
  

  

Abstract—The effects of climate change, including severe 

droughts, fires, and extreme weather events, are increasing 

every year. One of the most dangerous natural disasters around 

the world is flooding. Remote sensing and machine learning 

offer opportunities to utilize remotely collected data for analysis 

and predictive modeling purposes. Using Python programming 

methods, Sentinel-1 Synthetic Aperture Radar (SAR) data was 

collected for water pixel detection from Google Earth Engine 

and combined with National Oceanic and Atmospheric 

Administration (NOAA) precipitation data to understand 

seasonal flood events between 2015 and early 2022. Models were 

developed to predict flooding in the Lower Cape Fear and 

greater Wilmington, North Carolina area. One of the challenges 

in this method is the lack of imagery data recorded within the 

Region of Interest and time frame as well as the interplay 

between different data types, programming methods, and 

outputs. Outputs include data tables and multiple methods for 

data validation. Overall, accuracy for resulting models was high, 

with an artificial neural network for binary classification 

returning an accuracy value greater than 90%. 

 
Index Terms—Flood detection, machine learning, predictive 

modeling, SAR  

 

I. INTRODUCTION 

The effects of climate change, including severe droughts, 

fires, and extreme weather events, are increasing every year. 

One of the most dangerous natural disasters around the world 

is flooding, which causes an average of 4.8 billion USD per 

event in the United States alone [1]. The risk for flood events 

is not distributed evenly and is additionally complicated by 

desirable population centers and their critical infrastructure 

being located along coasts and waterways [1]. Wilmington, 

located along the lower Cape Fear River in North Carolina, is 

such a population center, and has been impacted by severe 

flooding. Understanding the risk of flooding is critical for city 

planning, insurance, recovery efforts, infrastructure, and 

reducing costs during extreme weather and flooding events 

[2].  

 

 

Since the first LandSat satellite was launched 50 years ago, 

remote sensing has been used to collect data and monitor 

environmental conditions [3]. As time has progressed, 

satellites have been continuously constructed in a more 

contemporary style, built with state-of-the-art sensors for 

recording information. With this progression, satellite 

missions have greatly expanded due to the usefulness of the 

data they provide to scientists globally. An impediment that 

satellites forgo during severe weather scenarios, is the 

inability to penetrate cloud cover to the events transpiring on 

the ground. This is deeply problematic and restricts the 

understanding of the disaster at ground level [3, 4]. This 

impacts emergency response within the immediate aftermath, 

and also reduces the amount of data on the event for future 

research and analysis. Copernicus Sentinel-1, a satellite 

launched by the European Space Agency (ESA), offers a 

solution with its Synthetic Aperture Radar (SAR), which 

allows for imagery acquisition from satellites regardless of 

the weather conditions [4]. 

Google Earth Engine offers multiple remote sensing data 

sets from a collection of satellites free of cost. Using 

JavaScript, code can be created to filter Sentinel-1 imagery 

from specific date ranges and optimize a selection of specific 

features, or values, using algorithms. SAR is notable for 

being able to detect environmental change, particularly of 

water, through cloud cover [4]. By creating an algorithm to 

highlight water pixels within a selected Region of Interest 

(ROI) within the greater Wilmington, NC area, the numbers 

of pixels will change between each image capture date. This 

data can then be exported as a CSV file for integration into 

Python scripts for data visualization, deep learning, and 

predictive flood modeling efforts for the lower Cape Fear 

River. This methodology has the potential to be applied to 

other areas that are prone to flooding or experiencing 

droughts, as well as to analyze trends in water levels of large 

bodies of water and create a predictive model from the data 

retrieved. This would become useful to other researchers 

looking for a low cost and open-source solution to sourcing 

data for flood predictive modeling. Using machine and deep 

learning to analyze the output data allows for the 

development of models, both classification and regression, 

towards the goal of flood predictive modeling 

 

II. RELATED WORKS 

The United Nations Office for Outer Space Affairs has 

produced documentation for using SAR for flood mapping 

and damage assessments as part of a standardized process to 

allow countries to avail themselves of the technology for 

disaster relief, which was used to develop the JavaScript code 

to extract data from Google Earth Engine [5]. Additionally, 
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SAR for flood monitoring and disaster management in their 

respective works but worry about the difficulties of capturing 

water in complex areas such as urban environments when 

compared to simpler locations such as rivers, lakes, and 

oceans [6, 7]. This also was a concern for our project and our 

efforts alongside the Cape Fear River.  

Examining the interplay in socio-economic characteristics 

and flood modeling using remote sensing imagery is another 

methodology for determining and quantifying flood 

vulnerability, particularly as it pertains to understanding 

flood plains and mitigation planning measures [8]. All of 

these models, however, do not involve an element of deep 

learning or prediction to allow for an enhanced understanding 

of changing environmental conditions beyond the current 

flood plain models, which our project attempts for remote 

sensing imagery data. 

