
  

  

Abstract—The computational fluid dynamic (CFD) model 

can be used to estimate temperatures of structures with 

complex dynamics. Currently, we are developing the CFD 

model for estimating temperatures in a room that has cooling 

and heating sources to optimize the air-conditioning guidance. 

Previously, only one parameter in the model was optimized 

using the parameter optimization algorithm, which results in 

insufficient estimation accuracy. In this paper, we present the 

improvement by optimizing the four parameters in the model 

and allowing different values to them by the temperature. The 

evaluation results show that the average difference between the 

estimated and measured temperature is reduced to 0.06℃ and 

the coefficient of determination R2 is improved to 0.9994. 

 
Index Terms—CFD model simulation, parameter 

optimization algorithm, temperature estimation 

 

I. INTRODUCTION 

Nowadays, heaters, air-conditioners, and fans are equipped 

in rooms in houses, schools, factories, and offices to offer 

comfortable environments for humans and machines. On the 

other hand, global warming has become serious due to 

overconsumptions of fossil fuels. The proper use of 

air-conditioning equipments is increasing its importance, 

which has motivated us to study the air-conditioning 

guidance (AC-Guide) in a room that has cooling and heating 

sources [1]. Usually, temperature or humidity sensors are 

used to monitor the current condition of a room. However, 

their locations are limited near the equipment due to the cost 

reason. Besides, they will be changed in certain time later 

after some actions are taken. As a result, persons in the same 

room may feel hot or cold depending on their locations and 

time. 

The estimations and predictions of temperature and 

humidity distributions in the room using the simulation 

model can be solutions for them. The computational fluid 

dynamic (CFD) model has been used to estimate 

temperatures of structures with complex dynamics [2]. 

Therefore, we are developing a CFD model for estimating 
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temperatures of several locations in a room, to improve the 

guiding accuracy of AC-Guide [3]. 

In our previous study, we have optimized only one 

parameter in the CFD model using the parameter 

optimization algorithm, which resulted in the insufficient 

estimation accuracy. A CFD model needs to simulate 

complex physical phenomena. A physical parameter such as 

the heat transfer coefficient may take a different value by the 

location in a room. The value should be optimized for each 

location. Besides, the optimization process takes very long 

CPU time on a conventional PC because it needs to 

repeatedly run CFD simulations with different parameter 

values while their optimizations. 

In this paper, we present the improvement of the 

temperature estimation accuracy by optimizing the four 

parameters in the CFD model together by the parameter 

optimization algorithm and allowing to take different values 

to them by the temperature. 

The application results show that the average difference 

between the estimated and measured temperature is reduced 

to 0.06℃ and the coefficient of determination R2 is improved 

to 0.9994. 

The rest of this paper is organized as follows: Section II 

introduce the necessary technique in this paper. Section III 

introduces the temperature estimation model for simulation. 

Section IV presents the experiment and analyzes the results. 

Section V introduce related work. Finally, Section VI 

provides concluding remarks with future work. 

II. BACKGROUND TECHNOLOGIES 

In this section, we introduce necessary technologies for 

this study. 

A. CFD 

Computational fluid dynamics (CFD) is used to analyze 

and solve problems that involve fluid flows by using the 

numerical analysis and proper data structures. CFD is a 

branch of fluid mechanics. Computers are used to simulate 

the free-stream flow of liquids or gases, and the interactions 

of the fluid with surfaces defined by boundary conditions. By 

running it on a high-speed supercomputer, better solutions 

can be achieved, where it is often required to solve the largest 

and most complex problems. 

B. OpenFOAM 

OpenFOAM is the popular open-source CFD software that 

has been developed primarily by OpenCFD Ltd. since 2,004 

[4]. It can be used to simulate free-stream flows of liquids or 

gases or interactions of the fluid with surfaces defined by 

boundary conditions. The CFD simulation accuracy depends 
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on the selected parameter values in the model. 

OpenFOAM uses the finite volume method (FVM) and 

sets the boundary condition as patterns [5]. Each pattern has 

several parameters. The selection of the patterns and the 

parameter values have significant influences on simulation 

results. Therefore, their optimizations are very important.  

C. Heat Flux Equation 

In the temperature estimation model, the following heat 

flux equation is computed by using the discrete form in 

OpenFOAM:  

x

T
q




=                                   (1) 

where 

·q represents the heat flux W/m2. 

