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Abstract—The task of epileptic seizure prediction aims at 

differentiating between two classes of electroencephalography 

(EEG) signals, namely interictal and pre-ictal signals. The 

development of an automated classifier that is capable of 

performing such task with high sensitivity and low false positive 

rate is of paramount importance, as such classifier will improve 

the quality of life of patients diagnosed with epilepsy. In this 

paper, an enhanced wavelet neural network (WNN) model is 

proposed by incorporating the metaheuristic harmony search 

(HS) algorithm. The enhancement is accomplished via two 

modifications to the standard WNN model. First, a binary 

version of the HS algorithm is employed in the stage of feature 

selection, which aims at selecting the most optimal subset of 

input features for the WNN model during the preprocessing 

stage. Second, the HS algorithm is used to determine the best 

translation vectors for the hidden nodes of the WNN model. The 

simulation performed on the benchmark Freiburg dataset 

reported an average sensitivity of 85.55% and an average false 

positive rate of 0.22 per hour. It was found that the WNN model 

that gave the best performance is the one that employs the HS 

algorithm, in both feature selection and clustering stages. The 

satisfactory values of sensitivity and false positive rate obtained 

demonstrate the effectiveness of the proposed model for 

predicting the occurrence of impending seizures. 

 
Index Terms—Epileptic seizure prediction, harmony search, 

feature selection, clustering, wavelet neural networks.  

 

I. INTRODUCTION 

Epilepsy is a very common neurological disorder. 

Approximately 1% of the world population suffer from this 

chronic disease [1]. This illness, which is caused by 

excessive neuronal firing in the brain region, is characterized 

by the occurrence of recurrent seizures. Undoubtedly, 

epilepsy has serious economic and social implications on 

epileptic patients. They might encounter economic-related 

issues such as employment, insurance, and health-care needs. 

On the other hand, the social impacts on epileptic patients are 

no less pleasant. They live in constant fear of embarrassment. 

Besides, they tend to avoid social functions because of the 

discrimination and social stigma cast on them. To a greater 
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extent, epilepsy patients suffer from a reduced life quality 

due to the side effect of anticonvulsant drugs, as well as many 

other seizure-related injuries. 

Given the astronomical number of patients diagnosed with 

epilepsy, and the serious life-threatening injuries that they 

might encounter, an alarm or a warning system that is capable 

of predicting an impending seizure attack is of great 

importance. An expert system that is able to perform such 

task would path the way for the realization of clinical 

epileptic seizure closed-loop intervention via drug 

administration and seizure warning devices such as vagus 

nerve stimulators. In other words, an impending seizure 

occurrence could be suppressed before its manifestation. 

Electroencephalogram (EEG), which was first developed 

by German neuropsychiatrist Han Berger in 1924, is a very 

useful clinical tool that is used to monitor brain's activity. 

Apart from aiding syndrome classification, EEG also 

supports the general diagnosis of epilepsy. Furthermore, 

epileptologists are able to gain a better understanding of the 

mechanisms of ictogenesis [2].  

A typical EEG signal can be further categorized into four 

different segments, namely interictal (seizure-free period), 

pre-ictal (before the occurrence of seizure), ictal (during the 

occurrence of seizure), and post-ictal (after the occurrence of 

seizure). These four distinct EEG segments are illustrated in 

Fig. 1.  

In the task of epileptic seizure prediction, an automated 

classifier will be trained to perform a binary classification 

problem, that is, to distinguish between interictal and 

pre-ictal EEG signals. The existence of pre-ictal periods has 

been reported in [3], where the researchers found a decreased 

dynamical similarity minutes just before seizures from 

intracranial EEG recordings. 

 

 

Fig. 1. Four different EEG segments. 

Various methods have been reported in the literature of 

epileptic seizure prediction. In [4], a neural mass model, 
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which consists of pyramidal cells, excitatory and inhibitory 

interneurons, is introduced to model the dynamics of 

intracranial EEG data. It was reported that changes in the 

spatio-temporal parameter, which represent patients' preictal 

signatures, could aid in the task of epileptic seizure prediction. 