In 2012, Skakun of the Space Research Institute 

NASUNASU researched flood mapping by applying artificial 

neural networks in his article “A Neural Network Approach 

to Flood Mapping Using Satellite Imagery” [9]. Skakun 

specifically utilized self-organizing Kohonen’s maps (SOMs), 

for SAR image segmentation and classification. He applied 

this research to flood events around the Tisza River, Huaihe 

River, Mekong River, and the Koshi river. The research was 

focused on mapping flood areas based on past SAR imaging; 

however, it did not explore predictive modeling. The tests 

were conducted on three different sensors and classifications 

rates were 85.40% or higher. 

In 2015, Elkhrachy published his research “Flash Flood 

Hazard Mapping Using Satellite Images and GIS Tools: A 

case study of Najran City, Kingdom of Saudi Arabia (KSA)” 

[10]. As the title suggests, Elkhrachy used SAR technology to 

map areas of flash flooding within Najran City. The goal of 

Elkhrachy’s research was to identify known areas of flash 

flooding within a given region to prevent the building of 

infrastructure within a hazardous zone. Similar to Skakun’s 

research, Elkhrachy’s goal was to use past events to inform 

present decisions rather than develop predictive models. 

 

III. DATA SETS 

 
Fig. 1. Lower Cape Fear River SAR chart of water pixel values from January 

2015 until June 2022. 

 

Data sets utilized for this project include water pixel data 

downloaded in CSV format from Google Earth Engine, as 

seen in Fig. 1. Additional weather station precipitation data 

was downloaded from NOAA in CSV format to aid in 

imputation of date for dates between image captures. A look 

at the data set is provided in Table I. 

 
TABLE I: EXAMINATION OF ORIGINAL DATA SET AND EXISTING 

PARAMETERS 

Column Name Data Type Description 

Water float64 
Float, numeric, number of water 

pixels 

Month Int64 
Integer, numeric, month of data 

capture 

Day Int64  
Integer, numeric, day of data 

capture 

Year Int64 
Integer, numeric, year of data 

capture 

Station Object 

Categorical, non-numeric, 

identification of NOAA weather 

station 

Name Object 
Categorical, non-numeric, name of 

NOAA weather station 

Latitude Float64 
Float, numeric, latitude of NOAA 

weather station 

Longitude Float64 
Float, numeric, longitude of 

NOAA weather station 

Total Precipitation Float64 
Float, numeric, combined 

precipitation in mm 

 

IV. METHODOLOGY 

Copernicus Sentinel-1 data from the European Space 

Agency for the date range 1 January 2015 through 1 June 

2022 was captured using a set spatial geometry to capture a 

Region of Interest (ROI) comprising the greater Wilmington, 

North Carolina area as seen in Figure 2. Filtering was applied 

to smooth outputs and ensure correct classification of water 

pixels. A time series chart was generated to collect data in a 

CSV format for use in Python scripting for deep learning. 

Manual removal of records that did not have full imagery 

coverage of the ROI was performed to ensure total capture of 

water pixels for the date of capture. Precipitation data from 

NOAA weather monitoring stations for the greater 

Wilmington region was brought in and joined with the water 

pixel data prior to pre-processing for machine and deep 

learning. In order to account for water pixel data missing 

from the join, an algorithm was developed to fill in pixel data 

based on the mean of the adjacent cell values. The joined data 

set was then filtered using the bounding geometry to exclude 

weather stations and precipitation information outside the 

bounds of the ROI. The data was then explored to determine a 

proper break point to classify the data as flooded or not 

flooded using Python. 

By examining the statistical information within the data set 

in the form of tables and using regression analysis, water 

pixels were able to be separated by percentages within the 

ROI. Respectively, this created the split between 1 and 0 to 

be rounded up to 19,000 from the 75% metric of 18,662.68. 

This was done to ensure flooding was accurately captured, 

rather than artificially inflating the amount of flooded versus 

non flooded records in the data set. The categorical 

information within the data set (Station, Name) were dropped, 

as were the coordinate data for weather station capture 

(Latitude, Longitude) as they had no further bearing on 

modeling the flooding target column. This information was 

additionally excluded from supervised classification and 

regression analyses performed. Categorical encoding was 

performed using OneHotEncoder to generate integer indices 
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from the integer value columns (Month, Day, Year). 

 

 
Fig. 2. Region of interest for SAR capture. 