·λ represents the thermal conductivity through a specified 

material, which is expressed as the amount of heat that flows 

per unit of time through a unit area with a temperature 

gradient of one degree per unit distance. 

·ΔT represents the difference between the outside and 

inside temperatures of the wall Kelvin (K). 

·x  represents the thickness of the wall (meter(m)).  

D. Parameter Optimization Algorithm:paraOpt 

In this section, we review the parameter optimization 

algorithm called paraOpt.  

1) Symbols 

First, we define the symbols to describe the procedure of 

paraOpt [6]. Among them, init

ip , Δpi, ti, and S(P) should be 

properly selected for the target algorithm/logic to achieve a 

better result. 

·P: the set of the ${n}$ parameters for the algorithm/logic 

in the logic program whose values should be optimized. 

·pi:the value of the ith parameter in P (1 ≤ i ≤n). 

· init

ip : the initial value of the $i$th parameter in P (1 ≤ i 

≤n). 

·Δpi: the change step for pi. 

·ti: the tabu period for pi in the tabu table. 

·S(P): the score of the algorithm/logic using P. 

·Pbest:the best set of the parameters. 

·S(Pbest): the score of the algorithm/logic where Pbest is 

used. 

·L: the log of the generated parameter values and their 

scores. 

2) Algorithm Procedure 

The following procedure describes the steps of paraOpt to 

find the parameter values of P to minimize the score S(P): 

 
Algorithm1 parameter optimization tool 

 

1: Clear the generated parameter log L. 

2: Set the initial value in the parameter file for any pi 

In P, set 0 for any tabu period ti 

, and set a large value for S(Pbest). 

3: Generate the neighborhood parameter value sets for P by: 

(a) Randomly selecting one parameter pi for ti = 0. 

(b) Calculate the parameter values of pi− and pi+ by: 

pi− = pi − ∆pi , if pi > lower limit, 

pi+ = pi + ∆pi , if pi < upper limit. 

(c) Generate the neighborhood parameter value sets P−  and P+ by 

replacing pi by pi− or pi+: 

P− = {p1, p2, . . . , pi−, . . . , pn} 

P+ = {p1, p2, . . . , pi+, . . . , pn} 

4: When P (P− , P+) exists in L, obtain S(P) (S(P−), S(P+)) from L. 

Otherwise, execute the logic program using P (P−, P+) to obtain S(P) (S(P

−), S(P+)), and write P and S(P) (P− and S(P−), P+ and S(P+)) into L. 

5: Compare S(P), S(P−), and S(P+), and select the parameter value set that 

has the largest one among them. 

6: Update the tabu period by: 

(a) Decrement ti by −1 if ti > 0. 

(b) Set the given constant tabu period TB for ti if S(P) is      the 

largest at 5 and pi is selected at 3-(a). 

7: When S(P) is continuously largest at 5 for the given 

constant times, go to 8. Otherwise, go to 3. 

8: When the hill-climbing procedure in 9 is applied for 

the given constant times HT, go to 10 as the state is 

converged. Otherwise, go to 9. 

9: Apply the hill-climbing procedure: 

(a) If S(P) < S(Pbest), update Pbest and S(Pbest) by 

P and S(P). 

(b) Reset P by Pbest. 

(c) Randomly select pi in P, and randomly change the 

value of pi within its range and go to (3). 

10: Terminate the algorithm. 

 

E. Model Room for Experiments 

In this study, we evaluate the accuracy of the temperature 

estimation result of the CFD simulation using OpenFOAM 

with the measured ones in the model room. In a real room in a 

conventional building, it is very difficult or impossible to 

freely change the temperature or humidity to be the required 

one in the experiments under various weathers or seasons.  

To solve this problem, a small-sized model room for 

expe-riments in Figure 1 is assembled for this study. The size 

of this room is 1m × 1m × 1m and is covered by the outer 

box whose size is 2m × 2m × 1.5m. The walls of this box 

are insulated by the 30mm thick insulation. In the model 

room, temperature-controlled air using an air conditioning 

unit can be supplied. Besides, at the bottom of the model 

room, heaters are mounted to raise the temperature in the 

room. To measure the temperature distribution of the room, 

27 temperature sensors are installed at the equal interval in 

the room. 