The results also suggested the existence of a pre-ictal period 

that precedes the onset of seizures.  In [5], a feature space was 

derived from EEG signals by combining 22 linear univariate 

features. Different preprocessing and normalization methods 

were employed to study the biomedical signals. The 

nonlinear classification problem was accomplished using 

support vector machines (SVMs), where an average 

sensitivity of 73.9% and an average false positive rate of 0.15 

per hour were reported. In [6], a probabilistic neural network 

(PNN) model was employed as the classifier. The problem of 

feature selection was addressed by means of genetic 

algorithm. The research reported a significance finding about 

the heterogeneity nature of epileptic patients. In other words, 

no two patients showed exactly identical EEG patterns, but in 

general, seizures of individual patients exhibited similar 

patterns. 

Although a number of different classifiers and various 

preprocessing techniques have been used, there is still room 

for improvement in the area of epileptic seizure prediction. 

For instance, careful consideration should be given to the 

feature selection stage, because a good subset of features 

could not only get rid of irrelevant features, but it could also 

decrease the training time for classifiers. Moreover, some 

fine-tunings could be performed on the classifiers' 

architecture in order to achieve higher classification accuracy. 

In this work, the evolutionary harmony search (HS) 

algorithm is incorporated in the wavelet neural network 

(WNN) model in two aspects. First, a binary version of the 

HS algorithm is used to select the most optimal subset of 

features during the feature selection step. Second, the HS 

algorithm is employed to find the cluster centers or 

translation vectors of the hidden nodes of WNN. Both of 

these modifications aim at increasing the performance of the 

classifier. 

The remaining of the paper is organized as follows. In Sect. 

II, the network architecture of WNN, as well as its learning 

algorithm are presented. In Section III, the concept of 

harmony search algorithm is examined. In Section IV, the 

two enhancements, namely in the steps of feature selection 

and the initialization of translation vectors, are discussed. In 

Section V, the problem of epileptic seizure prediction is 

studied by using the proposed enhanced WNN model. 

Section VI details the experimental results and discussion. 

Lastly, Section VII concludes the paper. 

 

Fig. 2. Network architecture of a WNN model. 

II. WAVELET NEURAL NETWORKS 

A. Network Architecture 

Introduced by Zhang and Benveniste [7], WNNs are a 

class of feedforward neural networks. WNNs are popular as 

learning models as they exhibit fast learning and are able to 

escape local minima. Unlike the conventional multilayer 

perceptrons (MLPs) that utilize global sigmoidal activation 

functions, WNNs employ localized wavelet activation 

functions. WNNs have been applied in various biomedical 

and industrial problems such as multiclass cancer 

classification of microarray gene expression profiles [8], air 

pollution [9], and pulping of the oil palm fronds [10].  This 

particular neural network model consists of three layers, 

namely the input layer, the hidden layer, and the output layer. 

The input layer receives input and propagates the values to a 

single hidden layer, where nonlinear mappings are performed 

by means of activation functions. The values obtained will 

then be summed up and sent to the final output layer. 

Mathematically speaking, a WNN is modeled by the 

following equation: 
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In (1), y is the desired output, x is the input vector, p is the 

number of hidden nodes,  wij is the weight matrix,  is the 

activation function, t is the translation vector, d is the dilation 

parameter, and b is the bias vector. The network architecture 

of a typical WNN model is shown in Fig. 2. 

B. Learning Algorithm 

WNN employs a supervised learning algorithm where the 

values stored in the weight matrix wij will be determined by 

solving a system of linear equations. Observe that equation (1) 

can be rewritten in a more compact form Y = GW , where Y 

is the output, W is the matrix that stores the weight values, 

and G is defined as follows: 
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In (2), when matrix  is a non-square matrix, the equation 

*
W = G D  is used to solve for the weight matrix W. *

G  is 

the pseudo-inverse, where its formula is given by 

 
-1

* T T
G = G G G ,where T

G  is the transpose of matrix G. 

 

III. HARMONY SEARCH ALGORITHM 

Inspired from the improvisation process of musicians, the 

mateheuristic harmony search (HS) algorithm was 

introduced by Geem in 2001 [11]. The word harmony refers 

to the harmony in the field of music theory, where it is 

analogous to a solution vector in optimization problems. 

