actively 

infected human at the initial time and also on the disease 

transmission coefficient at the given time. Reference [4] 

proposed an epidemic model of HFMD with periodic 

transmission rate. HFMD model was analyzed  and 

investigated the effects of quarantine in children population. 

We obtain a threshold value which determines the extinction 

and uniform persistence of the disease. The results show that 

disease free equilibrium is global asymptotically stable if the 

threshold value is less than one. Otherwise, the system has a 

positive periodic solution and disease persist. The 

simulation results show that quarantine is beneficial 

intervention to control for this disease. Reference [5] 

proposed a mathematical model of HFMD to understand the 

dynamics and analyze the effectiveness of quarantine as a 

control strategy. The results show that disease could be 

control by quarantine of more actively infected individuals. 

The qualitative results show that disease transmission 

depends more on the number of actively infected at the 

initial time and also on the disease transmission coefficient 

at a given time. Reference [6] proposed a dynamic model 

with periodic transmission rates to investigate the seasonal 

HFMD. We obtain the basic reproductive number, analyze 

the dynamical behavior of the model and simulate the 

HFMD of Shandong Province. By carrying out the 

sensitivity analysis of some key parameters, we conclude 

that the recessive subpopulation plays an important role in 

the spread of HFMD.  
The objective of the study is to determine the effectiveness 

of hand washing campaign as a control strategy on the 

dynamical transmission of HFMD model. The remainder of 

the paper is organized as follows. In Section II, we formulate 

the propose model. In Section III, we analyze the model by 

using stability theory of differential equations, to determine 

both disease free and endemic equilibrium point, derive the 

basic reproductive number and investigate the stability of the 

model. In Section IV, we simulate the numerical results, 

which confirm our theoretical results. Finally, we discussion 

and conclude our study in Section V. 

 

II. MODEL FORMULATION 

In our model, we classified the population into five 

compartments according to their states: the susceptible 

human (S) , the exposed human (E) , the infected human (I) , 

the severe infected human ( )AI and the recovered human (R) , 

We denote the total population by ( )TN .The dynamics 

transmission of disease associated with these compartments 

are illustrated as shown in Fig. 1.     
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Fig. 1.  Flow chart of the dynamical transmission of HFMD. 

 

We defined, 

S is the number of susceptible human population at time  t 
E is the number of exposed  human population at time t 
I  is the number of infected human population at time t  

AI is the number of severe infected human population at 

time t  
R is the number of recovered human population at time t  

The transmission model will be a system of ordinary  

differential equations given by, 

  = (1 ) + A

dS
k BSI nβSI μS

dt
                       (1) 

 = (1 ) + (1 )   A

dE
k BSI nβSI p E pE μE

dt
         (2) 

2= (1 ) A

dI
p E r I μI

dt
                          (3) 

1=A
A A A

dI
pE r I μI dI

dt
                             (4) 

     
2 2= A

dR
r I r I μR

dt
                              (5) 

where 

 is the birth rate of human population, 

μ  is the natural death rate of human population, 

β  is the probability of transmission, 

n is the number of contacts,  

1


is the average of incubation period, 

1r is the recovery rate of severe infected human, 

2r is the recovery rate of infected human, 

p  is the fraction of developing infected cases, 

d is the infected disease-related death rate, 

k is the effectiveness of hand washing campaign, 

with     

  = + + + +T AN S E I I R              (6) 

By adding (1)-(5), we obtain  

  =T
T A

dN
μN μI

dt
           (7) 

 

III. MODEL ANALYSIS  

A. Equilibrium Points 

Disease free equilibrium point (
0E ): there are no infected 

human and severe infected human, that is 0, 0AI I  . 

Substituting 0, 0AI I   in (1)-(7), we 

obtained  0 0, , , , , 0, 0, 0,A T

Λ Λ
E S E I I N E

μ μ

 
  

 
. 

  Endemic equilibrium point(
1E ): In case *>0, 0*

AI I  . 