 

 
Fig. 1. Model room for experiments. 
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III. PROPOSAL 

In this section, we present the temperature estimation 

model for the model room and the optimization of its multiple 

parameters. 

A.  Temperature Estimation Model 

To estimate the temperature distribution in the model room, 

the 3D mesh model in Figure 2 is made for OpenFOAM to 

represent the alternative room. The size for this model is the 

same as that for the real one. 

 
Fig. 2.  3D mesh model. 

 

Before starting the CFD simulation using OpenFOAM, the 

boundary conditions for the walls and the heaters need to be 

set properly, since they strongly influence the simulation 

results. The boundary condition of the wall is given by the 

heat flux in the following subsection. 

B.  Parameters for Optimization 

Table I shows the parameters for the boundary conditions 

related to heat flux whose values are optimized in this study. 
 

TABLE I: PARAMETERS FOR BOUNDARY CONDITIONS 

parameter description 

Q power of heater 

Th temperature of heater 

h heat transfer coefficient 

Tw temperature of wall 

 

Then, at each wall, the following heat flux q is transferred 

to the wall from the chamber: 

                           )( wf TThq −=                        (2) 

where 

• q represents the heat flux (W/m2). 

• h represents the heat transfer coefficient W/(K•m2) [7]. 

• Tf represents the temperature of the fluid along the wall 

at a certain moment (Kelvin(K)). 

• Tw represents the temperature of the wall (Kelvin(K)). 

C. Score Function 

The boundary condition of the wall may have the large 

influence on the temperature changes in the room. To 

accurately predict the temperature changes, the values of the 

boundary condition parameters in OpenFOAM should be 

optimized. For this purpose, in paraOpt, the following score 

function S(P) is calculated from the given simulation heat 

flux values P and the measured temperatures by the following 

procedure: 

(1) Record the simulation temperature every five seconds 

for one hour. 

(2) Calculate the absolute value of difference simulation 

temperature between measurement actual temperature. 

(3) Calculate S(P) by: 

                       
=

−=
N

i

i

m

i

s TTPS
0

)(                    (3) 

where i

sT  does the i-th simulated temperature at every five 

seconds, 
i

mT  does the i-th measured temperature saved at 

every five seconds, and N does the total number of 

temperature-s. In the parameter optimization algorithm, tabu 

ti = 10. 

IV.  EXPERIMENT 

In this section, we present experiment results for evaluati-

ons. In experiments, First, we switch on the heater within 1 h

our to increase the indoor temperature and measure temperat

ure in coordinates (0, 0, 0). Second, simulation and optimi-za

tion. 

 
TABLE II: INITIAL PARAMETER VALUES FOR PARAOPT 

parameter unit initial value range 

Q W 1 1~30 

Th K 345 300~350 

h W/(K•m2) 1 1~30 

Tw K 345 300~350 

 

A.  Evaluation Setup 

Table II shows the parameter values for paraOpt. The init

-ial temperature of the room at both the inside and the outsid-

e of the wall is 26.76◦C.  

To evaluate the difference between the estimated tempera-

ture and the measured one. the coefficient of determination R
2 is calculated by the following equation. R2 becomes closer t

o 1 as the difference becomes smaller. 
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where: 

• y represents the measured temperature (◦C). 

• 
iy



 represents the estimated temperature (◦C). 

• 
iy

−

 represents the average measured temperature (◦C). 

B. One Parameter Optimization Result 

First, we evaluate the model estimation accuracy when 

only one parameter Q is optimized by paraOpt. 

Fig. 3 shows the estimated and measured temperature 

results. The difference between them is large. Table III shows 

the value of Q after optimization, and the average difference 

and the coefficient of determination between the estimated 

and measured temperature results. The result suggests one 

parameter optimization is not sufficient. 

 
TABLE III: RESULTS BY ONE PARAMETER OPTIMIZATION 

parameter after proposal 
temperature 

difference 
R2 

Q 2 6.23℃ 0.5414 
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C. Four Parameters Optimization Result with Constant 

Value 

Next, we evaluate the model estimation accuracy when all 

of the four parameters in Table II are optimized and their va-

lues are fixed. 

Figs. 4−5 show the estimated and measured temper-ature r

esults using the training data and the validation data, respecti

vely. The average temperature difference between es-timated

 and measured during one hour is 0.79◦C and 0.68◦C. The di

fference becomes much smaller. 