Each musical instrument is analogous to a decision variable; 

the musical instrument's pitch range is analogous to the range 
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of the decision variable; audience's aesthetics is analogous to 

the local and global search used during the optimization 

process; the best harmony is analogous to the best solution 

that maximizes or minimizes a particular optimization 

problem [12]. The algorithm has been used widely in many 

engineering optimization problems because of its advantages 

over other metaheuristic algorithms. HS requires fewer 

mathematical requirements and derivative information is not 

necessary as it uses stochastic random searches [13]. For HS, 

the new candidate solutions are generated via all the previous 

solutions stored in the HM matrix. On the contrary, the new 

candidate solutions derived via the genetic algorithm (GA) 

only inherit information from two parents. 

The five steps of the HS algorithm are detailed as follows: 

[13], [14]. 

A. Step 1: Initialize Parameters 

In this step, five parameters (HMS, HMCR, PAR, BW, NI) 

are initialized. Harmony memory size (HMS) refers to the 

number of sets of solutions that will be stored in harmony 

memory (HM). On the other hand, harmony memory 

consideration rate (HMCR) and pitch adjusting rate (PAR) 

are two important parameters that are used to improvise a 

new candidate solution via global search and local search, 

respectively. Distance bandwidth (BW) is the value of step or 

increment size, which is found by multiplying a small value, 

usually 0.001, with the range xU-xL, where xU and xL are the 

upper bound and lower bound of a decision variable, 

respectively. The number of improvisations (NI) is used as 

the stopping criterion. 

B. Step 2: Initialize Harmony Memory 

The harmony memory (HM) is first stored with a 

pre-determined number of sets (usually ten) of solutions. 

These initial solutions are generated randomly. The final 

column of the matrix stores the value of the cost function. 
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In (3), i

jx is the value of the jth solution of the ith decision 

variable. The function f is the cost function to be maximized 

or minimized. 

C. Step 3: Improvise a New Harmony 

A new candidate solution, or a new harmony, is then 

generated based on the values stored in the existing HM. For 

each of the decision variable, a random number 0 1r   is 

generated. Then, a new value, 'x is derived using the 

following three rules: 

1) If HMCRr  , 'x  will take the value of one of the 

values stored in the same column in HM. 

2) If PARr  , a small increment size will be added to 'x .  

3) Else, 'x  will be chosen randomly from all the possible 

values in the entire solution space. 

D. Step 4: Update Harmony Memory 

The quality of each of the newly generated candidate 

solution will be evaluated using the cost function given. The 

value of the cost function will be stored in the last column 

and it will be compared with all the fitness values stored in 

HM. If the new solution is found to be a better solution, it will 

replace the worst solution in the existing HM. 

E. Step 5: Stopping Criterion 

The algorithm terminates when it reaches the maximum 

number of specified NI. The best solution is the one that 

gives the least or greatest value of the cost function. 

 

IV. ENHANCEMENT OF WNN MODEL 

A. Feature Selection 

Feature selection is a well-known NP-hard combinatorial 

problem. It entails the search of an optimal subset of input 

features so as to maximize the overall classification accuracy 

of classifiers. By reducing the dimensions of input features, 

the redundant and irrelevant features can be eliminated and 

this saves computational cost. In general, feature selection 

algorithms falls into three main categories, namely wrapper, 

filter, and hybrid methods. The wrapper method is a 

classifier-dependent approach. This method is able to find a 

good subset of input features because it uses the classification 

accuracy reported by the classifiers. Nonetheless, for each 

selected feature subset, the classifier needs to be retrained. 

This implies that this approach incurs a very high 

computational cost because of the repetitive evaluation 

process. 

The second method, which is called the filter approach, is 

much simpler and it uses a pre-determined evaluation metric 

to evaluate the quality or goodness of the selected features. 

This method is not computationally intensive and it can be 

performed very quickly because it does not require feedback 

from the classifier. Nevertheless, since this approach is 

independent of classifier, a feature subset of high quality 

does not necessarily give high classification accuracy when 

the input features are trained and tested using classifiers. 

The third method, which combines the advantages of both 

the wrapper and filter approaches, is termed the hybrid 

approach. It is more computationally expensive but this is a 

small price to pay for its ability to be able to escape from local 

minima. From a mathematical point of view, feature selection 

can be formulated as optimization problems, where each 

feature can be included or excluded from the feature subset, 

with the classifier's classification accuracy being the function 

to be maximized. 