We obtained,  

 

  
  

   

* * *

1

* * *
* *

* * * *

, , , , =

1 +Λ
, , , ,

1 + + + 1 + +

* *

A T

A A
A

A A

E S E I I N

k βI nβI Λ Λ dI
I I

μk βI nβI μ σ μ k βI nβI μ

  
 
  
 

where  the value  of  *I  is  a positive root  of  cubic equation,    

  *3 *2 *
1 2 3 4+ + + =0H I H I H I H .                     (8) 

with  

2
1 2 6 2 7 3= ,H A A A A A  

   

   

2 1 7 3 8 3 2 4 7 1 6 3 5 1 6 2

3 4 8 3 1 7 3 8 4 3 5 1 6 1 4 5 2

2
4 1 4 5 4 8

= + + ,

= + + ,

= + ,

H A A A A A A A A A A A A A A A

H A A A A A A A A A A A A A A A A

H A A A A A

  

  

        

      

1 2 2 2

3 2 4

1 1 + , = + + 1 ,

= + + 1 , = 1 1 ,

A σΛβ p k r μ μ A r μ σ μ k β

A r μ σ μ k nβ A σnΛβ p k

    

  
            

       

     

5 1 6 1

7 1 8

= 1 + + , = + + + 1 ,

= + + + 1 , = 1 .

A σp k nΛβ μ r μ d A r μ d σ μ k nβ

A r μ d σ μ k β A σp k Λβ

  

 
 

And  the value  of  *
AI  is a positive root  of  cubic equation,    

   *3 *2 *
1 2 3 4+ + + =0A A AM I M I M I M           (9) 

where 
 1 2 6 3 7 6= ,M A A A A A

   

   

2 3 5 4 7 7 1 7 2 5 3 8 6

3 4 7 8 1 6 8 1 7 2 5 5 3 5 4 7 8

2
4 1 5 8 4 8

= + 2 + A ,

= ,

= .

M A A A A A A A A A A A

M A A A A A A A A A A A A A A A A

M A A A A A

 

    



 

Basic Reproductive number: We obtained a basic 

reproductive number  0R  by using the next generation 

matrix [7]. Rearrange the (1) - (4) and (7) in matrix form 

 

  

 

  

 

 2

1

0 1 + +

1 + 1 + +

= 0 , = + 1

0 + +

  

0 +

A

A

A A A

T A

k βSI n SI μS Λ

k βSI nβSI σ p E σpE μE

F x V x r I μI σ p E

r I μI dI σpE

μN dI Λ

     
   

    
    
   

   
      

  

   =
dx

F x V x
dt

                     (10) 

where  F x is the rate of appearance of new infections in 

compartment and  V x is the transfer of individuals out of 

compartment by all other means. Find the Jacobian of  F x  

and   V x , denoted by  =DF x F   and  =DV x V , we 

obtained  

      

0 0 0 0 0

1 + 0 1 1 0

= 0 p 0 0 0

0 0 0 0 0

0 0 0 0 0

Ak βI nβI k βS k nβS

F

 
 

   
 
 
 
 
 
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and  

      

  2

1

1 + + 1 10 0

0 0 0 0

  0 0 0

0 0

+

=

0

+

0

1

+

0

+

0

Ak βI nβI μ k βS k nβS

σ μ

V σ p

d

r μ

σp r μ d

μ

 
 
 
 
 
 
 
 

  

 



 
Find F and V at  0 0, , , , = , 0, 0, 0, A T

Λ Λ
E S E I I N E

μ μ

 
 
 

 

  We obtained, 

   

0 0 0 0 0

0 0 1 1 0

0 0 0 0=

0 0 0 0 0

0 0 0 0 0

Λ Λ
k β k nβ

μ μ

pF

 
 
 
 

  
 
 
 
 
 
 
 
 
 
  

 and 

   

  2

1

1 1

+

1 r +μ=

+

0 0

0 0 0 0

0 0 0   

0 0 0

0 0 0

+

Λ Λ
μ k β k nβ

μ μ

σ μ

σ pV

σp r μ d

μd

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 



 

Find 1 FV  , we get      

 

  

  

 

  

 

 

 

 2 1 2 1

-1

1 1 1 1 1

+
+ + + + + + +

0 0 0 0 0

0 0

=
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

+

Λ Λ Λ Λ
p k σβ k nσpβ k β k nβ

μ μ μ μ

σ μ r μ σ μ r μ d r μ r μ d

FV

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

 