However, when the temperature becomes high as the time 

elapses, the difference increases. To improve it, the paramet-

er values should be changed at the high temperature of 341K. 

 
TABLE   IV: RESULTS BY FOUR PARAMETERS OPTIMIZATION WITH 

CONSTANT VALUE. 

parameter after proposal temperature difference R2 

Q 10 

0.79◦C 0.9878 
Th 345 

h 3 

Tw 321 

 

 
 

Fig. 3.  Temperature results by one parameter optimization. 

 

Table IV shows their optimized values, and the average 

difference and the coefficient of determination between the e

stimated and measured temperature results. The result sug-ge

sts the four parameters optimization can improve the accurac

y, but is still not sufficient. 

 
Fig. 4.  Temperature results by four parameters optimization with constant 

value for training. 

 
Fig. 5.  Temperature results by four parameters optimization with constant 

value for validation. 

 
Fig. 6.  Temperature results by four parameters optimization with changed 

value for training. 

 
Fig. 7.  Temperature results by four parameters optimization with changed 

value for validation. 

 

D. Four Parameters Optimization Result with Changed 

Value 

Last, we evaluate the model estimation accuracy when all 

of the four parameters are optimized and their values can be 

changed by the temperature. Here, the different values can be 

given to each parameter by the temperature range of 300 − 

317K, 317 − 341K, and 341 − 346K. These ranges are also 

optimized by the parameter optimization tool. 

Figs. 6 and Figs.7 show the estimated and measured tempe

r-ature results using the training data and the validation data, 

respectively. The average temperature difference is 0.06◦C a
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nd 0.31◦C. The difference becomes small at any temperature 

and is not increasing as the temperature increases. Table V s

hows the optimized values, and the average difference and t-

he coefficient of determination between the estimated and me

asured temperature results. The result suggests the four p-ara

meters optimizations with changed values can improve the a

ccuracy sufficiently. 

 
TABLE V: RESULTS BY FOUR PARAMETERS OPTIMIZATION WITH CHANGED 

VALUE 

parameter after proposal 
temperature 

difference 
R2 

Q 

300-317

K 

317-34

1K 

341-346

K 

0.06◦C 0.9994 

10 10 10 

Th 

300-317

K 

317-34

1K 

341-346

K 

317 341 346 

h 

300-317

K 

317-34

1K 

341-346

K 

5.5 3 0.5 

Tw 

300-317

K 

317-34

1K 

341-346

K 

300 317 341 

 

V. RELATED WORK 

In [8], Xi et al. proposed a smart hill-climbing algorithm 

based on RHC to configure the parameters in the server that 

can influence the server response automatically. They 

formulated the problem of finding the optimal configuration 

for a given application as the black-box optimization problem. 

They carried out extensive experiments with an online 

br-okerage application running in a WebSphere environment. 

The results demonstrated that the algorithm is superior to 

traditional heuristic methods. 

In [9], Ghadimi et al. proposed an algorithm to optimize 

the shape of the centrifugal blood pump based on the genetic 

algorithm. They applied the proposal to optimize the 

parame-ters of the CFD simulation to improve the 

performance. Th-e results showed that hydraulic efficiency 

was improved 11.1% and the hemolysis index was reduced 

11.8% by using th-e optimized shape of the centrifugal blood 

pump. 

In [10], Noor et al. presented the non-Newtonian fluid 

sim-ulations via OpenFOAM. They focus on the 

implementation and functionality of the code of the 

non-Newtonian power l-aw equations and used the finite 

volume method (FVM).   The simulation results were shown 

with graphs and animate-d videos. The flow analysis states 

the behavior of the velocit-y field when the fluid hits the 

obstacle. The animated video-s further include the behavior 

of velocity in the leaving zon-e of the cylinder obstacle. A 

clear view of fluid flow can be seen far from the cylindrical 

object. 

VI. CONCLUSION 

This paper presented the improvement by optimizing the 

four parameters in the CFD model together by the parameter 

optimization algorithm and allowing different values to them 

by the temperature. The evaluation results show that the 

average difference between the estimated and measured 

temperature is reduced to 0.06℃  and the coefficient of 

determination R2 is improved to 0.9994. In future works, we 

will further improve the accuracy by optimizing other 

parameters in the model and evaluate the accuracy under 

different experiments. 
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