An exhaustive approach could be used to find the optimal 

subset of input features but the technique is not plausible as it 

is too computationally expensive and time consuming. The 

number of possible subset grows exponentially with each 

added dimension. For an input with q features, there are a 

total of 2 1q   different combinations, provided that a 

minimum of one feature must be selected. Hence, the 

complication necessitates the use of metaheuristic methods to 

find reasonably good sub-optimal solutions without having to 

explore the entire solution space. 

Most of the metaheuristic and evolutionary algorithms 

were first proposed and formulated for optimization 

problems that involve real variables. These algorithms have 
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been modified so that they can be used for problems that deal 

with integers and binary values. For instance, [15] reports a 

new version of ant colony optimization (ACO) algorithm that 

modifies the previously traversed paths to adjust the 

pheromone values. The proposed algorithm considers 

features with different priority and it achieves excellent 

performance in the task of feature selection. In [16], an 

improved binary particle swarm optimization (IBPSO) 

algorithm that utilizes the concept of pbest and gbest is 

proposed to study the feature selection problem for gene 

expression data. 

The metaheuristic HS algorithm has also been considered 

to be used in the task of feature selection. In [17], the HS 

algorithm is combined with optimum-path forest classifier to 

study the problem of non-technical losses detection. In [18], 

the HS algorithm is used in conjunction with the concept of 

fuzzy-rough. 

In this work, a novel variant of HS algorithm is proposed. 

Each input feature will be coded as either 0 (feature is 

excluded) or 1 (feature is selected). The harmony or a 

candidate solution is hence, represented by a binary string. 

The search for the optimal input subset is thus, equivalent to 

the search of the best combination of bits, through the 

Boolean hypercube. It is noted that the features are coded 

using only two distinct values and there exists no relation 

between each feature and its neighbors. The BW parameter is 

omitted in this HS-based approach. 

Two major modifications are proposed to prepare the HS 

algorithm better suited for the task of feature selection. First, 

instead of randomly initializing only 10 solutions in HM, a 

total of 100 solutions is first generated, and the best 10 

solutions with the highest fitness values (classification 

accuracy) are then included in the HM. This is based on the 

observation that once the HM is filled with 10 initial 

solutions, the newly generated candidate solutions will be 

derived from only these 10 solutions. Therefore, to increase 

the diversification or exploration of the search process, more 

solutions need to be generated initially, and only after that, 

the 10 solutions of the best quality will be included in the 

HM. 

The second modification is regarding the use of the HMCR 

and PAR parameters. Because each decision variable can 

take only two values (0 or 1), the HMCR parameter will be 

used to determine whether the decision variable will be 

assigned the same value as the majority of the values located 

in the same column of HM. On the other hand, the PAR 

parameter will act as a bit-flip operator. The rules of step 3 of 

the HS algorithm are revised as follows, where x is the old 

value and 'x  is the new value: 

1) If HMCRr  , ' majorx x , where 0majorx  if there are 

more 0’s in the same column, or 1majorx   if there are 

more 1’s in the same column. 

2) If HMCRr  , ' minorx x , where 0minorx   if there are 

less 0’s in the same column, or 1minorx   if there are less 

1’s in the same column. 

3) If PARr  , ' flipx x , where 0flipx   if 1x  , or 

1flipx  if 0x  . 

4) If PARr  , 'x x , where x is the value of the decision 

variable after step (a) and (b) (value of x remains 

unchanged). 

B. Initialization of Translation Vectors with HS Algorithm 

The translation vectors refer to the coordinates or locations 

of the hidden nodes of WNN. A set of good translation 

vectors will ensure a better learning process, as well as faster 

convergence for the neural network model under 

consideration. From the literature, several approaches have 

been used to initialize the translation vectors, which include 

random points from the interval of the domain used [7], 

dyadic selection scheme with k-means clustering algorithm 

[19], and a novel fuzzy c-means clustering algorithm, named 

modified point symmetry-based fuzzy c-means algorithm [8]. 