 

V. EXPERIMENTAL DESIGN 

In structuring a machine learning model, multiple 

algorithms may be chosen to determine overall fitness for the 

data set including through measures such as accuracy. Due to 

data volume, or bias, over-fitting may occur. Deep learning 

can be employed to fine tune parameters to achieve optimal 

performance. Deep learning, a subset of machine learning, 

can group, or cluster, components of a data set to reveal 

correlated relationships [12]. Unlike machine learning, this 

requires a “more is less” approach, meaning more data points 

leading to improved outcomes. Tensorflow and Keras 

provide methods for performing binary classification on data 

sets which fit our data series. By creating a binary 

classification for flooded (1), or not flooded (0), based on a 

break point in the data, the model can be compiled to search 

through the 30,000 plus records. This compilation allows the 

model to accurately place records into the appropriate 

category. Selecting the proper density of features, optimizers, 

and metrics will allow for optimal performance of the model. 

Comprised of node layers, artificial neural networks (ANNs) 

utilize multiple layers to simulate the effects of neurons in the 

human brain. These layers include input, hidden, and output, 

which are interconnected and bear a weight and threshold for 

each specific node layer. Outputs above the threshold are 

activated, while those below remain inactive and do not pass 

information to the next layer [13]. Binary classification, 

classifying a target feature into one of two possible categories, 

is a fairly common method for machine learning and deep 

learning. We implemented both machine learning and deep 

learning experiments to observe the best options for 

classifying water pixel data as flooded or not flooded, with 

additional efforts directed towards regression analysis. The 

first experiment was classification using multiple algorithms 

to predict flooding, the second was binary classification, and 

the final was regression using multiple algorithms. 

Evaluation metrics for classification included accuracy, 

precision, recall, and F1 scores, while our regression metrics 

included R2 scores, root mean square error (RMSE), and 

mean absolute error (MAE). Fig. 3 illustrates our binary 

classification model structure. Batch normalization was 

performed to standardize data distribution, which was 

applied to numerical data columns. This process had the 

additional effect of creating 6 non trainable parameters out of 

a total of 615, with 609 being trainable. The model uses the 

input shape of 17, with an output set to 32 and a dropout rate 

of 0.5 to aid in the prevention of overfitting. The Keras 

activation was set to the rectified linear unit (relu) function, 

applying the maximum of 0 and the input tensor. Once the 

model was compiled, the Adam algorithm was chosen for 

optimization due to its efficiency and suitability for large data 

sets [14]. Binary cross-entropy was used to determine loss 

between true and predicted labels, and accuracy was used as a 

metric to determine the fitness of the overall model. 

 

 
Fig. 3. Binary Classification Model Architecture. 

 

 

VI. EXPERIMENTAL RESULTS 

One of the primary goals of this study was to develop 

predictive modeling for flooding within a given data set. This 

was achieved using both binary classification and regression 

analysis, with the results from the regression analysis 

presented in Table II. Supervised classification outputs, 

available in Table III, illustrate the results of an overfitted 

model, which leads to the results of our binary classification 

model in the form of plots, Figs. 4 and Figs. 5 respectively. 

Accuracy percentage for this model was 99.96% 

 

VII. DISCUSSION  

Deep learning is the optimal solution when machine 

learning models result in overfitting. This can happen for 

multiple reasons, one of which being the complexity of the 

model relative to the training data noisiness. Simplifying the 

model, either by reduction of attributes or parameters, are 

potential solutions to resolve overfitting. Gathering 

additional supporting data can also aid in resolving the issue 

by improving the training data, as can noise reduction [12]. 
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As is evident in the supervised classification table (Table III), 

overfitting by consistently reaching 1 as a percentage 

indicates the model is in effect too simple, and therefore 

easily predicted by the algorithms utilized. Using binary 

classification and an ANN, the accuracy value of 99.96% is 

within the tolerance of 0 and 1 and is viewed as a high 

measure of accuracy for the output result. It is typical to 

expect single column or binary classification predictions to 

be a simpler effort for training and prediction when compared 

against predicting multiple columns or values. This is evident 

in the results from our efforts with Fig. 5. Loss plot for binary 

classification. regression analysis, where while R2 scores for 

K Neighbors exceed 0.70, RMSE values are nowhere near the 

0.2 to 0.5 range indicative of an effective prediction, despite 

the accuracy achievement. In this scenario, a stronger RMSE 

score would suggest a better predictive model for hidden 

layers. While a simple model should have a greater likelihood 

of falling within acceptable metrics, a model can in effect be 

too simple, or lack enough features to allow for accurate 

prediction [12]. Despite the information presented for target 

columns, it is possible that additional information, or feature 

engineering to improve the currently available data, would 

improve the output measures of accuracy and precision. 

Another point to consider is the method for filling the missing 

water pixel information. Radhika and Shashi noted in their 

2009 paper that real world databases are susceptible to 

missing data, which must be managed in such a way through 

cleaning or transformation to be usable for programmatic 

efforts [15]. The current method of using a mean of the values 

in the preceding and succeeding cells does not account for the 

amount of precipitation in a gain or loss, which may impact 

the amount of water pixels present for modeling. 