Find  the spectral  radius  of  -1FV  denoted by  -1FV  

 

  

  

 

  

 

 

 

 2 1 2 1

-1

1 1 1 1 1

+
+

0 0 0 0

0 0

=
0 0 0 0

0 0 0 0

0 0

+ + + +

0

+ +

0

+

Λ Λ Λ Λ
p k σβ k nσpβ k β k nβ

μ μ μ μ

σ μ r μ σ μ r μ d r μ r μ d

ρ

λ

F
λ

V

λ

λ

λ



    









 

We obtain, the basic reproductive number as follow:   

        
  

  

 

  
0

2 1

1 1 1

= +
+ + + + +

Λ Λ
p k σβ k nσpβ

μ μ
R

σ μ r μ σ μ r μ d

  

    (11)     

Local Stability: The local stability of an equilibrium point 

is determined from the Jacobian matrix of the system of 

ordinary differential equation (1)-(4) and (6) evaluated at the 

equilibrium point. The Jacobian matrix at 0E  is 

   

   

 
0

2

1

0 1 1 0

0 1 1 0
=

0 1 0 0

0 0 0

0 0 0

Ù
μ k βS k nβ

μ

Ù Ù
σ μ k β k nβ

J μ μ

σ p r μ

σp r μ d

d μ

 
     
 
 
     
 
   
 
   
 

  

 
The eigenvalues of the 0J  are obtained by solving 

equation  0J λI = 0 . We obtained the characteristic equation,  

      
2 3 2

1 2 3( + ) ( + + + )=0λ μ λ X λ X λ X
     

(12) 

where                   

       

         

1 0 1 2 0

2 1 0 2 2 0

3 1 2 0 2 1

= + + +2 ,  = +

= + + + + + 1 +1 ,

= + + + + + + 1 1 . 

X C r r μ C σ μ

Ù
X r μ C r μ r μ C σβ k np p

μ

Ù
X r μ r μ C r μ np r μ d p k σβ

μ

  

  

 From the characteristic equation, We see that two are 

1 20, 0         . The other three eigenvalues are 

solution of  3 2

1 2 3+ + + =0λ X λ X λ X . The roots of this equation 

will be negative if two coefficients satisfied with the 

Routh-Hurwitz criteria [8]. 

                     1 31)  0,    2) 0,   3) .
1 2 3

X X X X X    

Endemic equilibrium point: To determine the stability of 

the endemic equilibrium point, 1E  by examining  the 

eigenvalues of Jacobian matrix at 1E , which is 

 

      

      

 

* * * *

* * * *

1
2

1

1 + 0 1 1 0

1 + ( + ) 1 1 0

0 1 0 0

0 0 0

0 0 0 d

A

A

k βI nβI μ k βS k nβS

k βI nβI σ μ k βS k nβS

J
σ p r μ

σp r μ d

μ

       
 
    
 

    
 

   
   

and by solving  equation 1 0J I  . We obtain the 

characteristic equation, 

 4 3 2

1 2 3 4( )( ) 0Q Q Q Q            
where 

 

   

1 2

3 4

= + + + , = + + +

= + + , = +

Q A C G J Q K C G J A

Q AK H F BD L Q FJ HG BD AL 
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      

   

* * * *

*

2 1

= 1 + , = 1 + , + ,

= , 1 , + , = + + , 1

A A

*

A k βI nβI μ B k βI nβI C σ μ

D σp F k βS G r μ J r μ d H k nβS

   

    
 

   + + ( + )K CG C G J H F D  , +( + )L CGJ FJ GH D  . 

We obtain the eigenvalues are 1 0,    and the 

remaining four eigenvalues of  
4 3 2

1 2 3 4 0Q Q Q Q         will be negative real part  if 

they satisfy the Routh - Hurwitz criteria [9] as follows. 

                   

 

2

1 1 2 3 1 2 3 1 4 3

2 2

4 3 1 2 3 1 4

1) 0,  2) 0,3) ( ) 0,  

4) ( ) 0.

Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q

     

   
      

                     

IV. NUMERICAL RESULTS 

In this study, we are interested in the transmission model 

of  HFMD with the effectiveness of hand washing campaign. 