In [20], the type-2 fuzzy c-means clustering algorithm is 

hybridized with the metaheuristic HS algorithm. While the 

decision variables in the case of feature selection are coded in 

binary values, the decision variables in the case of 

determining the translation vectors take the form of real 

values. The number of cluster centers is determined as 

follows: 

                                .
2

n
k

 
  
 

                                 (4) 

In (4), k is the number of cluster centers, and n is the 

number of data points. Each candidate solution takes the form 

of (5).    
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In (5), where j

ix denotes the ith value of the jth centers. In 

[20], it is shown empirically that the WNN model that is 

initialized with the hybrid clustering algorithm gives the best 

performance compared to other clustering algorithms. The 

hybrid algorithm adds a second layer of fuzziness by 

assigning a membership function to the original membership 

value. In addition, the incorporation of the HS algorithm is 

able to help the solution vectors escape local minima. The 

HMCR and PAR parameters used ensure that the entire 

solution space can be explored more thoroughly, both locally 

and globally. Readers are referred to paper [20] for the detail 

of the clustering algorithm. 

 

V. EPILEPTIC SEIZURE PREDICTION 

A. Data Acquisition 

The EEG signal used in this study is obtained from a 

publicly available dataset recorded at the Epilepsy Center of 

the University Hospital of Freiburg, Germany [21]. The 

database consists of invasive EEG recordings of 21 epileptic 

patients. The EEG signals were recorded using a Neurofile 

NT digital video EEG system with 128 channels, sampled at 

256 Hz. For each patient, the EEG signals were obtained 

from six electrodes; three of them were focal electrodes, 

selected from the seizure onset area, whereas the remaining 

three were extrafocal electrodes. A minimum of 24 hours of 

interictal EEG signals was recorded for each patient. In 

addition, each patient file contains at least 50 minutes of 

pre-ictal EEG recordings. The number of seizures 
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experienced by the patients ranged from 2 to 5. Out of these 

21 patients, 10 patients, each with 5 seizures were selected 

for analysis. The summary of these 10 patients is shown in 

Table I. 

B. Feature Extraction and Selection 

The technique of discrete wavelet transform (DWT) was 

used to extract the useful information embedded in the EEG 

signals. In this study, the Daubechies wavelet of order 4 (db4) 

was used [5], [22].  

A total of five decomposition levels was employed. After 

the feature extraction stage, the six groups of wavelet 

coefficients that were obtained, which correspond to 

different frequency subbands. 

 
TABLE I: INFORMATION OF THE 10 PATIENTS FROM THE DATABASE 

Patient Sex Age Seizure origin 
Seizure 

analyzed 

Interictal 

duration 

3 M 14 Frontal 5 24h 

4 F 26 Temporal 5 24h 

5 F 16 Frontal 5 24h 

9 M 44 Temporal/Occipital 5 24h 

10 M 47 Temporal 5 24h 

16 F 50 Temporal 5 24h 

17 M 28 Temporal 5 24h 

18 F 25 Frontal 5 25h 

20 M 33 Temporal/Parietal 5 26h 

21 M 13 Temporal 5 24h 

 

 The six frequency subbands are  1d  (64-128Hz), 2d  

(32-64Hz), 3d  (16-32Hz), 4d  (8-16Hz), 5d  (4-8Hz), and 

5a  (0-4Hz), where d  and a  stand for detail coefficients and 

approximation coefficients, respectively. 

For each signal, a total of 8 different summary statistics 

were derived from each of the six subbands, which are: (i) 

maximum, (ii) minimum, (iii) 90th percentile, (iv) 10th 

percentile, (v) mean, (vi) standard deviation, (vii) skewness, 

and (viii) kurtosis of the wavelet coefficients. Therefore, 

each EEG signal is represented or characterized by a vector 

with 48 values. The feature extraction stage is then followed 

by feature selection stage, which is described in Section IV. 

A. The values of the parameters used are: HM = 10, HMCR = 

0.7, PAR = 0.3, NI = 1000. 

C. Classification Using WNN 

The WNN used to perform the classification task is 

initialized using the method described in Section IV. The 

Morlet wavelet, as shown in Fig. 3, is used as the activation 

function. The equation of the function is given as follows: 

2

( ) cos(5 ) exp .
2

x
x x

 
   

 
                       (6) 

D. Performance Evaluation 

The results were reported in two performance metrics, 

namely sensitivity and false positive rate. In the survey 

reported in [23], the optimal time frame for a prediction time 

window, called seizure occurrence period (SOP) was 

investigated. It was reported that most patients preferred an 

SOP less than 1 hour. Three different SOP values are 

considered in this work, namely 10 minutes, 20 minutes, and 

30 minutes. The methodology is summarized in the block 

diagram, as shown in Fig. 4. 