Additionally, this method may skew the data set towards 

lower or higher values, depending on the cells that need to be 

filled, and would thus affect the resulting model metrics. 

 
TABLE II: REGRESSION MODELS (TRAIN AND TEST SET) FOR WATER PIXEL 

PREDICTIONS 

Train Set 

Algorithms 
R2 Score 

RMSE 
MAE 

Decision Tree 0.894493 1402.516754 381.836544 

GradientBoosting 0.894272 1403.979016 382.719715 

KNeighbors 0.803813 1912.502560 667.870422 

XGradientBoosting 0.592199 2757.344103 1632.200653 

Linear 0.085509 4129.108142 2852.012299 

Ridge 0.085509 4129.108142 2852.011792 

Lasso 0.085509 4129.108573 2851.968489 

ElasticNet 0.084684 4130.971525 2844.496592 

 

Test Set Algorithm R2 Score RMSE MAE 

Decision Tree 0.734665 2250.347831 813.453782 

GradientBoosting 0.661935 2540.108547 800.347733 

KNeighbors 0.647154 2595.042602 822.579290 

XGradientBoosting 0.609615 2729.599336 1623.389689 

Linear 0.093018 4160.557077 2873.781205 

Ridge 0.093015 4160.562714 2873.867227 

Lasso 0.093015 4160.562808 2873.866682 

ElasticNet 0.091355 4164.368621 2866.355405 

 

 

 

 

TABLE III: CLASSIFICATION MODELS (TRAIN AND TEST SETS) FOR FLOOD 

PREDICTIONS 

 

Train Set 

Algorithms 
Accuracy 

Precision 
Recall 

F1Score 

K Nearest 1 1 1 1 

Logistic 1 1 1 1 

GradientBoosting 1 1 1 1 

Decision Tree 1 1 1 1 

AdaBostClassifier 1 1 1 1 

SVC 0.972523 1 0.682986 0.81163 

GaussianNB 0.906645 0.234927 0.034149 0.05963 

BernoulliNB 0.913325 0 0 0 

 

Test Set 

Algorithms 
Accuracy 

Precision 
Recall 

F1Score 

K Nearest 1 1 1 1 

Logistic 1 1 1 1 

GradientBoosting 1 1 1 1 

Decision Tree 1 1 1 1 

AdaBostClassifier 1 1 1 1 

SVC 0.974018 1 0.69000 0.81656 

GaussianNB 0.906862 0.17037 0.02875 0.04919 

BernoulliNB 0.916186 0 0 0 

 

 
Fig. 4. Accuracy plot for binary classification. 

 

 
 

Fig. 5. Loss plot for binary classification 

 

VIII. CONCLUSIONS 

Building low-cost predictive models for flooding has 

multiple potential uses. During the course of this research 

effort, methods were developed for collecting data from SAR 

imagery through Google Earth Engine to be refined for 

machine and deep learning models. Ultimately, supervised 
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and binary classification provided overfitted and accurate 

results respectively, with an accuracy value greater than 90%. 

Regression analysis was less satisfactory, with an R2 value 

greater than 0.70 for the K Neighbors algorithm and RMSE 

values far exceeding the optimal 0.2 to 0.5 range. Additional 

efforts may be undertaken with feature engineering, 

additional data inclusion, or improvements for filling missing 

water pixel information. A limitation for this study design is 

the inclusion of a portion of the coastline adjacent to the 

greater Wilmington area which sees frequent change to water 

levels as a result of flood events. Potential future works could 

focus on a Region of Interest solely on the water body or a 

condensed area of concern, rather than on a greater regional 

area of concern. Additional limitations encountered are the 

filtering parameters which are specific to an area. Focusing 

on a greater regional area means that some areas will not 

show all flooding or may show too much flooding due to the 

filtering value chosen. This too could be remedied by 

focusing on a smaller ROI to fine tune a model, which may 

improve accuracy results for both classification and 

regression modeling efforts. 

 

IX. FUTURE WORK 

Predictive modeling for disaster events such as flooding 

has multiple uses, and the ability to achieve accurate 

predictive and eventually forecasting models is critical to 

developing mitigation strategies. Improvements to the 

current modeling efforts presented here, including the 

previously mentioned filling of missing water pixel data as 

well as the inclusion of additional features, will produce 

stronger and more accurate models. Additionally, these 

methodologies may be able to be applied with Convolutional 

Neural Networks (CNN) to retrieve imagery for analysis and 

prediction. By focusing on areas hit frequently by flooding, 

drought, or natural disasters, strong predictive models can 

begin to be used to develop forecasting models for continuing 

to understand our changing world and better prepare for these 

events.  
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