The system is simulated for various set of parameters. The 

stability of disease free equilibrium point 0( )E  and endemic 

equilibrium point 1( )E  are shown in Fig. 2 and Fig. 3, 

respectively. The values of parameters used for simulation in 

this model as shown in Table I. 

  
TABLE I: PARAMETER VALUES USED IN NUMERICAL SIMULATION 

Parameters Description Values 

  Birth rate of human 

population 

100000/(420)  per 

week 

μ  Natural death rate of human 

population 

1/(420)     per week 

β  Probability of transmission  0.00007 

n  Number of contacts  0.00001    per week 

  Average of infectious period 4/7   per week 

1r  Recovery rate of severe 

infected human 

0.8235  per week 

2r  Recovery rate of infected 

human 

0.8235   per week 

p  Fraction of developing 

infected cases 

0.025   per week 

d
 

Death rate related infected 

disease 

0.01    per week 

k
 

Effectiveness of hand washing 

campaign 

0.90                 

      
(a)                                          (b) 

   
(b)                                                  (d) 

 
(e) 

Fig. 2. Time series of (a) Susceptible human (S) , (b) Exposed 

human (E) ,(c) Infected  human (I) , (d) Severe Infected  human ( )AI , and 

(e) Total human ( )TN  proportion  approach to the disease free equilibrium 

state  0.E    

 

Stability of disease free state: From the values of 

parameters listed in Table I, we obtain the values of 

eigenvalues and basic reproductive number is:  

1,2 3 4

5 0

= 0.00238095, 1.33085, 0.835949,

              0.0587765, 0.8229.

λ λ

R





    

  
 

Since  all of these eigenvalues are to be negative and the 

basic reproductive number is less than one ,the equilibrium 

state will be disease free state, 0E (100,000,  0,  0,  0,  100,000)  

as shown in  Fig. 2.  

Stability of endemic state: We change the values of 

effectiveness of hand washing campaign to be k = 0.10   and 

β = 0.70, n = 0.10.   The other values of parameters are listed in 

Table I.  We obtain the values of eigenvalues and basic 

reproductive number is:  

1 2 3

4,5 0

0.00238095,λ 177.501, 1.74063,

    0.244385 0.521022 2.721i 5.,

λ λ

λ R

     

   
 

Since  all of these eigenvalues are to be negative and the 

basic reproductive number is greater than one ,the 

equilibrium state will be disease free state, 
1(1.3414,  414.9322,  281.0242,  7.0913,  99970.2162)E  as shown 

in  Fig. 3.  

 

 
                                 (a)                                             (b)      

 
                  (c)                                                  (d) 

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

107



  

 
(e) 

Fig.  3. Time series of (a)  Susceptible human (S) , (b) Exposed human (E) ,  

(c) Infected  human (I) , (d) Severe Infected  human ( )AI , and (e) Total  

human ( )TN  proportion  approach to the endemic equilibrium state 1.E   

 

V. CONCLUSION 

We formulate the transmission model of HFMD by 

incorporating the effect of hand washing campaign to protect 

individual from HFMD. The basic reproductive number is 

0 0= R ,where 

           

  

  

 

  
0

2 1

1 1 1

= +
+ + + + +

Λ Λ
p k σβ k nσpβ

μ μ
R

σ μ r μ σ μ r μ d

  

 

 

Hence, 0R  represent the average number of secondary 

infections produce when one infected individual is 

introduced into a host population where everyone is 

susceptible [10]. In addition, 0R is the threshold condition for 

determining the stability of  the system. If 0 1R  , the disease 

free equilibrium point is local asymptotically stable as shown 

in Fig. 2, that is disease will die out from the community. 

If 0 1R  , the endemic equilibrium point is local 

asymptotically stable as shown in Fig. 3, that is the disease 

will persist in the community. For the endemic state the value 

is greater than one due to young children do not know how to 

protect themselves from the infected children [1].   

 We can conclusion that if each individual who live in the 

community has knowledge, attitude and behavior to protect 

them from HFMD by increasing the effectiveness of hand 

washing campaign.  The number of susceptible human to 

contact the HFMD will decrease. In young children school 

or nursery and kindergarten, as HFMD has occurred. This  

alternative intervention could decrease the number of 

infected human by hand washing campaign for all young 

students at schooldays.  
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