 

Fig. 4. Block diagram for epileptic seizure prediction. 

 
Fig. 5. The Morlet wavelet function. 

 

VI. RESULTS AND DISCUSSION 

In this work, two enhancements on the architecture and 

configuration of the WNN model are proposed, which are 

feature selection and cluster initialization. For each of the ten 

patients selected from the Freiburg database, preictal and 

interictal EEG signals are extracted accordingly. A time 

window of 16 seconds is used. With 256 Hz sampling 

frequency, it means that each EEG segment contains 4096  

data points. Each of the 10 selected patients experienced 5 

seizures. Hence, a 5-fold cross validation is employed. The 

first four sets of data are considered the testing sets, whereas 

the last set of data is the testing set. The process is repeated 5 

times so that each of the 5 seizures is tested. 

It should be noted that during the feature selection stage, 

the WNN model was initialized randomly. Only after an 

optimal subset of input features is identified, the selected 

featured will be fed into the WNN model that is initialized 

using the proposed clustering algorithm. This is done to 

fine-tune the architecture of the WNN model so as to increase 

the classification accuracy. If both the feature selection and 

cluster initialization stages are performed simultaneously, it 

would be impractical as it would incur a very high 

computational cost. 

For comparison purposes, different WNN models are also 

considered. The 4 models are described as follows: Model A 

does not employ any enhancements in both aspects. Model B 

only implements the improvement in the feature selection 

stage without the enhancement in clustering. Model C skips 

the enhancement in the feature selection stage and only 
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considers the improvement in the clustering stage. Model D 

utilizes both the enhancements in feature selection and 

cluster initialization. 

A. Results 

The results are reported in two performance metrics, 

namely sensitivity and false positive rates (FPR), across 3 

different seizure occurrence periods (SOP), as shown in 

Table II.  

The formulas for FPR and specificity are defined as 

follows:  

                            
FP

FPR = 100,
TN+FP

                           (7) 

                       
TN

Specificity = 100,
TN+FP

                     (8) 

In (7) and (8), the abbreviations FP and TN stand for false 

positive and true negative, respectively. 

It should be noted that the relationship between specificity 

and FPR is given by: 

                            FPR = 1-specificity.                                 (9) 

 The ROC curve of the best classifier, namely model D, 

which utilizes the harmony search algorithm in both the 

feature selection and cluster initialization stages, is given in 

Fig. 5. 

B. Discussion 

From Table II, it is observed that the WNN model that 

gives the best performance (value highlighted in boldface) in 

terms of sensitivity is model D, which utilizes the WNN 

model that incorporates the HS algorithm in both the feature 

selection and cluster initialization stages. Model D, with 30 

minutes of SOP, gives an average sensitivity value of 85.55% 

and an average FPR of 0.22 per hour.  

In terms of the lowest FPR, model B (with enhancement 

only in the aspect of feature selection), with 10 minutes of 

SOP, reports an average FPR of 0.17 per hour. Despite this 

low value of FDR, this model also yields a relatively low 

sensitivity, at 71.23%. 

It is evident from Table II that a longer time window of 

SOP increases the value of sensitivity. However, at the same 

time, it will increase the value of FPR as well.  

While a high value of sensitivity is desirable, a high FPR is 

not acceptable because the patients will receive too many 

false alarms, which will affect their daily routines and hence, 

weaken their trust in the seizure prediction device. Therefore, 

there is a trade-off between these two parameters. 

It is also noticed that model B gives better results 

compared to model C. This implies that feature selection 

plays a more crucial role compared to cluster initialization for 

the WNN model. By applying the additional feature selection 

step, irrelevant features that could degrade the performance 

of classifiers can be discarded. Furthermore, a good subset of 

input features that can best discriminate the two classes of 

data (pre-ictal and interictal) can be identified. 

C. Performance Comparison 

For performance comparison purposes, the results 

obtained in this work are compared with those reported by 

other researchers in the literature using the same benchmark 

Freiburg dataset. Different classifiers have been proposed in 

the task of epileptic seizure prediction. They include neural 

mass model [4], support vector machines [5], and phase 

synchronization-based model [24]. 

In [4], a neural mass model is developed to study the 

problem of epileptic seizure prediction. Using different 

values of SOP, the values of sensitivity reported are 87.07% 

and 82.90%. The main finding of the work is that the 

spatio-temporal changes in the parameters derived from the 

EEG signals provide valuable information that characterizes 

the nature of the EEG signals during the pre-ictal stage. 

In [5], 22 univariate features are generated from each of 

the 6 EEG signals. Therefore, each patient is characterized by 

a 132 dimensional feature space. The study investigates the 

effects of preprocessing and normalization of the input 

features. The work reports that the best configuration to be 

used is the one that utilizes the smoothing technique, 

combined with normalization by the maximum value. 

 

 

Fig. 6. ROC curve for model D. 

Using a support vector machine (SVM) classifier, the 

technique reports an average sensitivity of 73.9% with an 

FPR of 0.15 per hour. The high value of sensitivity obtained 

demonstrates the importance of input feature preprocessing 

in the task of epileptic seizure prediction. 

In [24], it is found that prior to seizure onset, both the 

increase and decrease in phase synchronization are reported. 

An expert system is developed based on the information 

obtained from this phase synchronization technique. The 

values of SOP and FPR are fixed at 10 min and 0.15 per hour, 

respectively. However, the average sensitivity value is not 

reported explicitly. 

As shown in Table III, the value of sensitivity obtained by 

the model proposed in this work, namely 85.55%, is 

comparable to those reported from previous works.  

In fact, the enhanced wavelet neural network model used 

in this work outperformed most of the other methods, except 

the model proposed in [4]. The minute difference in the 

values of sensitivity is most probably due to the fact that the 

EEG signals can be segmented from different frames.   

To illustrate, there are at least 24 hours of interictal EEG 

recordings available for each patient, and there are many 
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different ways that can be employed to extract a small sample 

from this long segment of biomedical signal. 

In terms of the value of false positive rate (FPR), all the 

models in Table III reported values ranging from 0.15-0.22 

per hour. Some classifiers performed only marginally better 

than the others. 
 

TABLE II: PERFORMANCE METRICS 

WNN Model 
SOP 

(minutes) 

Sensitivity 

(%) 

FPR 

( 1h ) 

Model A 10 65.32 0.18 

(no enhancement  20 65.28 0.18 

in both aspects) 30 69.19 0.25 

Model B 10 71.23 0.17 

(enhancement in  20 76.32 0.19 

feature selection only) 30 78.74 0.21 

Model C 10 68.76 0.24 

(enhancement in 20 69.97 0.24 

cluster initialization only) 30 74.43 0.30 

Model D 10 77.76 0.19 

(enhancement in both 20 78.83 0.24 

feature selection and 30 85.55 0.22 

cluster initialization)    

 
TABLE III: PERFORMANCE COMPARISON 

Method Sensitivity (%) FPR ( 1h ) 

Neural mass model with 

excitatory and inhibitory 

interneurons [4] 

87.07 

82.90 

0.20 

0.16 

Support vector machines 

with features preprocessing 

and normalization [5] 

73.90 0.15 

Phase synchronization with 

bivariate empirical mode 

decomposition [24] 

- 0.15 

Wavelet neural network 

with enhancement in feature 

selection (this work) 

85.55 0.22 

 

VII. CONCLUSION 

In this paper, two improvements are proposed and applied 

to the standard WNN model. Both enhancements are 

accomplished by incorporating the metaheuristic HS 

algorithm. A binary version of the HS algorithm is used in the 

feature selection stage. This is followed by the use of the 

standard HS algorithm in the clustering stage to find the best 

coordinates of the translation vectors of hidden nodes of 

WNN. The enhanced WNN is then tested on the real world 

problem of epileptic seizure prediction. Simulation results 

show that the WNN model that yields the greatest sensitivity 

and lowest false positive rate is the one that uses both the 

enhancements in the feature selection and cluster 

initialization stages. There is also a trade-off between the 

values of sensitivity and false positive rates across different 

seizure occurrence period. The satisfactory values of 

sensitivity and false positive rates obtained from the 

simulation demonstrate that the proposed enhanced WNN 

model could be used to aid in the task of epileptic seizure 

prediction to improve the quality of life of epileptic patients. 

For future works, different training algorithms could also be 

used and tested. The proposed classifier could also be tested 

on the more comprehensive European epilepsy database 

(EPILEPSIAE) to demonstrate its robustness. 
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